
Resource Discovery in the
Arigatoni Overlay Network

Raphael Chand Luigi Liquori
Michel Cosnard

INRIA, France
{Raphael.Chand,Luigi.Liquori,Michel.Cosnard}@inria.fr

Abstract: Arigatoni is a lightweight Overlay Network for dynamic and generic Re-
source Discovery. Entities in Arigatoni are organized in Colonies. A colony is a
simple virtual organization composed by exactly one leader, offering some broker-like
services, and some set of Individuals. Individuals are subcolonies of individuals, or
basic units called Global Computers. Global computers communicate by first register-
ing to the colony and then by mutually asking and offering services. The leader, called
Global Broker, has the job to analyze service requests/responses coming from its own
colony or arriving from a surrounding colony, and to route requests/responses to other
individuals. After this discovery phase, individuals get in touch with each others with-
out any further intervention from the system, typically in a P2P fashion. Communi-
cations over the behavioral units of the overlay network are performed by a simple
Global Internet Protocol. Arigatoni provides fully decentralized, asynchronous and
scalable resource discovery, that can be used for various purposes from P2P applica-
tions to more sophisticated Grid applications.

The main focus of this paper is to present the resource discovery algorithm used in
Arigatoni, that is reminiscent to some algorithms employed in the publish/subscribe
paradigm. We show some simulations that show that resource discovery in Arigatoni
is efficient and scalable.

1 Introduction

Motivations. The Global Computing Communication Paradigm, i.e. computation via a
seamless, geographically distributed, open-ended network of bounded resources owned
by agents acting with partial knowledge and no central coordination is one of the most
interesting challenges for the next decade. Aggregating many global computers sharing
similar or different resources leads to a Virtual Organization. Moreover, organizing many
overlay computers, using, e.g. tree- or graph-based topology leads to an Overlay Network.

The main challenge in this new field of research is how single resources, offered by the
global/overlay computers are discovered. The process is called Resource Discovery: it
requires an up-to-date information about widely-distributed resources. This is a chal-
lenging problem for very large distributed systems particularly when taking into account
the continuously changing state of resources offered by global/overlay computers and the
possibility of tolerating intermittent participation and dynamically changing status and

437



availability.

The first presentation of the Arigatoni overlay network was given in [BCLV06]. Reci-
procity and hierarchical organization of the virtual organization in Colonies, governed
by a clear leader (called Global Broker) are the main achievements of Arigatoni. Global
computers belong to only one colony; requests for services and resources located in the
same/another colony traverse a broker-2-broker negotiation which security is guaranteed
via standard PKI mechanisms. Once the resource offered by a global computer has been
found, the real resource exchange is performed out of the Arigatoni itself, e.g. in a P2P
fashion.

In this paper, we explain how Arigatoni offers decentralized, asynchronous, and generic
resource discovery. Once a global computer has issued a request for some services, Ari-
gatoni finds some individuals that can offer the resources needed, and communicates their
identities to the (client) global computer as soon as they are found.

The fact that Arigatoni only deals with resource discovery has one important advantage:
the complete generality and independence of any given requested resource. Therefore,
Arigatoni can fit with various scenarios in the global computing arena, from classical P2P
applications, like file sharing, or band-sharing, to more sophisticated Grid applications, like
remote and distributed big (and small) computations, until possible, futuristic migration
computations, i.e. transfer of a non completed local run in another GCU, the latter scenario
being useful in case of catastrophic scenarios, like fire, terrorist attack, earthquake etc.

Arigatoni extends the pub/sub paradigm for resource discovery. Arigatoni takes in-
spiration by the Publish/Subscribe paradigm [EFGK03]; several pub/sub have been devel-
oped recently, such as XNet [CF04, CF03], Siena [CRW01] or IBM Gryphon [BCM+99].
In [Hei01], the authors propose to adapt the Siena publish/subscribe system to achieve
Gnutella-like resource discovery, by publishing queries to the notification service. In con-
trast, Arigatoni implements its own resource discovery algorithm, especially designed for
generic and scalable resource lookup.

