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Abstract: Biometric systems are per definition used to identify individuals or verify an
identity claim – one difficulty of getting reliable decisions is the inherent noise that makes
it difficult to extract stable features from biometric data. This paper describes how bio-
metric samples can be used to generate strong random numbers which form the basis of
many security protocols. Independent from the biometric modality, the only requirement
of the proposed solution are feature vectors of fixed length and structure. Each element of
such a feature vector is analyzed for its reliability – only unreliable positions, that cannot
be reproduced coherently from one source, are extracted as bits to form the final random
bit sequences. Optionally a strong hash-based random extraction can be used. The prac-
ticability is shown testing vascular patterns against the NIST-recommended test suite for
random number generators.

1 INTRODUCTION

One observation with biometric systems is that they deal with noisy physiological or behav-

ioral data. Another observation is that the extraction of reliable features, which allows to dis-

criminate between imposter and genuine attempts, is usually a non-trivial and difficult task.

Both observations contribute to the motivation of this work. The common strategy in a bio-

metric system is to extract a compact representation that includes only the most stable, reliable

and distinctive information from the raw sensorial data.

On the other hand cryptographic protocols are used more and more widely in nowadays every-

day applications as e.g. authentication in online banking. One major building block of those

protocols is the proof of freshness. Such a proof is usually done by inserting a cryptographic

nonce – a freshly generated random number that is only used once – in a message, which

makes a simple message replay detectable. Such random numbers have to be unpredictable

for an attacker in order to not compromise the whole protocol. Therefore strong random

number generators are needed. The sources of true randomness are often physical processes

while randomness from deterministic and highly non-chaotic systems like computers is often

very limited. One example of a security protocol using a biometric transaction authentication

with the need for strong random numbers for enrollment is the BTAP [HB10, HB11].

In this paper, we present and evaluate the idea to use physical, biometric data to generate

strong random numbers. This paper investigates how to combine biometric feature extraction
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and random number generation , how to generate the random numbers and how to verify the

claimed randomness properties. Simulation results are presented before the paper concludes.

1.1 Noise and Biometrics

Noise is inherently existent in biometric data – data from alive individuals. The term biometric

noise is not yet clearly defined and it is often used to describe the variability in the signals due

to changes in the biometric (e.g. dirty or torn off finger tips in fingerprint systems, different

hair style in face recognition systems), inaccuracies of the sensorial subsystem (e.g. camera

noise, dust on fingerprint sensor, pose towards camera), or varying environmental conditions

(e.g. lighting, humidity). Here, we use these variations and the noise to generate random

sequences.

1.2 Vein Patterns

Vein patterns evolve during the embryonic vasculogenesis and their final structure is mostly

influenced by random factors [EYM+05]. Even identical twins can be distinguished. The

pattern is available at every healthy human, making it an interesting research objective. Com-

mercial applications evolved out of this research, nowadays many ATMs in Japan and Brazil

are secured using this biometric modality. The patterns are commonly extracted from images

of the palm, the back of the hand or fingers. The International Biometrics Group (IBG) 6th

report 2006 confirms recognition rates fairly at the same level for two different vein and one

iris-based authentication system [Int06]. An interesting aspect of vein recognition is the fact

that the information is not visible, it is hidden inside the body. Unlike fingerprints it is not

possible to leave a vein pattern representation unintentionally in public places and thus it is

not possible for an attacker to acquire the pattern in daily life or to replicate it. Furthermore

there is no relation to criminal prosecution.

The imaging approach makes use of the absorption capacity of particular substances in the

blood running through the veins. To capture the image, the region of interest is illuminated

with a near-infrared (NIR) light source with wavelengths around 700 to 1,000 nm. A reflection

or transmission technique can be used. Deoxygenized hemoglobin highly absorbs rays within

this wavelength band while the surrounding tissue does not. NIR-sensitive optical sensors are

used to capture the image of the vein pattern.

