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Abstract: Due to the rapid growth of the tourism industry, associated effects like overcrowding, 
overtourism, and increasing greenhouse gas emissions lead to unsustainable development. A 
prerequisite for avoiding those adverse effects is the prediction of occupancy. The present study 
elaborates on the applicability and performance of various prediction models by taking a case study 
of beach occupancy data in Scharbeutz, Germany. The case study compares different machine 
learning models once as supervised machine learning models and once as time series models with a 
persistence model. XGBoost and Random Forest as time series demonstrate the most accurate 
prediction, followed by the supervised XGBoost model. However, the short prediction span of time 
series models is a disadvantage for longer-term visitor management to avoid the explained 
unsustainable effects through steering measures, so depending on the use case, the XGBoost model 
is to be favoured.  

Keywords: Beach Occupancy, Time series Forecast, XGBoost, Random Forest, Support Vector 
Regression, SARIMA, Tourism Demand. 

1 Introduction 

In recent decades, the international tourism sector has experienced significant growth from 
25 million cross-border arrivals in 1950 to more than 1.3 billion arrivals in 2017, which is 
expected to continue up to 1.8 billion tourists in 2030 [Wo18]. Despite all the benefits, 
this upward trend is also driving unsustainable tourism, with effects such as overtourism, 
local overcrowding, and increasing greenhouse gas emissions due to the close link of 
tourism and mobility [Ca19], [Hø00]. Most leisure trips are made by greenhouse gas 
emitting cars, as touristic points of interests (POIs) in rural areas are often poorly 
accessible with public transport and people seek self-determination in their leisure time 
[Ei22], [GG18]. Overcrowding effects at the POI increase these emissions due to the 
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increased chance of congestion and long search time for a parking lot [Pa22]. In addition, 
a lack of parking lots at overcrowded POIs lead to environmentally harmful illegal 
parking. Further, the mass of people at overcrowded POIs are responsible for pollution, 
noise, and wildlife disturbance. Such overcrowding effects occur especially in free public 
spaces like a beach, lake, city center, or mountain trail, as access cannot be controlled 
since no closure during peak occupancy occurs. Further, no final and predefined maximum 
occupancy exists, unlike, for example, in a parking garage. This leads to uncontrolled peak 
occupancy which is unsustainable and unpleasant for any visitor. To establish a way to 
more sustainable tourism, Schmücker et al. [Sc22] propose the demand for an active visitor 
management (AVM) system which guides visitors to more sustainable behavior. For 
example, steering measures enabled by an AVM system target the even distribution of 
visitors between open accessible POIs to reduce overcrowding or target the controlled 
filling of parking lots to reduce congestion and search time. A key element of such an 
AVM system is the prediction of POI occupancy because only with this knowledge can 
effective and target-oriented steering measures be initiated. POI occupancy prediction, or 
more generally, tourism demand prediction, is a well-established research field [WSS17]. 
However, existing and utilized data often lacks information on day tourism and tends to 
focus on overnight stays, thus creating an incomplete picture [Ne22]. Furthermore, the 
considered geographical areas are mainly larger regions [YZ19] or smaller, mostly closed 
areas like parking lots [APB21] and lack the examination of (semi-) open terrain of a 
specific POI. Hence, occupancy prediction models need to be developed for several days 
in advance to enable steering measures in an AVM system. These models need to cover a 
fine-grained temporal observation of a (semi-) open accessible terrain, including day 
visitors and overnight stays, which is, to the best of our knowledge, currently a research 
gap. 

In this work, we evaluate different prediction model types, including various machine 
learning (ML) models, to predict POI occupancy of a local, semi-open terrain. The 
development of the prediction model is based on a use case study with occupancy data 
collected via sensors of the Bay of Lübeck in Scharbeutz at the Baltic Sea in northern 
Germany. Developing such a prediction model is crucial for an AVM system with steering 
measures to enable more sustainable tourism and mobility. We contribute to both theory 
and practice by evaluating different prediction models concerning their accuracy and 
elaborating about how this prediction can be used as an effective countermeasure to 
overcrowding and unsustainable tourism. 

2 Related Work 

Research in tourism occupancy prediction has grown rapidly since 2006 [Li19]. In the 
following, we provide an overview considering the perspectives of (i) data sources, 
(ii) prediction models, and (iii) spatiotemporal granularity. 

Data Sources: Traditionally, occupancy prediction was conducted with one-dimensional 
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historical data capturing a certain timespan. Such data can be collected manually (e.g., 
based on surveys) or automatically (e.g., based on cameras, smartphones, or advanced 
sensors) [APB21]. Suitable data sources include tourist arrivals (e.g., entries to national 
parks [Ab21] or countries [Ki21]), historical parking data [Ch19], web traffic [PY17], 
booking data (e.g., historical room allocation in hotels [PS21], [Zh18]), and payment data 
[APB21]. In order to improve predictions, several studies added supplementary 
information, such as hotel room prices [TB20], as well as weather and holiday information 
[Bi21]. Considering the importance of online behavior of potential visitors [GV20], recent 
research addresses the use of behavioral online data [WSS17], such as search engines and 
Google trends [Vo19], [Di19], [BL19], [Fe19], online reviews [Hu22], Facebook 
[ÖGG20], and sentiments [ÖGS19]. 