In Arigatoni, resource discovery works by asynchronously disseminating request messages
in the system until some individuals have been found. More precisely, when global com-
puters log in the system (a colony), they declare the list of services that they can offer.
When a global computer asks for some services, it issues a service request message to its
leader, without addressing it to any particular receiver. The system disseminates the mes-
sage according to the services included in it and according to the services that the other
global computers have declared. As a consequence, the communication model underly-
ing Arigatoni extends conservatively pub/sub. Indeed, in the pub/sub paradigm, consumers
subscribe to the system (typically called the Notification Service) to specify the type of
information that they are interested in receiving. Producers publish data to the system.
The notification service disseminates the data to all (if possible) the consumers that are
interested in receiving it, according to the content of the data and the interests declared
by the consumers. In Arigatoni, global computers “subscribe” to the system by declaring
the services that they offer to serve. The same global computers also “publish” data in
the system when they issue service requests. Arigatoni disseminates the data according to

438



the services included in the requests and the services that the other global computers have
declared.

The pub/sub like communication form used in Arigatoni for resource discovery has sev-
eral advantages. First, it allows Arigatoni to realize a full decoupling, in time, space,
and synchronization, between the global computers. Second, due to its asynchronous na-
ture, Arigatoni is, potentially, more scalable and can work in “disconnected” mode (e.g.,
for mobile users and wireless devices). Third, indirect addressing makes it possible for
the infrastructure to implement reliability, load balancing, fault-tolerance, persistence, or
transactional semantics. More practically, since Arigatoni has a tree-like topology, we can
use the pub/sub subscription mechanisms described in existing tree-based pub/sub systems
such as XNet [CF03, CF04, Cha05] or Siena [CRW01], for subscription management, i.e.,
for the construction and the update of consistent routing tables in the system. In addi-
tion, we can use the reliability mechanisms described in [CF04] to allow Arigatoni to be
fault-tolerant or to adapt to dynamic topology changes.

However, one major difference between Arigatoni and classic pub/sub systems lies in their
functionality. Indeed, the classic pub/sub paradigm deals with the publication of messages
whereas Arigatoni focuses on pure resource discovery. More precisely, classic pub/sub
systems aim at disseminating published messages to all interested consumers. In contrast,
in Arigatoni, when a service request is issued, the goal is to find one (or maybe some)
individuals able to provide the services included in the request, but not all the potential
individuals. As a consequence, a much smaller fraction of the system is traversed. Be-
sides, the routing strategy of the colony leader consists in always trying to find potential
reseources in its own colony first. If it fails, it then delegates the request to its leader. This
strategy is reminiscent of the dynamic method lookup employed in all Object-Oriented
languages, and increases resource encapsulation inside colonies, another concept strongly
related to Object Orientation.

Another major difference lies in the nature of the published events in classic pub/sub sys-
tems and the nature of service requests in Arigatoni. Indeed, in classic pub/sub systems,
subscriptions are constraints on the set of all possible events. In contrast, in Arigatoni, ser-
vice requests are also expressed as constraints. This latter point will be explained in more
details in Section 3.

2 System units

Two different kinds of units compose the Arigatoni system: Global Computer Units
(GCU), and Global Broker Units (GBU).
• A GCU is the basic peer of the global computing paradigm. It is typically a small device,
like a PDA, or a PC, connected via IP.
• A GBU is the basic unit devoted to register and unregister GCUs, to receive service
queries from client GCUs, to contact potential servant GCUs, to negotiate with the latter
the given services, to trust clients and servers and to send all the information necessary to
allow the client GCU, and the servants GCUs to communicate. Every GCU can register

439



to only one GBU, so that every GBU controls a colony of collaborating global computers.
Hence, communication intra-colony is initiated via only one GBU, while communication
inter-colonies is initiated through a chain of GBU-2-GBU message exchanges. In both
cases, when a client GCU receives an acknowledgment for a requested service (with trust
certificate) from the proper GBU, then the client will enjoy the service directly from the
servant(s) GCU, i.e. without a further mediation of the GBU itself.
• A Colony is a simple virtual organization composed by exactly one leader and some set
(possibly empty) of individuals. Colonies are organized in a tree structure where the root
of a colony is its leader. Individuals are global computers (think it as an Amoeba), or sub-
colonies (think it as a Protozoa). An individual can be a GCU or a GBU (representing the
leader of a a subcolony). GCUs cannot have children in the hierarchy. As such, GBUs can
have both GBUs and GCUs as their children. As such, a colony has exactly one leader GBU
and has at least one individual (the GBU itself), and may contains individuals (GCU’s, or
colonies).
•A Community is a raw set of colonies and global computers (think it as a soup of colonies
and GCU without a leader). Starting from a community, the Arigatoni protocol allows in-
dividuals to dynamically aggregate in colonies. This topic has been addressed and formal-
ized in [CLC06].

