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Abstract: Detecting the current task of a user is essential for providing her with con-
textualized and personalized support, and using Contextual Attention Metadata (CAM)
can help doing so. Some recent approaches propose to perform automatic user task de-
tection by means of task classifiers using such metadata. In this paper, we show that
good results can be achieved by training such classifiers offline on CAM gathered in
laboratory settings. We also isolate a combination of metadata features that present a
significantly better discriminative power than classical ones.

1 Introduction

Today knowledge workers have to handle incessantly increasing amounts of information,
in terms of text documents, emails, etc., located both on their own computer desktops and
on the Web. Personal information management and search systems can help coping with
this ever growing challenge, and they can do it even more efficiently if they provide con-
textualized and personalized support. For that they have to take account of the user’s usage
and contextual attention metadata [SLDH06, WNVD07, VS07, RWK+08, CDH+08] 1.
Such metadata is especially valuable for detecting the user’s task, and several approaches
have been proposed for doing so [OSTS06, SLDH06, LFBG07, GKS+08, RDL09]. By fo-
cusing on the user’s interactions with applications and resources (user interaction context)
we explore how to fully exploit this metadata to make user task detection more efficient in
a real work environment.

Related Work: Here, by task detection we mean task class detection also referred to as
task classification, as opposed to task switch detection. Task classification deals with the
challenge of classifying usage data from user task execution into task classes or task types.
Task switch detection involves predicting when the user switches from one task to another
[OSTS06, SLDH06]. Automatic task detection is classically modeled as a machine learn-
ing problem, and more precisely a classification problem. This method is used to recognize
Web based tasks [GCN08], tasks within emails [DLK06, SLDH06] or from the complete

1For us, CAM frameworks are not only approaches that use the CAM-XML data schema, but more generaly
frameworks which observe contextual attention metadata independently of the underlying (sensor) data schema.



user’s desktop [OSTS06, SLDH06, LFBG07, GKS+08, RDL09]. All these approaches are
based on the following steps: (i) The CAM is captured by system and application sensors.
(ii) Features, i.e. parts of this data, are chosen to build classification training instances.
(iii) To obtain valid inputs for machine learning algorithms, these features are first trans-
formed into attributes [WF05]. This transformation may include data preprocessing op-
erations, such as removing stopwords [LFBG07, GKS+08] and application specific terms
[OSTS06], or constructing word vectors. (iv) Attribute selection [SLDH06, GKS+08] is
performed (optional step) to select the best discriminative attributes for (v) training the
classification/learning algorithms.

Contribution: In this paper, while adopting this classical approach for task detection, we
focus on investigating the following research questions: (i) How good can the performance
of a task classifier be when used in a real work environment, while being trained with
CAM gathered in laboratory settings? (ii) Which are the automatically observable CAM
features that allow for good task detection performance? Both questions are concerned
with work efficiency. The goal of the first one is to determine whether a task classifier can
be trained offline, thus saving the user from the burden of manual training during work
processes, which might slow down her computer and hence have a negative influence on
her work efficiency and user experience. The second one aims at finding the most discrim-
inative features among the automatically captured CAM features of our CAM framework
for achieving a good balance between task detection accuracy and classification workload,
which influences which CAM sensors have to be developed to do automatic task detection.
To get a first impression on the answers to these research questions, we have designed a
large-scale experiment in which users have performed a set of tasks both on a single labora-
tory computer and on their personal workstations. Our first results, achieved with a dataset
containing four task classes and 203 task instances from 14 users, indicate that: (i) reliable
detection of real tasks via offline training is possible, (ii) the good discriminative power of
the classical window title feature [OSTS06, SLDH06, LFBG07, GKS+08] is confirmed,
and (iii) classification accuracy is significantly increased by using a combination of six
features specific to our approach.

Outline: In Section 2 we describe our experiment and our CAM framework. Our method-
ology for task classification is presented in Section 3, and the results obtained from the
task classifier are discussed in Section 4. Finally we draw some conclusions in Section 5.