Prediction Models: Previous research [SQP19], [JC19], [WSS17] classifies occupancy 
prediction algorithms in the three categories (i) time-series models, (ii) econometric and 
statistical models, and (iii) ML-based models. Time series models remain the most widely 
used techniques [MR16], although ML-based technologies have proliferated significantly 
in recent years. However, ML models such as gradient boosting with XGBoost, which 
have shown promising results in other applications like taxi demand [Va18], bus demand 
[SSD21], or parking [APB21], are still rarely used in POI occupancy prediction.  

Spatiotemporal Granularity: Regarding time and space, occupancy predictions address 
different levels of granularity. Considering their temporal resolution, existing approaches 
address seasonal [Ch15], to monthly [BL19], weekly [Zh18], [PY17], daily [TB20], 
[Bi21], [Ki21], [PS21], or even hourly [ZHL21] prediction. Prilistya et al. [PEF20] 
observed that monthly granularity is the most widely used data frequency in tourism 
occupancy prediction, but due to the more widespread use of ML, Jiao and Chen [JC19] 
observed a trend towards smaller time granularities. In terms of spatial resolution, 
approaches range from predicting tourist arrivals in countries [Ki21], regions [YZ19], or 
cities [Cl20], [TB20] to predicting occupancy of smaller areas. However, small areas 
usually do not refer to open or semi-open POIs like a beach, but rather address closed 
environments with well-defined entrances, such as parking lots [APB21], [Ch19], [ZZ20] 
or hotel rooms [PS21], [Zh18]. 

Overall, previous research rarely focuses on semi-open POIs to predict overcrowding 
situations in an AVM system [Kh20]. Further, the literature review indicates advanced 
ML models like XGBoost are not yet applied and compared with other approaches to 
predict touristic POI occupancy. Our work relies on real-world sensor data to predict POI 
occupancy of an exemplary German destination with a fine-grained temporal prediction 
up to ten days in advance. The comparison of a classical time series model with various 
ML models of different types illustrates the use case specific usability of each model. We 
discuss the results of the models regarding their application as a countermeasure to 
overcrowding and unsustainable tourism. 
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3 Methodology and Case Study 

The methodology to develop an occupancy prediction model is based on the Data Science 
Trajectories (DST) map by Martinze-Plumed et al. [Ma19], which is a more sophisticated 
version of the classic CRISP-DM approach [Ch00]. The DST-map is a more flexible 
approach to data science projects that integrates further steps regarding exploratory and 
data management activities around the CRISP-DM model.  

 

Fig. 1: The DST Map illustrates all steps within this study from business understanding to evaluation 

Fig. 1 presents the DST map with the individual adapted steps for this study. In the 
Business Understanding part, we first provide an overview of the case study objective, 
followed by the examination of the utilized data. We divide the data understanding part in 
the acquisition of occupancy data and the architecting of external influential data which 
are both prepared cyclically in steps two and three. Subsequently the fourth step presents 
different model types with their inherent ML models, followed by the evaluation approach. 

3.1 Business understanding: Predicting the occupancy of the beach in Scharbeutz 

To develop a prediction model for the occupancy of a POI, we conduct a case study of the 
Bay of Lübeck in Scharbeutz at the Baltic Sea in northern Germany. The Baltic Sea is the 
most popular tourist destination of the German population with a continuously increasing 
trend [Ar22]. This trend was reinforced by the increase in domestic travel due to the Covid-
19 pandemic [In21]. The high proportion of day visitors, accounting for around 2/3 of the 
total visitors, has the effect that relatively scarce information is available on occupancy 
leading to unpredictable peaks in beach occupancy [De19], [De16]. To close the existing 
information gap, sensors have been installed at the entrances to the beach to count people 
entering and leaving the beach. The current state of data utilization is the representation 
of the current occupancy of the beach, which does not yet include a future prediction 
[To22]. However, for an active visitor management, a prediction, especially about 
occupancy peaks, is necessary to initiate possible steering measures in advance. Steering 
measures can be roughly divided into short-term measures like for example the selection 
of another parking lot and medium-term measures such as choosing another POI. 
Therefore, the different objectives of steering measures require different prediction spans 
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and accuracy. In the following case study, we use the collected occupancy data of the 
beach in Scharbeutz to develop, evaluate, and discuss the applicability and performance 
of different prediction models. 

3.2 Data understanding and data preparation 

The data acquisition phase covers the collecting of occupancy data of the beach in 
Scharbeutz which is also available as open data [Mi22]. The raw data contains quarter-
hourly summed numbers of people entering and leaving the beach over the entire 
Scharbeutz beach section from 19-08-2020 to 23-03-2022. This sum of people entering 
and leaving is intended to represent the occupancy of the beach. A first analysis reveals 
annual seasonality with higher occupancy in the summer months and a daily seasonality 
between day and night. Further, some days demonstrate a high and irregular peak 
occupancy. Since the entrances of the adjoining beach sections are not equipped with 
sensors, the absolute number of people at the beach is probably not exact, but the general 
trends and peak occupancies can be identified. Data preparation of the occupancy data as 
the target value includes elimination of missing values and aggregation to larger time 
periods. To eliminate gaps in the time series due to missing data, we created a continuous 
time series dataframe and filled the small amount of missing data with zeros. Since the 
fine-grained partitioning into 15-minute time periods cause increased noise, we aggregated 
the data to larger 6 hour time periods per day, starting at midnight (see Tab. A.1). 