The possibility for individuals to log/delog from a colony, or the possibility for a colony’s
leader to delog some “lazy” individuals makes de facto the network topology dynamic.
This dynamicity implies that if GBUs hold routing tables about the services provided
by their colony, particular care must be taken to maintain consistency when individuals
log/delog. Moreover, due to the fact that individuals are not slaves but global computers
with their own proper activity, a service request may lead to run-time failures. This hap-
pens when an individual gets busy by a local request, or when it suddenly delogs from the
colony during the routing of the service request, or worst, when it gets hardware failures.

3 Resource discovery

Let R be the set of all possible resources (maybe infinite). GCUs provide resources by
registering services to the system. A service S is a constraint on the set of resources.
Let match(S) ∈ R be the set of resources that satisfy S. A GCU X that registers S
announces that it can provide the set of resources match(S). A GCU Y that issues a
service request for service S� is looking for a resource that satisfies constraint S�, i.e.,
a resource in match(S�). If match(S) ∩ match(S�) 4= ∅, then there exists a resource
that satisfies both S and S�, and X can provide a resource to Y. We say that S and S�

overlap iff match(S) ∩match(S�) 4= ∅. For example S = [Type = CPU] ∧ [Time<10s]
and S� = [Type = CPU] ∧ [Time>5s] overlap, since any resource with attribute Time
between 5s and 10s matches.

The principle of resource discovery in Arigatoni is as follows. When a GCU sends a request
for a set of services S1 · · ·Sn, it builds a “ServiceRequest” message containing the set of
services and sends it to its leader GBU. The message is then recursively processed by the
GBUs in the system so as to find some individuals able to serve the services included in the

440



Algorithm 1 The resource discovery algorithm in the Arigatoni GIP protocol
1: case Message is

SREQ :
2: ReturnPath{Message.Id} ← Message.Sender
3: SendList ← SelectPeers(Message.Services, search mode)
4: for each (P, Serv(P)) ∈ SendList do
5: Send ServiceRequest

`
Serv(P)

´
to P

6: end for
7: for each S∈Message.Services such that �(P, Serv(P))∈SendList, S∈Serv(P) do
8: Append S to RejectList
9: end for

10: Send ServiceResponse({},RejectList) to ReturnPath[Id]
11: SRESP :
12: for each S∈Message.AcceptedServices do
13: if

`
S was not already accepted

´ ∨ `
EXHAUSTIVE REPLY is set

´
then

14: Append S to AcceptList
15: end if
16: end for
17: SendList ← SelectPeers(Message.RejectedServices, intra Colony mode)
18: for each (P, Serv(P))∈SendList do
19: Send ServiceRequest(Serv(P)) to P
20: end for
21: for each S∈Message.RejectedServices such that �(P, S(P))∈SendList, S∈Serv(P) do
22: Append S to RejectList
23: end for
24: Send ServiceResponse(AcceptList,RejectList) to ReturnPath[Id]
25: end case

request. The main basic principle of the protocol is that every GBU that receives a request
always searches its own colony first to find the potential individuals able to serve the
services included in the request. If no individuals are found, then the request is delegated
to its leader GBU, and the process proceeds recursively. In addition, if the GBUs maintain
some information about the services provided by their children, then they can transform a
received request into sub-requests, so as to only ask a given child for the services that it
(or its colony) provides.

The process eventually leads to some GCUs receiving a request. When one such GCU
receives a request for some services, it chooses the services that it accepts to serve and the
ones that it refuses to serve. It then sends a “ServiceResponse” message containing the list
of accepted services and the list of rejected services, and sends it to its leader GBU. The
response messages are then propagated recursively in the system, following the reverse
path.

The resource discovery algorithm is the core of the GIP protocol; it is described in
pseudo-code in Algorithm 1 and explained as follows. We only focused on the case of
GBUs. The resource discovery algorithm in the case of GCUs is similar and has been
voluntarily omitted (see [BCLV06] for details). Indeed, the involvement of GCUs in the
process of resource discovery is limited to directly replying to request messages. Arigatoni
only deals with the discovery of resources, while the real resource exchange is done in a
P2P fashion. Let GBU N receive a message from a neighbor.

