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ABSTRACT manipulated, because the IOMMU denies requests that target

Faulty, vulnerable or malicious PCle devices can harm a sys-
tem through DMA.IOMMUs can act as a security mechanism
to protect against this problem by restricting the memory
that is accessible via DMA. Unfortunately, there are methods
to bypass the IOMMU restrictions. This paper is a survey
over the currently existing bypasses and their feasibility. Cur-
rent systems might be exploited from any untrusted source
of DMA, which includes peripheral PCle devices, virtual
machines using SR-IOV, and even RDMA network cards,
which enable remote attacks. Key strategies for the attacks
presented here are Rowhammer, cache side-channels, and
the exploitation of weaknesses in device drivers, e.g., for
network cards, or protocols like PCIe or Ethernet OAM. An
attacker can potentially achieve denial of service, the read-
ing of confidential data, and even arbitrary code execution.
Fortunately, there are some precautions to reduce the risks
for affected systems.
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1 INTRODUCTION

Attackers can use direct access to PCle devices like NICs,
GPUs or NVMe drives, to issue malicious DMA requests
and take over the system. To protect against such attacks,
an I/O memory management unit (IOMMU) [1, 10] limits
what DRAM memory a device can access. [IOMMUs enable
secure device pass-through from host to guest in hardware
virtualized environments with little runtime overhead. This
paper presents a survey of known vulnerabilities and attack
vectors which violate guarantees promised by IOMMUs.

To protect the system, the host OS programs the IOMMU
to grant a device restricted access to DRAM. Now, an un-
trusted application or a guest VM can be allowed to access
the device directly, bypassing the host. The host OS does
not run a risk of having its sensitive data being leaked or
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non-mapped addresses.

For the aforementioned concept to remain valid, the IOMMU
must rely on certain assumptions, like the PCle devices them-
selves being trustworthy [1, 10], which do not always hold
in practice. These broken assumptions create a window of
opportunity for a potential attacker. The attacks differ in the
required attacker power ranging from physically installing
a malicious device down to connecting as a remote client.
Correspondingly, a more powerful attacker can go as far as
controlling the whole system, whereas some weaker ones
may only be able to affect a system’s availability or confi-
dentiality.

We identify three major attack vectors aiming to bypass
an IOMMU (see figure 1): a malicious device (1)), a mali-
cious device driver (2]), and a malicious remote system ((3]).
A malicious device is the most potent attack vector, whereas
malicious remote systems are the least potent. An attacker
may install a malicious device through a supply chain or evil
maid attack. A device may be installed inside a system or
connected to an externally accessible port that enables PCle
access through protocols like Thunderbolt. To be recognized
by the host system, the malicious device pretends to be a
known benevolent one, like a PCle network card.

In certain settings, an attacker can take control of the
device driver, without getting immediate control over the
host system. Such situation may happen if the device driver
is run by a microkernel [13], is part of an OS-bypass archi-
tecture [6, 22], or runs inside a guest VM. In this case, the
attacker employs the device as a confused deputy to escalate
their privileges.

A malicious remote system may abuse a device in a similar
way as a confused deputy, when it gains network access to
the vulnerable device. Such a situation occurs in Remote Di-
rect Memory Access (RDMA) networks, which become more
and more widespread in multi-tenant environments and pub-
lic clouds. Acting as a confused deputy, such a device may
leak sensitive information to a remote system. We foresee
this attack vector becoming more prominent with the grow-
ing number of programmable devices (smart NICs, storage,
etc.).

This paper proceeds by outlining the important details
of IOMMU functionality (see section 2), followed by the
description of the actual attacks. We conclude with our rec-
ommendations for building secure IOMMU-enabled systems.
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Figure 1: Different attack vectors through DMA.
Components which might host are
marked in red. Additionally, attacks can use bugs in
confused devices to access (otherwise restricted) mem-
ory.