The data architecting phase covers researching and compiling of possible factors 
influencing the target variable of occupancy. We identified three areas of possible 
influencing factors: time-related features, holiday-related features, and weather-related 
features. The features’ data are required historically and in the near future, as historic data 
is necessary to train and test the prediction models, whereas future data is required for a 
real-world application of the developed prediction model. The time-related features are 
created to include and identify the possible timing of seasonality in the prediction model 
as an input variable. The holiday-related features are included as a possible reason for the 
peak demand since the population’s leisure time should have an influence on the beach 
occupancy. Due to the high proportion of day visitors who presumably live near the 
considered POI, school holiday of Schleswig-Holstein is a specific feature. Since the 
Baltic Sea is a popular destination for domestic travel, the general school holiday density 
in Germany is covered as a feature to may represent increased occupancy by overnight 
visitors [Ar22]. Since visiting a beach is an outdoor-only activity, we assume that the 
occupancy is highly dependent on the weather. The collected weather data is from the 
open data hub of the German Weather Service which provides historical data as well as 
weather forecasts up to 10 days [Ge22b]. Similar to the occupancy data, we aggregated 
the raw weather data to 6-hour time periods.  Following Studer et al. [St21], we converted 
the continuous raw data values into categorical features to ensure a good performance of 
the prediction models and to ensure that we use the same input features for each model. 
The categorization of the weather data follows the standards of the German Weather 
Service such as the classification of temperature, precipitation intensity, and wind class 
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[Ge22c], [Ge22a], [Ge22d] (see Tab. A.2). Precipitation form is not directly available for 
the historical and future weather data which is why we created the feature via feature 
engineering by combining input variables (see Tab. A.3). After categorizing the four 
weather-related features of wind, rain, temperature, and precipitation form, we 
transformed the features from categorical to binary features using one-hot encoding 
[St21]. Tab. 1 illustrates all input features, for the structure of the final input dataset see 
Tab. A.4. 

Time-related Holiday Weather 
year weekend wind category 
month bridging day rain category 
day of year public holiday (bank holiday) temperature category 
quarter of year regional school holiday precipitation form 
day of month German school holiday density  
calendar week   
day of week   
hour   

Tab. 1: Overview of the features after categorization and feature engineering 

3.3 Modelling 

In this case study, we aim to identify a model for predicting the occupancy of the beach in 
Scharbeutz and therefore consider four different model types. The first model type (1) is 
a simple persistence model whose results are used as a baseline. It simply takes a historical 
value with a predefined lag as the prediction. To obtain a reasonably good baseline, we 
tested lags from one time step up to 1460 time steps, which equals exactly one year. The 
second type are supervised ML models (2) that aim to predict the target variable y, here 
beach occupancy per time period, based on several input features X [JM15]. Tab. 2 
illustrates a brief overview of the ML models. We implemented the ML models in Python 
using the scikit-learn packages, and we avoided excessive tuning of the models to allow 
for an even comparison The third model type are ML time series models (3), which merely 
consider the historical occupancy data as an input variable for prediction [Ki10]. For 
comparison, we use the same supervised ML models as in the second model type. To apply 
ML models as time series prediction models, we first transformed the time series into a 
supervised learning model. We created the required input features by shifting the 
occupancy data backwards by a predefined lag. To improve the prediction quality, 10 input 
features were created by backward shifting the data with a lag from 1 to 10. The target 
variable y remains the original occupancy of the beach data. Prediction takes place with a 
walk forward validation, where exactly one time step ahead is predicted, and the observed 
values are added to the training data set over time. The fourth model type is a classical 
approach (4) with the statistical, Seasonal Autoregressive Integrated Moving Average 
model (SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄,𝑚)) [HX98], [LI10]. The parameters of the SARIMA 
model were determined using the automatic optimization of pmdarima with the seasonal 
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parameter set to one day corresponding to four timesteps, resulting in final parameters of (0,1,1)(0,1,1,4) [Sm22]. Analogous to the ML models as time series, we performed the 
prediction with SARIMA with a walk forward validation.  

ML model  Short description Source 
Extreme 
Gradient 
Boosting 
(XGBoost) 

The XGBoost model is a system optimized implementation 
of gradient boosting, whereby we included early stopping to 
avoid overfitting. Weak learners of decision trees are 
gradually improved and merged to obtain a strong one as the 
final prediction model.  

[Fr01], 
[xg22] 

Random 
Forest 

The Random Forest model generates various independent 
trees by randomly selecting a choice of features and 
averaging over the results for prediction. Here, a maximum 
depth of four levels was used.  