441



Case of Service Request (SREQ). We first consider the case of request messages. A
request message received by GBU N means that N is asked to find some individuals to
provide the services included in the request. For that purpose, N first maps the “Id” of the
request included in the message to the sender of the message (line 2), so as to allow reply
messages to follow the reverse path of the request.

Line 3: Various intra colony search modes. The leader N then calls function “Select-
Peers”, taking as input the list of services, Message.Services, included in the request
message, (line 3). SelectPeers returns a list of pairs {(P, Serv(P))}, called SendList,
where the first element P of a pair is the Id of a neighbor, and the second element Serv(P)
is a list of services, subset of Message.Services, that contains the list of services to ask
to neighbor P. The search mode determines the way function SelectPeers determines the
SendList. The search mode depends itself on whether P maintains some information about
the services provided by its colony, i.e. a routing table. Currently, the following search
mode are allowed: broadcast and selective, where the latter is itself sub-divided into three
sub-modes: exhaustive, greedy random, and greedy ordered. If P does not maintain a rout-
ing table, then it has no other choice than to ask all its children for all the services included
in the message, i.e., to broadcast the request message. We will refer to this search mode as
the broadcast mode. Now if P maintains a routing table that indicates which child leads to
a potential individual able to serve a given service, then P can selectively send customized
requests to its children. More formally, P only asks a child for a service that overlaps a
service that it advertised, i.e. there exists a resource that satisfies both the requested service
and the advertised service. We will refer to this mode as the selective mode. Consequently,
P can choose some children and send them a request for the services that overlap the ones
that they advertised. The selective search mode can then be refined as follows. Consider a
particular service S included in the request message.
• In the exhaustive mode, P sends a request for service S to all the children that can serve
it (i.e., that contain potential individuals in their colony).
• In the greedy random mode, P sends a request for S to only one child that can serve the
request, chosen uniformly at random.
• In the greedy ordered mode, P sends the request to only one child, chosen according to
some predefined or ad hoc criteria (e.g., depending on network factors, or according to the
quantity of services that were accepted by each child, à la tit-for-tat).

In addition, we can refine even more the greedy modes, by introducing a parameter n, that
defines the number of children to whom the request is sent. We could then define the n-
greedy random or the n-greedy ordered modes. It is important to mention that the SendList
variable can contain N’s leader, call it L. That is, it may contain a pair (L, Serv(L)). For a
particular service S ∈ Serv(L), this happen when no child advertised some services that
overlap S, i.e., there are no potential individuals able to serve service S in N’s colony.
GBU N then delegates service S to its leader GBU. To prevent routing loops, the sender of
the request message is never considered as a service provider.

Lines 4−6: Forwarding service request messages. Consequently, for each pair denoted
(P, Serv(P)) in the SendList, N sends to neighbor P a service request message for services
Serv(P) (lines 4− 6).

Lines 7− 9: Services rejection. Finally, each service S included in the request message,

442



and such that no potential individual was found amongst N’s neighbors, is reported as
rejected by N, to the original issuer of the request message (lines 7 − 10). Since N may
only maintain information about its own colony (apart the Id of the leader), this may only
happen if N is the root of the topology or if the request message originated from N’s leader.

Case of Service Response (SRESP). We now consider the case of reply messages. As
previously explained, the process of propagating SREQ messages eventually leads to a
certain number of GCUs receiving a request. Each GCU sends a reply message to its leader,
with the list of accepted and the list of rejected services, along with its Id. Consequently, a
given GBU N that participated in the propagation of the SREQ message eventually receives
a certain number of SRESP messages from each of its children that was sent an instance of
the (maybe transformed) SREQ message. Consider now an SRESP message sent to GBU
N by a neighbor Q.

Lines 12− 16 and 24: Reporting accepted services. For each accepted service S, there
are two different possibilities: either Q is the first child that accepted to serve the service,
or the service was already accepted by some child other than Q. In the first case, N sends
the reply back to the original sender or the request, reporting that service S has been
accepted (lines 14 and 29). Otherwise, some neighbor other than Q already accepted
to serve service S (i.e., an individual in its colony). Then, if the EXHAUSTIVE REPLY
parameter flag is set (either in the GBU or included in the original request message), N
also reports the reply back. Consequently, in the EXHAUSTIVE REPLY mode, every GCU
that accepted to serve a given service will be reported back to the GCU that issued the
request. Otherwise, for each service asked in the request, only one single servant GCU
will be reported. Furthermore, it is easy to add more flexibility by including a threshold
Tr>1 on the number of replies. For example each GBU would report back Tr replies for
the same service(s).