2 BACKGROUND

With the IOMMU enabled, PCle devices are assigned to vir-
tual address spaces, similar to the way the MMU manages
address spaces for user-space processes. The OS preconfig-
ures the IOMMU to translate device virtual addresses inside
each DMA request to physical DRAM addresses. Addition-
ally, IOMMUs enable device pass-through to VMs with low
overhead by creating matching device virtual and guest phys-
ical address spaces.

DMA Address Remapping. The process of DMA address
translation, begins with a PCle device emitting a DMA re-
quest. It sends this request in the form of a Transaction Layer
Packet (TLP) on the PCle bus, where it is received by the
root complex (RC) inside the CPU. Once such a packet is
received, the RC-attached IOMMU uses fields from the TLP
header to determine the source-id [10, p. 29] of the request.
This id tells the IOMMU which address space to use for the
address remapping. It then works out the address mappings
by consulting the context table entry of this source-id for
the corresponding I/O page tables [10], which are formatted
similarly to the page tables of regular OS processes. The con-
text and I/O page tables are set up by the operating system
and reside in RAM. Only once this address translation has
finished successfully, a request will be issued from the RC to
main memory.

Device Sharing and Forwarding. To bypass an IOMMU, an
attacker requires direct device access, which is not always
granted, if the attacker controls only a part of the system.
Figure 2 outlines several virtualization configurations used
in practice to give a VM device access.
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Figure 2: Types of device accesses for VM guests. The
guest can only access a virtualized device provided by
the host (D). The guest accesses an SR-IOV virtual
function (VF, 2)). The host passes part of the device
MMIO, but controls the way it is accessed (3). The
guest has full access to the device (®).

With a traditional virtualization technique (D), the host
system passes a virtual device to a VM, instead of map-
ping the device Memory Mapped I/O (MMIO) buffers to
the guest [27]. The host system must then translate the re-
quests to the virtual device into requests to the physical
device. This indirection protects a potentially vulnerable de-
vice well, but has high performance overhead. One could
achieve higher performance by mapping device memory into
the guest address space (), even if some requests [8, 29]
require explicit calls to the VM host. Still, such virtualization
incurs significant CPU and latency increase.

The host may choose to pass the device either completely
(@) as a physical function (PF), or, if the device supports hard-
ware virtualization (SR-IOV [23]), partially () as a virtual
function (VF). Most commonly, a device offers PFs with full
device capabilities, and VFs with limited capabilities. When
using a VF, a physical PCle device can appear as multiple
PCle endpoints (and therefore IOMMU address spaces) by
using different values for the function-id field inside TLP
headers. Device pass-through offers the lowest overhead,
but puts more trust on the device to be resilient against a
malicious guest system or user-space driver.

3 MALICIOUS DEVICE

Malicious devices attacking the system are very hard to de-
tect, and thus enable covert attacks. These attacks exploit
shortcomings in the IOMMU specifications or vulnerabilities
in architectures of actual systems.

IOMMU Bypass. The easiest practical way to introduce a
malicious device into a system is Thunderbolt, which exposes
the internal PCIe bus on USB-C, allowing for external periph-
erals to emit DMA requests. Additionally, older Thunderbolt
controllers might bypass the IOMMU even if it is enabled
[18]. This means that attached devices have unprotected
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Figure 3: Exemplary network-driver data structure
from OSX and BSD [14]. The malicious driver may
overwrite the m_free() function pointer (which is orig-
inally meant to free ext_buf), gaining arbitrary code
execution.

DMA access, which can be used to take over the system [18].
Intel treats using the IOMMU for Thunderbolt as a feature
and calls it “Kernel DMA Protection” (kDMAp), which is only
available on some systems shipped after 2019 [18, 20]. The
kDMAp feature is configurable through UEFI, but known to
cause compatability issues with some Thunderbolt devices
[20]. For some older systems it is possible to enable it using
third party patching [19]. MacOS on Apple hardware also
has it always enabled [2, 18]. Otherwise, the safest option
is to completely disable the Thunderbolt protocol from the
BIOS.