2 Experiment Design and Execution

Our experiment was carried out in the knowledge-intensive domain of the Know-Center.
It was preceded by an analysis phase, during which several requirements were defined, by
interviewing knowledge workers. Users required to know what kind of data was recorded,
to be able to access and modify it, and that the evaluation results were anonymized. They
could practice with the recording tool for a week before the experiment in order to reduce
the bias of unfamiliarity during the experiment. This study/experiment was exploratory,
the comparison was within subjects and the manipulations were achieved by the environ-
ment (laboratory vs. personal workstation) and the executed task (four different tasks).



Manipulation 1 - Work Environment: The first manipulation was achieved by varying
the work environment (i.e. the computer desktop environment) of the participants. Each
participant performed the same set of tasks both on a laboratory computer on which a
set of standard software used in the company had been installed beforehand, and on their
company personal workstations with their personal computer desktop settings and access
to their personal files, folders, bookmarks, emails and so on. Half of the participants
worked first on the laboratory computer and then on their personal workstations, and vice
versa for the other half. The assignment of the participants to each group was randomized.

Manipulation 2 - Task: The second manipulation resulted from varying the tasks them-
selves. During a preliminary meeting, the participants of the experiment agreed on a selec-
tion of four tasks typical of the Know-Center domain: (1) “Filling in the official journey
form”, (2) “Filling in the cost recompense form for the official journey”, (3) “Creating
and handing in an application for leave” and (4) “Planning an official journey”. 2 A short
questionnaire was issued before starting the experiment to make sure that the probands
understood the tasks they had to perform, and also to have them thinking about the tasks
before they actually executed them.

During the experiment, for capturing the users’ CAM, we have used multiple sensors
[RWK+08] that record the user interactions with resources and applications on the com-
puter desktop (see Table 1). The captured usage data is used to automatically populate
our User Interaction Context Ontology (UICO) [RDL09] which constitutes an ontology-
based user context model of the personal information management domain. Rule-based
and information extraction techniques are used to automatically enrich our ontology, by
discovering new instances of concepts, and deriving inter-concepts relationships [RDL09].
For a full presentation of the UICO, the interested reader is refered to [RDL09].

3 Task Classification Methodology

Our dataset contains 203 task instances from 14 users: 106 tasks from the laboratory com-
puter and 97 from work station computers. The number of representatives for each task
class were almost equally distributed (see Table 2). In our experiment we evaluated the
influence of five parameters on the task detection performance: (i) the number of features,
(ii) the classification model, (iii) the feature category, (iv) single features and (v) the com-
bination of the k top performing single features with k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}.
For the task detection part we used the machine learning toolkit Weka [WF05] for parts of
the data preprocessing, filtering, attribute selection, and classification.

Training/Test Instance Construction: Constructing training instances for the machine
learning algorithms was done on the task level: each task represents a training instance
for a specific class to be learned. A class corresponds to a specific task model. Having
multiple task models hence resulted in a multi-class classification problem. An instance
for a class was built from features and feature combinations based on the CAM captured

2It is worth noting that these tasks present different characteristics, in terms of complexity, estimated execu-
tion time, number of involved resources, granularity and so on.



Sensor Observed Data and Metadata
Application Sensors

Microsoft Word document title, document url, language, text encoding, content
of visible area, file name, folder, user name

Microsoft Power-
Point

document title, document url, document template name, current
slide number, language, content, file name

Microsoft Excel spreadsheet title, spreadsheet url, worksheet name, content of
the currently viewed cell, authors, language, file name, file uri,
folder, user name

Microsoft Internet
Explorer

currently viewed url, urls of embedded frames, content as html,
content as plain text

Microsoft Explorer currently viewed folder/drive name, url of folder/drive path
Mozilla Firefox 2.x
and 3.x

currently viewed url, urls of embedded frames, content as html

Mozilla Thunder-
bird

(html/plain text) content of currently viewed or sent email, sub-
ject, unique path (uri of email/news message) on server, user’s
mail action (compose, read, send, forward, reply), received/sent
time, email addresses and full names of the email entries