Lines 17: Finding other individuals for rejected services. We now consider the case
of rejected services S. This means that in Q’s colony, no potential individuals serving
service S could be found, or no individuals accepted to serve it. Then, N has to find
other neighbors that might contain individuals for service S. Consequently, N calls again
function SelectPeers, with the list of rejected services as input (line 17). The function
works as previously explained, except that it does not consider the peers (including Q)
that were already sent a particular service. Also, logically enough, the services that were
previously accepted are ignored. Finally, the original sender of the request is not consid-
ered (i.e., ReturnPathId). Note that in the case where the exhaustive search mode is
used, then the list SendList returned by function SelectPeers may only contain a single
pair (L, Serv(L)) (L is N’s leader). Indeed, in the exhaustive search mode, all possible
children in N’s colony have already been asked for all the services included in the request
message, that they can serve. Hence, rejected services are directly delegated to the leader
L, if possible (i.e. if the latter was not the original sender of the request). The variable
SendList contains a list of pairs (P, Serv(P)), where neighbor P is an individual that can
potentially serve the services in Serv(P), and has not been sent a request for any of them
yet.

443



Rq: S4 S5

Rq: S4

Rq: S5
Rq: S5

P2

P1

P3

Rq S5

S1 S2 S3

C1 C2 C3 C4

C2: Acc S4

C3: Acc S5

C2: Acc S4

Order of events

ti
m

e

1: C1 sends Rq S4S5 to P2
2.0: P2 sends Rq S4 to C2
2.1: C2 sends Acc S4 to P2
2.2: P2 sends Acc S4 to C1

P2P negociation with C2
3.0: P2 sends Rq S5 to P1
3.1: P1 sends Rq S5 to P3
3.2: P3 sends Rq S5 to C3
3.3: C3 sends Acc S5 to P3
3.4: P3 sends Acc S5 to P1
3.5: P1 sends Acc S5 to P2
3.6: P2 sends Acc S5 to C1

P2P negociation with C3

S1 P2

S1 C2
S2 C3

C3: Acc S5

C3: Acc S5

C3: Acc S5

Type = CPU
Time < 10

Type = MEM
Capa < 20

Type = CPU
Time < 200

S4=
Type = CPU
Time > 5

Type = MEM
Capa > 15S5=

S2 P3
S3 P3

S3 C4

Figure 1: Resource discovery scenario.

Lines 18 − 20: Forwarding request messages for rejected services. Consequently, for
each pair (P, Serv(P)) included in SendList, N sends to neighbor P a service request
message for services Serv(P) (lines 18− 20).

Lines 21 − 23 and 24: Service rejection. Finally, each service S included in the list of
rejected services, and such that no additional potential individual could be found amongst
N’s neighbors, is reported as rejected by N, to the original issuer of the request message
(lines 21− 24).

Example. Consider the example illustrated in Figure 1. Three GBUs are represented,
namely P1 · · ·P3, and 4 GCUs, namely C1 · · ·C4. GCUs C1 and C2 (resp. C3 and C4) have
P2 (resp. P3) as their leader, while P1 is the leader of GBUs P2 and P3. GCUs C2, C3

and C4 have registered services S1, S2 and S3, respectively, and the routing tables of the
upstream GBUs have been updated accordingly. In the example, resources are expressed
as conjunctions of attribute/value pairs, and services are conjunctions of constraints on
those attributes. We suppose that the search mode is set to selective, and we consider the
scenario where GCU C1 issues a service request for services S4 and S5, to its leader P2.
Since S4 and S1 overlap (any resource with 5<Time<10 satisfies both S1 and S4), GBU
P2 forwards a service request for service S1 to GCU C2. Note that given that S5 and S1 do
not overlap, S5 is not included in the request. Since P2 does not find any GCU potentially
able to serve S5 (i.e., no services in its routing table overlap with S5), it delegates it to
its leader GBU P1. When C2 accepts to serve S4, it sends a reply message with its Id and
the accepted service S4, back to GBU P2, which, in turn, forwards it back to C1. Then

444



C1 can directly negotiate the resource with C2. When P1 receives the service request for
S5, it forwards it to P3 (since S2 and S5 overlap), which in turn forwards it to GCU C3.
When C3 accepts to serve S5, the same process then repeats as for GCU C2. Eventually, C1

receives a reply message with the Id of GCU C3 and the accepted service, namely S5. We
have an illustration of the asynchronous communication (C1 received the reply messages
independently of each others) and the encapsulation of resources in Arigatoni (GBU P2

only searched for service S4 in its own colony, i.e. GCU C2).