1.2.1 Feature Extraction Examples

The following images will be used during later stages of the random extraction: figure 1(a)

shows an example vein pattern image and a STRESS [Øyv11] contrast enhanced version in

Fig. 1(b), its segmented version in Fig. 1(c) produced using a local thresholding algorithm.

The image is then transformed to a skeleton representing the topology of the vein pattern (Fig.

1(d)) by using morphological operators. The database consists of 10800 finger vein images

from all 10 fingers of 45 data subjects acquired in 12 sessions, each image having a size of
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111× 401 pixels. Throughout the paper only the left middle fingers will be considered.

(a) Raw, cropped vein image IRaw . (b) Contrast enhanced image IOpt.

(c) Segmentation of a vein pattern image ISeg . (d) Skeletonization of segmented image ISkl.

Figure 1: A sample finger vein image and its representations within the pipeline. Note: an unstable
segmentation and skeletonization method was chosen.

2 BIOMETRIC RANDOM NUMBER GENERATOR

2.1 Random Number Generation

Random numbers have various important applications in computer science, from computer

simulations, statistical sampling to cryptology. This section will describe some properties of

randomness and the general classification into two distinctive classes: True random number

generators (TRNG) are based on measurements of physical processes that are expected to be

random like coin flipping, chemical processes including radioactive decay and atmospheric

radio noise or processes based on quantum mechanics. Pseudo random number generators

(PRNG) are based on deterministic computations where the output is predictable, but initial-

ized with a true random seed or key makes the PRNG output difficult to predict.

In order to verify the before mentioned and additional properties, statistical tests can be per-

formed on random numbers. The NIST suite “A Statistical Test Suite for Random and Pseudo

random Number Generators for Cryptographic Applications” based on [And] is a complete

and commonly used test suite. It will be the basis for the evaluation of the generated random

numbers in section 3.

2.2 State of the Art

Very limited work has yet been done on the field of biometric random generation. During

the literature search only a hand full of papers was focusing on biometric random number

generation. Often the terms were used incorrectly, in [CRNF06], the title indicated a ran-

dom key generation from iris data, instead the extraction of non-random keys from the same

biometric trait was discussed, related to a biometric key release or extraction. The research

work in [KvM07] was focusing on the sources of randomness in mobile devices, focusing on
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Source Entropy (bits)

IRaw 25165

IOpt 26930

ISeg 19211

ISkl 8003

Table 1: Entropy estimation for the different stages of the pipeline.

hardware sensorial noise from the camera or the microphone, not considering the use of the

built-in sensors as sensors for biometric traits like voice or face recognition.

The work in [SWA+04], was closest to the scope of this paper. In there, the use of biometric

data in the medical sense – in example animal neurophysical brain responses and human

galvanic skin responses – were examined as sources of randomness. An approach was used,

where physical measurement data was binarized and the last fluctuating digit was used as

random bit sequence over time. Their true random generator passed successfully the NIST

test suite as well as other statistical tests, whereas the brain signals come along with complex

data measurement and the skin response did not show a sufficiently fast sampling rate.

Basis for the verification of the approach presented in this paper is a subsection of the database

described in section 1.2.1.

2.3 Entropy Estimation

Entropy is an important measure in random number generators to estimate the quality of ran-

domness. The amount of information – or entropy – H, that can be extracted from K oc-

currences, each having the probability pi with i = 1, 2, ...,K can be computed using the

Shannon-Entropy:

H = −
K∑
i=1

pi · log2(pi), (1)

In practice the probabilities are not known, the concept of the maximum-likelihood estimator

p̂i, that estimates the probabilities by using absolute frequencies ni over N observations, can

help out. Where occurrence i is approximated with: p̂i = ni/N . The resulting formula is

given by:

Ĥ = −
K∑
i=1

p̂i · log2(p̂i) (2)