Microsoft Outlook
2003/2007

(create, delete, modify, open and distribute) tasks, notes, calen-
dar entries, contacts, data about email handling

Novell GroupWise
email client

(create, delete, modify, and distribute) tasks, notes, calendar en-
tries, todos, data about email handling

System Sensors
File System Sensor copying from/to, deleting, renaming from/to, moving from/to,

modification of files and folders (file/folder url)
Clipboard Sensor clipboard changes (i.e. text copied to clipboard)
Network Stream
Sensor

header and payload content from network layer packets (http,
ftp, nttp, smtp, messenger, ICQ, Skype. . . )

Generic Windows
XP System Sensor

mouse movement, mouse click, keyboard input, window title,
date and time of occurrence, window id/handle, process id, ap-
plication name

Accessibility
Object Sensor

name, value, description, help text, help text description, tooltip
of the accessibility object.

Table 1: This table shows a listing of the developed application and system sensors as well as
of the data recorded by these sensors. Application sensors are context sensors for standard office
applications. System sensors are deep hooks into the operating system. They allow to record user
interactions and network transfer data on a fine-granular level.



Set Task 1 Task 2 Task 3 Task 4 Sum

Train 30 26 26 24 106
Test 25 19 25 28 97

Sum 55 45 51 52 203

Table 2: This table shows the distribution of training and test instances for the different task classes.
Training and test instances were constructed based on the usage data recorded on the laboratory
computer and on the personal workstations respectively.

during a task execution. For details about the data preprocessing and the feature to attribute
transformation we refer to [RDL09].

We have defined 50 features that can be grouped in six categories: (i) ontology struc-
ture, (ii) content, (iii) application (iv) resource, (v) action and (vi) switching sequences.
The ontology structure category contains features representing the number of instances
of concepts and the number of datatype and objecttype relations used per task. The con-
tent category consists of the content of task-related resources, the content in focus and the
text input of the user. The application category contains the classical window title feature
[OSTS06, SLDH06, LFBG07, GKS+08], the application name feature [GKS+08] and
our newly introduced graphical user interface elements (accessibility objects3) features.
The resource category includes the complete contents and URIs (URLs) [SLDH06] of the
used, referenced and included resources, as well as a feature that combines all the meta-
data about the used resources in a ‘bag of words’. The action category represents the user
interactions and contains features about the interactions with applications [GKS+08], re-
sources types, resources, key input types (navigational keys, letters, numbers), the number
of events and event blocks, the duration of the event blocks, and the time intervals be-
tween event blocks. The switching sequences category comprises features about switches
between applications, resources as well as event and resource types.

Classifiers and Attribute Selection: We studied the Naı̈ve Bayes (NB), Linear Support
Vector Machine (SVM) with cost parameter c ∈ {2−5, 2−3, 2−1, 20, 21, 23, 25, 28, 210}4,
J48 decision tree (J48) and k-Nearest Neighbor (KNN-k) with k ∈ {1, 5, 10, 35} algo-
rithms. For each classifier/learning algorithm l ∈ L, for each feature category φ ∈ Φ and
each feature f ∈ F we selected the g attributes having the highest Information Gain (IG)
value to obtain our dataset. As values for g we used 50 different measure points. Half
of them were equally distributed over the available number of attributes with an upper
bound of 5000 attributes. The other half was defined by G = {3, 5, 10, 25, 50, 75, 100,
125, 150, 175, 200, 250, 300, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000,
7500, 10000}. Which attributes are finally used by the classifiers depends on the attribute
selection algorithm (IG in our case). To answer our research questions we used the tasks
we recorded from the laboratory computer as the training set and those recorded at the
personal workstations as the test set. We measured the accuracy (a) of the used algorithms

3Microsoft Active Accessibility: http://msdn.microsoft.com/en-us/accessibility/
4The interval was chosen according to the libSVM guide at: http://www.csie.ntu.edu.tw/~cjlin/libsvm/