Discussions, load balancing, scalability. We mainly focused on the resource discovery
mechanism used in Arigatoni. Total decoupling between GCUs in space (GCUs do not
know each others), time (GCUs do not participate in the interaction at the same time), and
synchronization (GCUs can issue service requests and do something else, or may be doing
something else when being asked for services) is a major feature of Arigatoni. Another
important property is the encapsulation of resources in colonies. Those properties play a
major role in the scalability of resource discovery in Arigatoni.

As stated before, the subscription mechanisms of classical tree-based pub/sub systems
[CF03, CF04, Cha05, CRW01] can be used for the maintenance and update of consistent
routing tables. Furthermore, as for the reliability of subscription advertisement, we can
adapt the reliability mechanisms described in [CF04] to allow Arigatoni to be fault-tolerant
or to adapt to dynamic topology changes.

The reliability of the resource discovery mechanism itself, although desirable, is of lesser
importance, given the fact that service provision is not guaranteed at all in Arigatoni. In
other words, when a GCU issues a service request, it is possible that no individual is found
for some of the services included in the request. This happens, for example, if those
services were not declared by any GCUs in the system, or if all the GCUs that declared
themselves as potential individual refuse to serve them. However, at the cost of mem-
ory and bandwidth requirements, it is still possible (future work) to implement reliable
resource discovery by using a reliable transmission protocol (TCP), an acknowledgment
scheme in combination with a retransmission buffer, and persistent data storage.

As defined above, GBUs are organized as a dynamic tree structure. Each GBU is a node of
the tree, leader of its own subcolony and root of a subtree corresponding to the GBUs of
its colony. It is then natural to address scalability issues that arise from that tree structure.
In [CCL06], we show that, under reasonable assumptions, the Arigatoni model is scalable.
However, a complete performance evaluation is out of the scope of this paper and will
rather be studied in a future work.

4 Protocol evaluation

To assess the effectiveness and the scalability of our resource discovery protocol, we have
conducted simulations using large numbers of units and service requests.

445



Simulation setup. We have generated a network topology using the transit-stub model
of the Georgia Tech Internetwork Topology Models package [ZCB96], on top of which
we added the Arigatoni overlay network. The resulting network topology, contains 103
GBUs. GCUs were not directly simulated in the network topology. Instead, to simulate the
population of GCUs, we added a GCU agent to each GBU in the system. The GCU agent
of a GBU represents the local colony of GCUs that are attached to that GBU as their leader.

We considered a finite set of resources R1 · · ·Rr of variable size r, and represented a ser-
vice by a direct mapping to a resource. In other words, a service expresses the conditional
presence of a single resource. We have a set of r services {S1 · · ·Sr}, where service Si

expresses the conditional presence of resource Ri. A GCU declaring service Si means that
it can provide resource Ri. This simple model is still generic and sufficient for the main
purpose of our experiments, which is to study the scalability of resource discovery in our
system.

To simulate GCU load, we then randomly added each service with probability ρ at each
GCU agent, and had it registered via the registration service of Arigatoni. The routing
tables of the GBUs were updated starting at the initial GBU and ending at the root of the
topology. In other words, it is as if each GBU has a probability ρ of having a GCU which
registered service Si, for any Si. Thus, the parameter ρ can be seen as either the global
availability of services, or as the density of population of GCUs (since the more the number
of GCUs, the more likely it is that a given service is provided).

We then issued n service requests at GCU agents chosen uniformly at random. Each
request contained one service (requests with k services can be seen as k service requests
with one service), also chosen uniformly at random. Each service request was then handled
by the resource discovery mechanism of Arigatoni described in Section 3. We used a
service acceptation probability of α = 75%, which corresponds to the probability that a
GCU that receives a service request and that declared itself as a potential individual for
that service (i.e. that registered it), accepts to serve it.