The entropy is estimated for our test database, the average entropy of the skeletal vein images

is given in Table 1, not considering the correlation between the single pixels. That means

according to the estimator theoretically about that many bits of information can be extracted

in average from one vein pattern image. A more refined estimation for the biometric entropy

in finger vein images is currently under development and will be published soon.
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2.4 Image Based Biometric Random Number Generation (BRNG)

Having discussed the motivation and requirements for a biometric random number generator,

next, we present our approach for a BRNG. Data from different stages of a biometric pipeline

are used as input to the proposed BRNG. The generic approach only requires a fixed length

and a fixed structure of the feature vector. Here we will use images from the vein patterns,

every other kind of features would also work. In order to find the most appropriate stage of

the feature vector, first the raw image itself (IRaw), followed by an enhanced and contrast

optimized image is taken into account (IOpt). After that the segmented and binarized repre-

sentation (ISeg) is considered as well as the skeletonized version (ISkl).

The idea is that lower level features (in earlier stages of the pipeline) yield higher degrees

of noise e.g. from the sensor, and recent work shows that using the Photo-Response Non-

Uniformity (PRNU) of sample images the imaging sensors can be distinguished [FFG08]. The

randomness in higher level features is more and more based on the biometric information since

unnecessary information is being removed during the preprocessing steps. One assumption is

that these features have a better statistical quality and are more difficult to predict even though

the amount of information in the images is reduced. The hypothesis that is tested later on:

low level features produce lower quality random sequences than higher level features.

All real-valued feature vectors or images can be binarized using the interclass mean image

(Ī) of a training set (one / two dimensional case). One advantage of the binarization is that

the amount of ones and zeros is approximately equal. The bit value IBin(x, y) of every pixel

I(x, y) at position (x,y) in the source image I is computed as:

IBin(x, y) =



0, if I(x, y) < Ī(x, y)

1, if I(x, y) ≥ Ī(x, y)

(3)

Note the feature vector F is derived as concatenation from the image I’s columns:

F = [I(1, 1), I(2, 1), . . . , I(end, 1), I(1, 2), I(2, 2), . . . , I(end, 2), . . . , I(end, end)] (4)

The binarized feature vector FBin is derived from IBin in the same way.

During the next step of the BRNG, every position in the feature vector F – which is defined

in Equation 4 – is analyzed for its reliability, meaning that single positions can be reproduced

very accurately over many captures. The idea is based on work from Tuyls et al. [TG04],

where the helper data scheme (HDS) is introduced that combines cryptography with biomet-

rics to secure the privacy and the templates. Following this approach we could use the same

mechanism used there to estimate the reliability of positions in the feature vector to estimate

the inverse, the least reliable positions, and to use those bits for our random sequence. Using

the inverse measure, we can select positions that are not reproduced accurately over many cap-

tures and that are being close to the mean value used for the binarization, resulting in random

and flipping bits.

ReliabilityR(i) (data subject specific) on position i of a fixed length and structured real-valued

feature vector F , in the context of the HDS is estimated using the fraction of the inter-class
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varinter and the intra-class varintra variance:

R(i) =
varinter
varintra

=
(F (i)− inter(i))2

(F (i)− intra(i))2
, (5)

using the mean value of the class intra (calculated from a fixed number of samples of the

same biometric trait – called training set) and the mean value of the whole population inter
(mean of all training sets together).

Here we introduce the unreliability measure:

U(i) =
1

R(i)
. (6)

Border zones in the image that are always set to zero or one are resulting in high values for U ,

since they are very close to the inter class mean. Those positions are not interesting for the bit

extraction since they are constant over the samples and occur in blocks, therefore U(i) is set

to zero for those positions.

In order to make an extraction of bits more efficient the indexing vector Uidx contains the

indexes i sorted in descending order of U(i).