IOMMU Translation Bypass. IOMMU specifications [1, 10]
allow for disabling IOMMU checks upon the device request
as part of the ATS feature of PCle. The intent of this feature
is to enable performance optimizations by letting the device
handle IOMMU translations by itself [14, p. 9]. This way, a
malicious device may create a DMA request for accessing
any physical address, instead of faithfully following the host-
OS instructions. Starting from Linux 4.20 [26], ATS became
unavailable for “untrusted” devices, a category that, e.g.,
Thunderbolt devices fall into by default. Alternatively, one
can disable the feature in the OS [25].

Subpage Granularity. Another class of exploits abuses the
fact that virtual address mappings are performed on the gran-
ularity of pages. Most operating systems store, e.g., incoming
network packets in buffers that contain the raw packet data
as well as some headers with metadata. When the metadata
memory is placed directly in front of the data, and a driver
decides to map this buffer to the device, the device can ac-
cess the metadata which might contain sensitive data. An
attacker can spoof their device id to control the used driver,
so drivers for any device, present or not, can be exploited.
Older MacOS versions and current FreeBSD versions are still
vulnerable to this attack [14], because the mapped headers
contain overwritable function pointers, as shown in figure 3.
Linux always has these headers in different memory regions,
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but it sometimes allocates these with the general purpose
kernel allocators, leaking all sorts of other data that may
be present from adjacient allocations [14]. The amount of
driver code that needs to be hardened against this is very
large. To deal with this issue, Markuze et al. [15] have build
automated tools to detect these issues in existing Linux dri-
ver code. Through their SPADE (Sub-Page Analysis for DMA
Exposure) tool it is, for example, possible to detect calls inside
the kernel with a potential for generating multiple mappings
for the same page [15, p. 400].

4 MALICIOUS VM

An attacker can use direct device access from within a virtual
machine to compromise the system. Such settings are com-
mon for cloud providers, where virtual machines of different
tenants are collocated. For safety reasons, untrusted guest
systems may only use virtual functions, but not physical
ones. Unfortunately, even virtual functions can be used for
guest-initiated attacks.

EFC and OAM. Network cards are a common use case
for SR-IOV, which also makes them an attractive target for
exploits. Because Ethernet was originally not designed for
sharing a single network card between multiple distrust-
ing partners, there are functions within the protocol and its
extensions that simply are not compatible with this secu-
rity model. A prominent issue that affected many Ethernet
network cards allowed virtual functions, to emit Ethernet
flow control (EFC) packets [21]. These packets are meant to
be sent by a device whose buffers are full, to request the
sender to stop transmitting packets for a requested period
of time. Ethernet is not a connection-oriented protocol and
the link is shared between all virtual functions. Hence, vir-
tual functions can construct a DOS attack on the whole link
by repeatedly sending these packets to all connected MAC
addresses, causing all senders to stop their transmissions. A
similar attack is possible with the Ethernet operations, admin-
istration and maintenance (Ethernet OAM) protocol, which
is supported by most network devices [28]. This protocol
supports a link fault message, causing a receiving network
switch to disconnect the respective host. Once again, a single
virtual machine can use this functionality for a DOS attack
on all other connected VMs. While the EFC problem is fix-
able with firmware updates [21], securing OAM currently
requires to stop using SR-IOV and use a virtualized wrapper
driver in the hypervisor again [28], switching from figure 2
case (2) back to (D.