The resource discovery algorithm was implemented in C++ and compiled using GNU C++
version 2.95.3. Experiments were conducted on a 3.0 Ghz Intel Pentium machine with
2 GB of main memory running Linux 2.4.28. The different experimental parameters are
summarized in Figure 2. Upon completion of the n requests, we measured for each GBU its
load as the number of requests (messages) that it received. We then computed the average
load as the average value over the population of GBUs in the system. We also computed
the maximum load as the maximum value of the load over all the GBUs in the system.
Similarly, we computed the average and maximum load fractions as the average and max
loads divided by the number of requests. The average load represents the average load
of a GBU due to the completion of the n requests. The average load fraction represents
the fraction of requests that a GBU served, in average. The maximum fraction represents
the maximum fraction of the requests that a GBU served. Note that since a GBU receives
at most one request message corresponding to a given service request, the average load
fraction can be seen as the fraction of GBUs in the system involved in a service request, in
average.

Finally, we computed the average service acceptation ratio as follows. For each GCU

446



Vars Description Value
K Number of GBUs 103
r Size of services pool 128
ρ Service availability 0.1% to 7%

α Service accept. prob. 75%

n Number of SREQ issued 100 to 50000
(a)

1000

1250

1500

1750

2000

1 2 3 4 5 6 7
20000

30000

40000

50000

A
vg

.L
oa

d
(#

m
es

sa
ge

s)

M
ax

.L
oa

d
(#

m
es

sa
ge

s)

ρ (%)

Average Load
Maximum Load

(b)

3.2

3.4

3.6

3.8

4

0 10000 20000 30000 40000 50000

60

70

80

A
vg

.l
oa

d
(%

)

M
ax

.l
oa

d
(%

)

Number of requests

Average load (ρ=1%)
Average load (ρ=6%)

Maximum load (ρ=1%)
Maximum load (ρ=6%)

(c)

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

R
at

io
(%

)
ρ (%)

Average service acceptation ratio

(d)

Figure 2: (a) Parameters of the experiments. (b) Average and maximum load w.r.t. service avail-
ability ρ. (c) Average and maximum load fraction w.r.t. the number of requests issued. (d) Average
service acceptation ratio w.r.t. service availability ρ.

agent, we computed the local acceptation ratio as the number of service requests that
yielded a positive response (i.e. the system found at least one individual), over the number
of service requests issued at that GCU agent. We then computed the average acceptation
ratio as the average value over the number of GCU agents (that issued at least one service
request).

We repeated the experiments for different values of ρ and n. Results are illustrated in
Figure 2. Figure 2(b) and (d) were obtained with a fixed value of n of 50000 service
requests.

Results and interpretations. Figure 2(b) shows the evolution of the average and max-
imum load when varying the service availability ρ. The maximum load was obtained for
GBUs at the top of the leader hierarchy in the tree topology. It appears that the maximum
load decreases with the service availability, while the average load increases. In other
words, the load is more evenly distributed amongst the GBUs in the system. This is due
to the strategy of our resource discovery mechanism which consists in always searching
for individuals in its own colony first before delegating to its leader. Indeed, as the service
availability increases, GBUs have a higher chance to find individuals in their own colony.
Hence, the root leader (say GBU Top) of the topology participate less in the process of re-
source discovery, and the direct subleaders (say GBU SubTop) participate more. In other

447



words, the resource discovery mechanism used in Arigatoni does not overload superleaders
in the tree topology.

We also observe in Figure 2(b), for values of 2%≤ρ≤4%, a “plateau” in the curve of the
maximum load, followed by a decreasing phase (ρ>4%), but with a much lower slope
than before (ρ<2%). This is due to the fact that for ρ<2%, the root leader Top of the
whole topology has the maximum load in the system. For ρ>2%, however, the immediate
direct subleader Subtop takes over. This transition can be explained by the fact that for
higher values of ρ, less messages are delegated to Top. At some point (ρ;2%), the load of
Top becomes less important than that of SubTop, due to the high number of colonies that
the latter manages. The constantness observed in the curve around that value is probably
due to the fact that a transition phase is necessary for SubTop to be sensitive again to the
increase of ρ. The following decreasing period with a lower slope corresponds to the fact
that SubTop is less sensitive to an increase of ρ (indeed, SubTop is mostly concerned
with the availability of services in its own colonies).