[Al12], 
[sc22a] 

Support 
Vector 
Regression 
(SVR) 

The SVR model creates an inherent function for predictions 
based on a kernel function by penalizing extreme values that 
are not within a specified radius. By testing the different 
kernels, the linear kernel indicated the best overall results 
here. 

[AK15], 
[Va00], 
[sc22b] 

Tab. 2: Overview of the considered ML models 

3.4 Evaluation 

To evaluate the performance of the different models, we split the occupancy data into a 
training and a testing data set, whereby the training data set includes the target variable to 
fit the model. With the test data set, the fitted model generates predictions which are then 
compared to the expected target values. In this case study, we split the time series data on 
the 1st of November 2021 which results in a training data set of 74% of the overall data set 
and a testing data set of 26%. With the single split, we aim to enable an even comparison 
of the different models and model types. To compare the predicting performance of the 
various models, we used the performance metrics root mean squared error (𝑅𝑀𝑆𝐸 =√1𝑛∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛𝑖=1 ) and mean absolute error (𝑀𝐴𝐸 = 1𝑛∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛𝑖=1 ). However, since in 

this case study especially the prediction of days with peak occupancy rates are relevant, a 
graphical interpretation is included as well. 

4 Results 

Tab. 3 illustrates the performance metrics RMSE and MAE for the testing dataset of the 
case study for each developed model and model type. For each model type (1)-(4) the best 
performance of RMSE and MAE is highlighted green. If a model performed worse than 
the best performance of the persistence model, the value of the performance metric is 
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highlighted red. The persistence model type (1) indicated the best results with a lag of one 
or four timesteps, whereby the lag of 1460 time steps, which corresponds to exactly one 
year, being the worst. This effect may be explainable by the limited amount of data which 
was mainly collected during the Covid-19 pandemic with many unusual effects. Thereby 
a smaller lag of 1 or 4 timesteps led to better results. For the ML models (2), the XGBoost 
model indicated the best results in both metrics. The Random Forest model performed the 
worst and was even below the baseline of the persistence model in the metric MAE. For 
the ML models as time series (3) XGBoost and Random Forest were particularly close 
and performed best across all model types. In comparison, the SVR models performed 
nearly the same in the model types (2) and (3). Due to the walk-forward approach by 
predicting one time step after another, all of the ML time series models (3) took 
considerably longer than the ML models (2). Since the Random Forest model takes a 
relatively long time to fit the model, it was the slowest model. The SARIMA model (4) 
performed only slightly better than the simple persistence model in the RMSE, yet worse 
in the MAE measurement. Since SARIMA is a statistical model, the prediction time was 
relatively fast and comparable to ML models (2) despite the walk-forward approach. 

Model Type Models 
(1) Persistence Model lag = 1 (6 hours) lag = 4 (1 day) lag = 1460 (1 year) 
RMSE 161 162 285 
MAE 93 79 127 
(2) ML Models XGBoost Random Forest SVR  

RMSE 117 140 137 
MAE 60 94 80 
(3) ML as Time series XGBoost Random Forest SVR 

RMSE 96 98 128 
MAE 51 46 64 
(4) SARIMA Time series Model  

 
 

RMSE 130   
MAE 82   

Tab. 3: RMSE and MAE of the prediction models of all model types 

For an interpretation of the performance metrics, Fig. 2 illustrates the predicted and 
expected values for November 2021 for the model types (2), (3), and (4). The XGBoost 
model and the Random Forest model demonstrate similar effects in both types (2) and (3). 
As ML models (2), XGBoost and Random Forest demonstrate a continuous, recurring 
daily trend, but successfully identify days with peak occupancy. The difference in the 
performance metrics is explainable as the XGBoost model differentiates between low and 
medium occupancy, whereas the Random Forest model predicts the same relatively high 
daily trend resulting in poorer performance metrics. The ML models as time series (3), 
demonstrate exceptionally good predictions in November 2021, with both models 
correctly identifying peak occupancy days as well as lower occupancy days, and only 
slightly exceeding the expected values. The still relatively high error rates are related to 
days such as New Year’s Day, which display a strongly deviating pattern from 2020/21 to 
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2021/22 due to the Covid-19 pandemic restrictions that are not yet covered in the trained 
model. The poor performance of the SVR model in both model types (2) and (3) is 
immediately apparent, as only the slight daily trend is anticipated, but it detected no 
occupancy peaks. The penalization of extreme values by creating the internal function of 
the model probably causes this effect. For predicting days with occupancy peaks, this 
model seems unsuitable. The SARIMA model correctly predicts the seasonal trend 
between day and night but does not identify days with peak occupancy in advance. The 
walk-forward validation only anticipates the upward or downward trend over time. 