Set RS f l g a p r RG

1 Application Cat. NB 500 91.75 0.97 0.92 3
2 Content Cat. NB 500 86.60 0.95 0.87 5

Feature 3 All Categories NB 750 82.47 0.93 0.83 8
categories 4 Resource Cat. NB 1000 68.04 0.86 0.67 14

5 Ontology Str. Cat. J48 359 65.98 0.86 0.67 15
6 Action Cat. SVM 11 59.79 0.81 0.58 17
7 Switching Seq. Cat. NB 1832 40.21 0.66 0.39 20

1 window title J48 100 85.57 0.95 0.87 6
2 content in focus NB 150 84.54 0.94 0.84 7
3 acc. obj. name J48 100 80.41 0.92 0.81 9

Single 4 event block content NB 200 73.20 0.89 0.76 10
features 5 acc. obj. value J48 150 71.13 0.89 0.72 11

6 UICO datatype relations J48 221 70.10 0.88 0.71 12
7 used resources metadata J48 1000 68.04 0.86 0.68 13
8 used resources content NB 175 62.89 0.84 0.65 16
9 content of resources NB 250 58.76 0.81 0.61 18

10 acc. obj. role J48 31 54.64 0.79 0.55 19

Top k 1 Top k = 6 NB 250 94.85 0.98 0.95 1
single 2 Top k = 5 NB 150 92.78 0.97 0.94 2
features 3 Top k = 4 NB 500 89.69 0.96 0.91 4

Table 3: Overview of all results about the performance of detecting real workstation tasks by training
on CAM from laboratory settings for each feature category, for all feature categories combined, each
single feature as well as the k top performing single features. The learning algorithm (l), the number
of attributes (g), the micro precision (p), the micro recall (r), the ranking in the corresponding section
(RS) and across sections (RG) are also given.

(l), the number of attributes (g), the micro precision (p) and micro recall (r).

4 Results and Discussion

An overview of all results about the performance of detecting real workstation tasks by
training on CAM from laboratory settings is given in Table 3.

Feature Categories: The best feature category was the application category that correctly
identified 91.75% of the real tasks (l=NB, g=500, p=0.97, r=0.92). Approximately 5%
behind in terms of accuracy was the content category (l=NB, a=86.60%, g=500, p=0.95,
r=0.87). Using all 50 features resulted in a 82.47% accuracy, which is about 9% worse
than the best performing feature category. This directed our decision to study the used
features in greater details.

Single Features: We evaluated the performance of each single feature separately and
confirmed that the window title [OSTS06, SLDH06, LFBG07, GKS+08] was the best dis-



criminative feature: it obtained an accuracy of 85.57% (l=J48, g=100, p=0.95, r=0.87). Of
great interest are the good performances of accessibility object features: the acc. obj. name
with a=80.41% (l=J48, g=100, p=0.92, r=0.81) and the acc. obj. value with a=71.13%
(l=J48, g=150, p=0.89, r=0.72). Simply counting the number of UICO datatype relations
(a=70.10%) was also quite efficient. Since the performance of the single features were
that good we were wondering if we could do better by following the simple approach of
combining the k best performing single features with respect to the accuracy (a).

Top k Features: We studied the performance for different k and obtained with the NB
classifier at g=250 attributes with the top 6 features the highest accuracy (a=94.85%),
precision (p=0.98) and recall (r=0.95), among all studied features, feature categories and
top k combinations. This was an accuracy increase of 9.28%, a precision increase of 0.03
and a recall increase of 0.08 compared to the performance of the window title feature.
The number of attributes (250) of this best performing approach also supports prior work
showing that a good choice for it is between 200 and 300 attributes [LFBG07, SLDH06].

Generalizability to Other CAM Frameworks: CAM frameworks that observe user con-
textual information differ in terms of utilized sensors and of granularity of the captured
CAM. Our approach is very fine-granular since we observe not only the content currently
viewed by the user or the window title of the application in focus but also the user’s inter-
actions with all desktop elements and application controls (accessibility objects). In our
approach every single interaction of the user with an application and a resource is impor-
tant and hence captured, stored and analyzed. Using a different CAM framework could
result in leaving out “context features” with a good task discriminative power and could
hence have a negative impact on the task detection performance.