Finally, we observe that the average load stabilizes, which shows that the system scales
to large number of GCUs (since as previously mentioned, the service availability ρ can be
assimilated to the number of GCUs in the system).

Figure 2(c) shows the average and maximum load fractions w.r.t. the number of service
requests. It appears clearly that Arigatoni scales to large numbers of requests. In fact, the
average number of requests received by a GBU increases linearly with the total number of
requests, at a rate of ∼ 3.5%. In other words, in average, a GBU only receives ∼ 3.5% of
the total number of requests. Equivalently, only 3.5% of the overall population of GBUs
in the system participate in the process of discovering a particular resource, in average.
Figure 2(c) also shows that low level GBUs in the topology are not particularly overloaded
(the most overloaded GBU manages 60% of the overall load for ρ = 6%). Finally, it
corroborates the assertion that higher values of ρ favor the maximum load over the average
load, i.e., load balancing gets more effective.

Figure 2(d) shows that, unsurprisingly, the average service acceptation ratio increases
exponentially with the availability of services. This shows that Arigatoni is efficient in
searching individuals for requested services. Indeed, a service availability of 4% enables
the system to achieve an acceptation rate of 90%. In other words, the more the number of
GCUs in the system, the more chances to find an individual for a service request.

5 Conclusion

In this paper, we presented the Arigatoni lightweight overlay network. We exposed in de-
tails the mechanisms that allow Arigatoni to offer dynamic and generic resource discovery.
The main achievements are the complete decoupling between the different units in the
system, and the encapsulation of resources in local colonies, which enable Arigatoni to be
potentially scalable to very large and heterogeneous populations. We are currently improv-
ing Arigatoni with several new features, such as the possibility to ask a certain number of
instances of a service (i.e., the system should find the specified number of GCUs capable

448



of providing that service), or the possibility to embed services in conjunctions (i.e., the
services in a conjunction should be provided by the same GCU). We are also working on
the implementation of a real prototype and the subsequent deployment on the PlanetLab
experimental platform, and/or on GRID5000, the experimental platform available at the IN-
RIA. As part of our ongoing research, we are also working on a more complete statistical
study of our system, based on more elaborate statistical models and realistic assumptions.

Acknowledgment. The authors would like to thank Philippe Nain for its invaluable com-
ments and interactions on the Arigatoni performance model. This work is supported by
Aeolus FP6-2004-IST-FET Proactive.

References

[BCLV06] D. Benza, M. Cosnard, L. Liquori, and M. Vesin. Arigatoni: A Simple Programmable
Overlay Network. In Proc. of John Vincent Atanasoff International Symposium on Mod-
ern Computing. IEEE, 2006. To appear. Also as INRIA RR 5805.

[BCM+99] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C. Sturman.
An efficient Multicast Protocol for Content-Based Publish-Subscribe Systems. In Proc.
of ICDCS, 1999.

[CCL06] R. Chand, M. Cosnard, and L. Liquori. Resource Discovery in the Arigatoni Model.
Technical Report 5924, INRIA, 2006.

[CF03] R. Chand and P. Felber. A Scalable Protocol for Content-Based Routing in Overlay
Networks. In Proc. of NCA, 2003.

[CF04] R. Chand and P. Felber. XNet: A Reliable Content-Based Publish/Subscribe System.
In SRDS 2004, 23rd Symposium on Reliable Distributed Systems, 2004.

[Cha05] R. Chand. Large scale diffusion of information in Publish/Subscribe systems. PhD
thesis, University of Nice-Sophia Antipolis and Institut Eurecom, 2005.

[CLC06] M. Cosnard, L. Liquori, and R. Chand. Virtual Organizations in Arigatoni. DCM: In-
ternational Workshop on Developpment in Computational Models. Electr. Notes Theor.
Comput. Sci., 2006. To appear.

[CRW01] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area
Event Notification Service. ACM TOCS, 19(3), 2001.

[EFGK03] P. Th. Eugster, P. Felber, R. Guerraoui, and A.M. Kermarrec. The many faces of pub-
lish/subscribe. Computing Survey, 35(2):114–131, 2003.

[Hei01] D. Heimbigner. Adapting publish/subscribe middleware to achieve Gnutella-like func-
tionality. In SAC ’01: Proc. of SAC, pages 176–181, 2001.

[ZCB96] E.W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork. In Proc.
of INFOCOM, 1996.

449