A variable κ < |F | is introduced to define the amount of unreliable bits that are to be extracted

from and used for the random sequence Δ:

Δ = [F (Uidx(1), F (Uidx(2)), . . . , F (Uidx(κ))], (7)

A further degree of freedom is given when using the help of a hash function h as a random

extractor. Depending on the needed length of the random bit vector and the quality of random-

ness a variable λ is introduced splitting the random sequence Δ into k chunks Ci of length

⌊κ/λ⌋. If λ is set to one, the whole sequence is used as input to a hash function, the larger it

gets, the more chunks are created. Each chunk itself can be used to create a new hashvalue

h(Ci). The length of each chunk Ci should be larger or equal to the output length of the hash

function.

Δh = [h(C1), h(C2), . . . , h(Ck)]. (8)

The final sequences Δ and Δh are xor-ed with its inverse order version to enhance the distri-

bution of biased features, since mainly positions containing logical zeros are selected as most

unreliable bits.

3 SIMULATIONS

The simulations cover the statistical test of NIST based on the data that was extracted as

described in section 2.1. The database was divided into two distinct sets each containing 540

samples – 12 samples from 6 sessions of each of middle left finger of 45 data subjects: the

odd numbered sessions are taking as training set and the even numbered ones for verification.
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Source κ λ Length Bitstream # Bitstreams Result

IRaw 25165 x 135000 100 5.6%

IRaw 25165 157 135000 100 87.9%

IRaw 25165 78 67000 100 93.4%

IOpt 26930 x 145000 100 69.3%

IOpt 26930 168 145000 100 98.2%

IOpt 26930 84 72000 100 98.2%

ISeg 19211 x 100000 100 66.9%

ISeg 19211 120 100000 100 98.1%

ISeg 19211 60 50000 100 97.2%

ISkl 8003 x 43000 100 1.4%

ISkl 8003 50 43000 100 95.3%

ISkl 8003 25 21000 100 97.9%

Table 2: Experimental results of NIST test suite (standard parameters) applied to the random sequences
extracted from the vein database. Hash function used: SHA-1. x = no hashing. Result: ratio of how
many of the NIST tests successfully passed.

In order to run the NIST test suite several Mbit of data are needed, therefore the resulting

random sequences will be concatenated and presented to the test suite. The maximal amount

of unreliable bits κ extracted from the various samples is set to the estimated entropy value

from table 1.

3.1 NIST Results

The unreliable bits from the raw images are not qualified for the random extraction, but after a

strong random extraction using a hash function very good NIST test results are achieved. With

more than 95% of successfully passed tests, hashed unreliable bits from higher level features

(IOpt, ISeg and ISkl) are especially qualified. The amount of successfully passed tests is

peaking with more than 98% for the hashed unreliable bits extracted from the optimized or

segmented images (see table 2). Lower values for λ, resulting in bigger chunks as input for

the hash function, are not effective to improve the random properties for higher level features.

4 CONCLUSIONS AND FUTURE WORKS

The results are quite diverse – on the one hand the pure unhashed versions of the data are not

useful as a basis for BRNG, as they pass only a minor amount of the tests . On the other hand,

good randomness properties are seen in case of the hashed version of all images, in particular

higher level images.
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The hypothesis cannot be verified; the quality of the random sequence extracted, measured

in successful runs over the NIST test suite, is increasing from the raw level to the more ab-

stract ones (IRaw, IOpt, ISeg), but the skeletonized features pass only few of the NIST test if

unhashed. The influence of hashing on passing the NIST test is too large to claim the hypoth-

esis that abstract biometric information offers a higher entropy and thus better randomness

characteristics.

Future works will focus on an improved quality of random bits generated from one biometric

sample and on the statistical properties. In addition future research will focus on a more

sophisticated model for the biometric finger vein entropy estimation which may lead to quality

metric for single samples as well as for capturing devices and feature extraction algorithms.
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[Øyv11] Øyvind Kolås, Ivar Farup, Alessandro Rizzi. STRESS: A new spatial colour algorithm.
Journal of Imaging Science and Technology (in press), 2011.

274