 

Fig. 2: Predicted versus expected occupancy data for November 2021 of all prediction models 

5 Discussion  

The performance metrics and graphical interpretation indicate a preference for the time 
series models with XGBoost or Random Forest. However, the time series models predict 
only one time step ahead, which is equal to 6 hours. In contrast, the supervised ML models 
predict 40 time steps which is equal to 10 days and limited only by the weather forecast 
as an input parameter. Since this case study aims to develop an occupancy prediction 
model to enable active management of beach visitors in Scharbeutz, the prediction of only 
6 hours in advance is probably too short. Steering measures to avoid peak occupancies at 
the beach are more likely to be medium-term to convince some visitors to choose another 
POI. In this scenario, the still quite good performance of XGBoost as supervised ML 
model is in favor of the slightly more accurate ML time series models. 
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Further, the performance of the XGBoost model may improve with an increasing amount 
of available data. For example, the special situation of the Covid-19 pandemic and its 
resulting restrictions should become relative as more data with a regular history become 
available. In this context, a feature that indicates the presence of restrictions like contact 
restrictions and curfew gives the model more information about the special situation at 
New Year 2020/21. Since no data was available in this case study, the mentioned Covid-
19-specific feature would not have influenced the predictive performance as no 
comparison to non-pandemic years was possible. Regardless of the Covid-19 pandemic, 
integrating additional features like events at the beach, felt weather temperature, or water 
temperature might improve model performance. 

Overall, the selection of prediction models itself highly depends on the use case. On the 
one hand, if the prediction is utilized in steering measures to avoid overcrowding, like in 
this use case in Scharbeutz, a medium- to long-term prediction is required, since visitors 
need to be addressed already in the planning phase of their trip. As a countermeasure to 
overcrowding, the predicted occupancy information can be utilized in an AVM system by 
recommending alternative POIs to potential visitors. Here, minor deviations in the 
prediction are not decisive since there is no specific and limiting occupancy number for 
an open POI like a beach. On the other hand, steering measures at the POI, such as a 
controlled filling of parking lots requires a short-term and accurate prediction.  

6 Conclusion 

In the present paper, we elaborate on the applicability and performance of various model 
types, including different ML models, to predict the occupancy of tourist destinations. In 
a case study of beach occupancy in Scharbeutz, northern Germany, the time series models 
with XGBoost and Random Forest demonstrated the lowest error, followed by the 
supervised XGBoost model. However, due to the limited prediction of only one time step 
in advance, the time series prediction is quite limited and only suitable for steering visitors 
to a limited extent. In such cases, the supervised XGBoost model may be in favour since 
peak occupancy days were still predicted correctly. Overall, the case study highlights the 
importance of selecting the right model depending on the use case and the associated 
objectives. In future research, we plan to integrate more features on a larger dataset to 
improve the performance of the ML model, and plan to evaluate it with relative measures 
and time series cross-validation to obtain a more reliable estimate. Subsequently, the most 
important features might be identified by using SHAP values, which would allow 
explaining the underlying effects of peak occupancy days. In addition, the model can be 
further validated by integrating parking data near the beach to verify whether a full parking 
lot indicates a high beach occupancy. Finally, the transferability of the developed models 
to other regions and POIs, such as the Allgäu region in the south of Germany, might be 
investigated. 

402



 

7 Acknowledgements 

The authors gratefully acknowledge the financial support of the Project “AIR” 
(67KI21005G) by the Federal Ministry for the Environment, Nature Conservation, 
Nuclear Safety and Consumer Protection of Germany (BMUV) and the financial support 
of the Project “FEB-NAFV” (19F2198A) by the Federal Ministry for Digital and 
Transport (BMDV) as part of the mFUND innovation initiative. 

Bibliography 

[Ab21] Abu, N. et al.: SARIMA and Exponential Smoothing model for forecasting ecotourism 
demand: A case study in National Park Kuala Tahan, Pahang. Journal of Physics: 
Conference Series 1/1988, pp. 12118, 2021. 

[AK15] Awad, M.; Khanna, R.: Support Vector Regression. In (Awad, M.; Khanna, R. 
Eds.): Efficient Learning Machines. Apress, Berkeley, CA, pp. 67–80, 2015. 

[Al12] Ali, J. et al.: Random forests and decision trees. International Journal of Computer 
Science Issues (IJCSI) 9, pp. 272, 2012. 

[APB21] Assemi, B.; Paz, A.; Baker, D.: On-Street Parking Occupancy Inference Based on 
Payment Transactions. IEEE Transactions on Intelligent Transportation Systems, pp. 1–
12, 2021. 

[Ar22] Arbeitsgemeinschaft Verbrauchs- und Medienanalyse (VuMA): Verbrauchs- und 
Medienanalyse - VuMA 2022. Freizeit, Urlaub, Reisen, 2022. 

[Bi21] Bi, J.-W. et al.: Forecasting Daily Tourism Demand for Tourist Attractions with Big 
Data: An Ensemble Deep Learning Method. Journal of Travel Research, 2021. 

[BL19] Bokelmann, B.; Lessmann, S.: Spurious patterns in Google Trends data - An analysis of 
the effects on tourism demand forecasting in Germany. Tourism Management 75, pp. 1–
12, 2019. 

[Ca19] Capocchi, A. et al.: Overtourism: A Literature Review to Assess Implications and Future 
Perspectives. Sustainability 12/11, p. 3303, 2019. 

[Ch00] Chapman, P. et al.: CRISP-DM 1.0 step-by-step data mining guide, 2000. 

[Ch15] Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K.: Xgboost: 
extreme gradient boosting. R package version 0.4-2, 1(4), pp. 1–4, 2015. 