Generalizability to Other Work Contexts: Our results only give a first impression on the
fact that the environment in which users perform their tasks has no significant influence
on the task detection performance. Since only four tasks were studied in our experiment,
the generalizability of our results is of course limited, and further experiments (with other
tasks, other users and in other domains) are needed. However it is well recognized that the
window title feature has a good cross-domain discriminative power, and we think that it
could be true for other CAM features.

Possible Impacts of our Results: The strong positive influence of specific context fea-
tures on task detection performance could be an indication that it is not necessary to sense
“everything” about the user’s interactions with her computer desktop but only some rele-
vant elements. This would have an impact on what kind of sensors have to be developed,
i.e. which context features have to be sensed, to achieve a reasonable task detection per-
formance. It would also impact the user’s system performance because capturing less data
normally leads to less cpu requirements. Furthermore if we know which features are per-
forming well for supervised machine learning algorithms in laboratory settings, it could
provide a first indication on which features could be used in an unsupervised learning
approach and in real world settings. However, this would require further experiments in
laboratory and real world settings.



5 Conclusions and Future Work

Following the CAM approach for observing the user’s attention seems to be a good choice
for automatically detecting the user’s task by means of machine learning techniques. We
have performed a large-scale experiment that shows that it is possible to obtain good task
detection results for real user tasks with a classifier trained offline on laboratory CAM.
We have also studied the discriminative power of individual and combined CAM features.
The good performance of the classical window title feature was confirmed and even sig-
nificantly outperformed by a specific combination of 6 features. Within this combination
are CAM features that are specific to our ontology-based user interaction context model
(UICO). This confirms that our model can improve task detection performance [RDL09].

We plan to study the discriminative power of our ontology-specific CAM features more
thoroughly by performing further experiments with tasks having different characteristics,
since the results we have obtained here are maybe domain-specific. We would like to
understand why some features perform better than others for task detection. Our objective
is to exhibit a small combination of CAM features with a strong discriminative power
independently of the domain in order to enhance automatic task detection performance.

6 Acknowledgments

We would like to thank all the people from the Know-Center who participated in the ex-
periment and supported us in carrying out our task experiment study.

The Know-Center is funded within the Austrian COMET Program - Competence Centers
for Excellent Technologies - under the auspices of the Austrian Ministry of Transport,
Innovation and Technology, the Austrian Ministry of Economics and Labor and by the
State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

References

[CDH+08] S. Chernov, G. Demartini, E. Herder, M. Kopycki, and W. Nejdl. Evaluating personal
information management using an activity logs enriched desktop dataset. In Workshop
on Personal Information Management, CHI ’08, Florence, Italy, 2008.

[DLK06] M. Dredze, T. Lau, and N. Kushmerick. Automatically classifying emails into activities.
In IUI ’06, pages 70–77, Sydney, Australia, 2006.

[GCN08] A. Gutschmidt, C. H. Cap, and F. W. Nerdinger. Paving the path to automatic user
task identification. In Workshop on Common Sense Knowledge and Goal-Oriented
Interfaces, IUI ’08, Canary Islands, Spain, 2008.
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[RWK+08] A. S. Rath, N. Weber, M. Kröll, M. Granitzer, O. Dietzel, and S. N. Lindstaedt. Context-
aware knowledge services. In Workshop on Personal Information Management, CHI
’08, Florence, Italy, 2008.

[SLDH06] J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker. A hybrid learning system for
recognizing user tasks from desktop activities and email messages. In IUI ’06, pages
86–92, Sydney, Australia, 2006.

[VS07] M. Van Kleek and H. E. Shrobe. A practical activity capture framework for personal,
lifetime user modeling. In UM ’07 - Poster, pages 298–302, Corfu, Greece, 2007.

[WF05] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, 2005.

[WNVD07] M. Wolpers, J. Najjar, K. Verbert, and E. Duval. Tracking actual usage: the attention
metadata approach. Educational Technology & Society, 10(3):106–121, 2007.