[Ch19] Chawathe, S. S.: Using Historical Data to Predict Parking Occupancy: 2019 IEEE 10th 
Annual Ubiquitous Computing, Electronics & Mobile Communication Conference 
(UEMCON). IEEE, New York City, NY, USA, pp. 534–540, 2019. 

[Cl20] Claude, U.: Predicting Tourism Demands by Google Trends: A Hidden Markov Models 
Based Study. Journal of System and Management Sciences, 2020. 

[De16] Deutschen Wirtschaftswissenschaftlichen Institut für Fremdenverkehr e. V.: 
Wirtschaftsfaktor Tourismus für das Reisegebiet Ostsee (Schleswig-Holstein), 2016. 

403



 

[De19] Deutschen Wirtschaftswissenschaftlichen Institut für Fremdenverkehr e. V. 
(dwif): Wirtschaftsfaktor Tourismus für das Reisegebiet Ostsee 2019, 2019. 

[Di19] Dinis, G. et al.: Google Trends in tourism and hospitality research: a systematic literature 
review. Journal of Hospitality and Tourism Technology 4/10, pp. 747–763, 2019. 

[Ei22] Eisele, J. et al.: Besucherlenkung und Reduktion des motorisierten Freizeitverkehrs - das 
Potential datengetriebener und flexibler Busangebote. In (Teich, T. et al. 
eds.): Innovation und Kooperation auf dem Weg zur All Electric Society. Emergenzen 
für neue Geschäftsprozesse. Springer, Heidelberg, 2022. 

[Fe19] Feng, Y. et al.: Forecasting the number of inbound tourists with Google Trends. Procedia 
Computer Science 162, pp. 628–633, 2019. 

[Fr01] Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine. The 
Annals of Statistics 5/29, pp. 1189–1232, 2001. 

[Ge22a] German Weather Service: Weather and climate - Deutscher Wetterdienst - Glossary - N 
- Precipitation intensity. https://www.dwd.de/DE/service/lexikon/Functions/ 
glossar.html?lv2=101812&lv3=101906, accessed 17 Mar 2022. 

[Ge22b] German Weather Service: Climate Data Center (CDC). 
https://opendata.dwd.de/climate_environment/CDC/, accessed 17 Mar 2022. 

[Ge22c] German Weather Service: Formulations of the Weather Elements. 
https://www.dwd.de/DE/service/lexikon/begriffe/W/Wetterelementeformulierungen_p
df.pdf?__blob=publicationFile&v=3, accessed 17 Mar 2022. 

[Ge22d] German Weather Service: Weather and climate - German Meteorological Service - 
Glossary - B - Beaufort scale. https://www.dwd.de/DE/service/lexikon/ 
Functions/glossar.html?lv2=100310&lv3=100390, accessed 17 Mar 2022. 

[GG18] Gross, S.; Grimm, B.: Sustainable mode of transport choices at the destination – public 
transport at German destinations. Tourism Review 3/73, pp. 401–420, 2018. 

[GV20] Gowreesunkar, V. G.; Vo Thanh, T.: Between Overtourism and Under-Tourism: 
Impacts, Implications, and Probable Solutions. In (Séraphin, H.; Gladkikh, T.; Vo 
Thanh, T. eds.): Overtourism. Springer International Publishing, Cham, pp. 45–68, 2020. 

[Hø00] Høyer, K. G.: Sustainable Tourism or Sustainable Mobility? The Norwegian Case. 
Journal of Sustainable Tourism 2/8, pp. 147–160, 2000. 

[Hu22] Hu, M. et al.: Tourism demand forecasting using tourist-generated online review data. 
Tourism Management 90, p. 104490, 2022. 

[HX98] Ho, S. L.; Xie, M.: The use of ARIMA models for reliability forecasting and analysis. 
Computers & Industrial Engineering 1-2/35, pp. 213–216, 1998. 

[In21] Institut für Demoskopie Allensbach: Allensbacher Markt- und Werbeträger-Analyse - 
AWA 2021. Urlaub und Reisen, 2021. 

[JC19] Jiao, E. X.; Chen, J. L.: Tourism forecasting: A review of methodological developments 
over the last decade. Tourism Economics 3/25, pp. 469–492, 2019. 

[JM15] Jordan, M. I.; Mitchell, T. M.: Machine learning: Trends, perspectives, and prospects. 
Science (New York, N.Y.) 6245/349, pp. 255–260, 2015. 

404



 

[Kh20] Khatibi, A. et al.: Fine-grained tourism prediction: Impact of social and environmental 
features. Information Processing & Management 2/57, p. 102057, 2020. 

[Ki10] Kitagawa, G.: Introduction to time series modeling. Chapman & Hall/CRC, Boca Raton, 
2010. 

[Ki21] Kim, D.-K. et al.: A Daily Tourism Demand Prediction Framework Based on Multi-
head Attention CNN: The Case of The Foreign Entrant in South Korea: 2021 IEEE 
Symposium Series on Computational Intelligence (SSCI). IEEE, Orlando, FL, USA, pp. 
1–10, 2021. 

[LI10] Loganathan, N.; Ibrahim, Y.: Forecasting international tourism demand in Malaysia 
using Box Jenkins Sarima application. South Asian Journal of Tourism and Heritage 
2/3, pp. 50–60, 2010. 

[Li19] Liu, H. et al.: Hot topics and emerging trends in tourism forecasting research: A 
scientometric review. Tourism Economics 3/25, pp. 448–468, 2019. 

[Ma19] Martinez-Plumed, F. et al.: CRISP-DM Twenty Years Later: From Data Mining 
Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data 
Engineering 8/33, pp. 3048–3061, 2019. 

[Mi22] Ministerium für Energiewende, Landwirtschaft, Umwelt, Natur und 
Digitalisierung: Datensätze - Open-Data Schleswig-Holstein. 
https://opendata.schleswig-
holstein.de/dataset?q=&ext_startdate=&ext_enddate=&groups=tran&sort=score+desc
%2C+metadata_modified+desc, accessed 12 Apr 2022. 

[Ne22] Neubig, S. et al.: Data-driven Initiatives of Destinations Supporting Sustainable 
Tourism: Americas Conference on Information Systems (AMCIS) 2022, 2022. 

[ÖGG20] Önder, I.; Gunter, U.; Gindl, S.: Utilizing Facebook Statistics in Tourism Demand 
Modeling and Destination Marketing. Journal of Travel Research 2/59, pp. 195–208, 
2020. 

[ÖGS19] Önder, I.; Gunter, U.; Scharl, A.: Forecasting Tourist Arrivals with the Help of Web 
Sentiment: A Mixed-frequency Modeling Approach for Big Data. Tourism Analysis 
4/24, pp. 437–452, 2019. 

[Pa22] Paidi, V. et al.: CO2 Emissions Induced by Vehicles Cruising for Empty Parking Spaces 
in an Open Parking Lot. Sustainability 7/14, p. 3742, 2022. 

[PEF20] Prilistya, S. K.; Erna Permanasari, A.; Fauziati, S.: Tourism Demand Time Series 
Forecasting: A Systematic Literature Review: 2020 12th International Conference on 
Information Technology and Electrical Engineering (ICITEE). IEEE, Yogyakarta, 
Indonesia, pp. 156–161, 2020. 

[PS21] Phumchusri, N.; Suwatanapongched, P.: Forecasting hotel daily room demand with 
transformed data using time series methods. Journal of Revenue and Pricing 
Management, 2021. 

[PY17] Pan, B.; Yang, Y.: Forecasting Destination Weekly Hotel Occupancy with Big Data. 
Journal of Travel Research 7/56, pp. 957–970, 2017. 

 

405



 

[sc22a] scikit-learn developeres: sklearn RandomForestRegressor. https://scikit-learn.org/ 
stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html, accessed 24 
Apr 2022. 

[sc22b] scikit-learn developeres: sklearn svm.SVR. https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVR.html, accessed 24 Apr 2022. 

[Sc22] Schmücker, D. et al.: Digitales Besuchermanagement im Tourismus. Konzeptioneller 
Rahmen und Gestaltungsmöglichkeiten. In (Gardini, M. A.; Sommer, G. Eds.): Digital 
Leadership im Tourismus. Digitalisierung und Künstliche Intelligenz als 
Wettbewerbsfaktoren der Zukunft. Springer, Wiesbaden, 2022. 

[Sm22] Smith, T. G.: pmdarima 1.8.5 documentation. pmdarima.arima.auto_arima. 
https://alkaline-ml.com/pmdarima/modules/generated/ 
pmdarima.arima.auto_arima.html, accessed 24 Apr 2022. 

[SQP19] Song, H.; Qiu, R. T.; Park, J.: A review of research on tourism demand forecasting: 
Launching the Annals of Tourism Research Curated Collection on tourism demand 
forecasting. Annals of Tourism Research 75, pp. 338–362, 2019. 

[SSD21] Stadler, T.; Sarkar, A.; Dünnweber, J.: Bus Demand Forecasting for Rural Areas Using 
XGBoost and Random Forest Algorithm. In (Saeed, K.; Dvorský, J. Eds.): Computer 
Information Systems and Industrial Management. Springer International Publishing, 
Cham, pp. 442–453, 2021. 

[St21] Studer, S. et al.: Towards CRISP-ML(Q): A Machine Learning Process Model with 
Quality Assurance Methodology. Machine Learning and Knowledge Extraction 2/3, pp. 
392–413, 2021. 

[TB20] Tsang, W. K.; Benoit, D. F.: Gaussian processes for daily demand prediction in tourism 
planning. Journal of Forecasting 3/39, pp. 551–568, 2020. 

[To22] Tourismus-Agentur Lübecker Bucht: Strandticker Lübecker Bucht. 
https://www.luebecker-bucht-ostsee.de/strandticker, accessed 12 Apr 2022. 

[Va00] Vapnik, V. N.: The Nature of Statistical Learning Theory. Springer, New York, NY, 
2000. 

[Va18] Vanichrujee, U. et al.: Taxi Demand Prediction using Ensemble Model Based on RNNs 
and XGBOOST: 2018 International Conference on Embedded Systems and Intelligent 
Technology & International Conference on Information and Communication 
Technology for Embedded Systems (ICESIT-ICICTES). IEEE, pp. 1–6, 2018. 

[Vo19] Volchek, K. et al.: Forecasting tourist arrivals at attractions: Search engine empowered 
methodologies. Tourism Economics 3/25, pp. 425–447, 2019. 

[Wo18] World Tourism Organization et al.: ’Overtourism’? - Understanding and Managing 
Urban Tourism Growth beyond Perceptions, Executive Summary. UNWTO, 2018. 

[WSS17] Wu, D. C.; Song, H.; Shen, S.: New developments in tourism and hotel demand 
modeling and forecasting, p. 23, 2017. 

[xg22] xgboost developers: XGBoost Documentation — xgboost 1.5.2 documentation. 
https://xgboost.readthedocs.io/en/stable/index.html, accessed 13 Apr 2022. 

406



 

[YZ19] Yang, Y.; Zhang, H.: Spatial-temporal forecasting of tourism demand. Annals of 
Tourism Research 75, pp. 106–119, 2019. 

[Zh18] Zhang, M. et al.: Weekly Hotel Occupancy Forecasting of a Tourism Destination. 
Sustainability 12/10, p. 4351, 2018. 

[ZHL21] Zheng, W.; Huang, L.; Lin, Z.: Multi-attraction, hourly tourism demand forecasting. 
Annals of Tourism Research 90, p. 103271, 2021. 

[ZZ20] Zhao, Z.; Zhang, Y.: A Comparative Study of Parking Occupancy Prediction Methods 
considering Parking Type and Parking Scale. Journal of Advanced Transportation 2020, 
pp. 1–12, 2020. 

 

 

Appendix 

Part of the day Lower Limit Upper Limit 
0: night ≥ 12: 00 𝐴𝑀  < 6: 00 𝐴𝑀  
6: morning ≥ 6: 00 𝐴𝑀  < 12: 00 𝑃𝑀  
12: afternoon ≥ 12: 00 𝑃𝑀  < 6: 00 𝑃𝑀  
18: evening ≥ 6: 00 𝑃𝑀  <  12: 00 𝐴𝑀  

Tab. A.1: 6-hour time periods  

 

 

Tab. A.2: Temperature, rain, and wind categories 

 

Temp. 
category 

Lower 
Limit 
[°C] 

Upper 
Limit 
[°C] 

Rain 
category 

Lower 
Limit [𝑘𝑔 𝑚2 ] Upper 

Limit [𝑘𝑔 𝑚2 ] Wind 
category 

Lower 
Limit     [𝑚 𝑠 ] Upper 

Limit [𝑚 𝑠 ] 
-10  < −10  0.5  < 0.5  0  < 0.3  
0 ≥  −10  < 0   2.5 ≥ 0.5  < 2.5  1 ≥ 0.3  < 1.6  
10 ≥  0  < 10  5.0 ≥ 2.5  < 5.0  2 ≥ 1.6  < 3.4  
18 ≥  10  < 18  10.0 ≥ 5.0  < 10.0  3 ≥  3.4  < 5.5  
24 ≥  18  < 24  50.0 ≥ 10.0  < 50.0  4 ≥ 5.5  < 8.0  
30 ≥ 24   < 30  51.0 ≥ 50.0   5 ≥ 8.0  < 10.8  
35 ≥ 30  < 35     6 ≥ 10.8  < 13.9  
36 ≥ 35      7 ≥ 13.9  < 17.2  
      8 ≥ 17.2  < 20.8  
      9 ≥ 20.8  < 24.4  
      10 ≥ 24.4  < 28.4  
      11 ≥ 28.4  < 32.6  
      12 ≥ 32.6   
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Precipitation form 
Historical observation 
precipitation form 

Mosmix forecast 

0: no precipitation NaN, 0, 4, 9 
 

Snow water equivalent = 0 
& Precipitation height < 0.5 

1: rain 1, 6 Precipitation height > 0.5 
2: snow 7, 8 Snow water equivalent > 0 

Tab. A.3: Feature engineering of the precipitation form 

 

Features Type of Data Value Ranges 
year Integer [2020, 2021, 2022] 
month Integer [1, …, 12] 
day of year Integer [1, …, 365] 
quarter of year Integer [1, …, 4] 
day of month Integer [1, …, 31] 
calendar week Integer [1, …, 52] 
day of week Integer [1, …, 7] 
hour Integer [0, …., 23] 
weekend Binary [0, 1] 
bridging day Binary [0, 1] 
public holiday (bank holiday) Binary  [0, 1] 
regional school holiday Binary [0, 1] 
German school holiday density Float [0, …, 1] 
wind category categorical [0, 1, 2, 3, 4, 5, 6, 7,8, 9, 10, 

11, 12] 
rain category categorical [0.5, 2.5, 5.0, 10.0, 50.0, 51.0] 
temperature category categorical [-10, 0, 10, 18, 24, 30, 35, 36] 
precipitation form categorical [0, 1, 2] 

Tab. A.4: Structure of the final data set of input features 
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