PCle Error Propagation. In addition to vulnerabilities through
network protocols, device implementers must also avoid DOS
attacks through the PCle protocol itself. For example, the
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“Advanced Error Reporting Capability” feature of PCle de-
scribes a field in the TLP header that may be set to indicate
an error. One subtype of this error is an “Uncorrectable Fatal
Error” If such an error is propagated to the operating system,
it may decide to reset the link, the whole system or perform
some other implementation-defined action [16]. If a virtual
function can be manipulated to send this kind of error to
the PCle root complex, the owning virtual machine gains
DOS capabilities. An example where this problem occurred
were Intel’s 700 Series Ethernet Controllers, as reported in
CVE-2019-0144 [5]. It was later fixed by a firmware update
[4]. Overall, it becomes apparent that PCle devices must be
carefully designed to prevent untrusted drivers, virtual ma-
chines or containers from escalating privileges using these
devices. Although IOMMUs theoretically allow secure shar-
ing of devices by memory isolation, the presented attacks
have shown that the protocols and implementations also
need to enforce the isolation paradigm.

5 MALICIOUS REMOTE SYSTEM

Remote attacks are especially dangerous, and there are sev-
eral know attacks without full mitigations, especially for
older hardware.

Rowhammer. The basic idea of Rowhammer is to intro-
duce bitflips in RAM by forcing the hardware to repeatedly
access the same memory locations. This is typically not a
remote exploit, but Tatar et al. demonstrated in 2018 [24],
that high-speed RDMA networks make remote Rowham-
mer possible. It helps here that DMA bypasses CPU caches,
increasing the possible frequency of RAM accesses. Newer
DRAM standards like DDR5 and software-based approaches
can partially mitigate, but not fully prevent this. The au-
thors demonstrated the technique by crafting an end-to-end
exploit of an RDMA-memcached instance and achieved arbi-
trary remote code execution.

Memcached Rowhammer Exploit. The memory on a DRAM
Module is internally subdivided into rows. When any data
should be read, the row which contains the requested data is
activated and fully loaded into the row buffer. This partially
discharges the capacitors that form the memory cells so they
need to be regularly refreshed. As modern DRAM charge
cells have shrunk to very few atoms, it can, very rarely,
happen that different cells exchange charge due to physical
effects, causing bits in memory to cross a charge threshold
and “flip”. The idea behind the Rowhammer attack is to read
the same rows with a high frequency in order to explicitly
trigger this effect. Because the row buffer caches the last
accessed row, accessing a single row repeatedly is not optimal
for getting a high frequency of discharges. At least two rows
should be accessed alternatingly to bypass this cache effect.
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Figure 4: Double-sided Rowhammer [17, Figure 3]. The
goal is to flip Row i by repeatedly reading from i — 1
and i + 1.

Repeatedly accessing both neighbors of arow i (i.e., i —1 and
i+ 1 as seen in figure 4) significantly raises the likelihood
and reliability of introducing a certain flip in row i. This is
called double-sided Rowhammer. [7, p.17]

In the given example [24], the final memcached exploit
does the following:

(1) Send RDMA packets that read from two specific “ag-
gressor addresses” [24, p. 4] with a high frequency for
a fixed amount of time.

(2) Read out the memcached data (using regular GET) and
see where bit flips have occurred in the data.

(3) Strategically delete and create new memcached en-
tries in order to create headers at a location where an
exploitable bit flip was observed (“memory massag-
ing” [17]). Then add a malicious entry at a location
where pointers from the header will end up pointing
to after a bit flip.

(4) Trigger (hopefully the same) bit flip again by emitting
the same flood of RDMA read requests.

(5) Send memcached requests to trigger the usage of the
forged data in a way that leads to arbitrary writes
through the forged pointers. This can then be used to
escalate to arbitrary code execution.

There are some mitigations against Rowhammer attacks.
On a hardware level, ECC RAM, as it is often used in data cen-
ters, makes flipping bits much harder, though not impossible
[3]. Furthermore, newer generations of DRAM like DDR5 im-
prove the protections against Rowhammer [11, p. 14]. There
are also software-based mitigations like the ALIS alloca-
tor [24], which allocates guard rows around DMA-accessible
DRAM rows.

Cache Side-channel Attacks. Another way of indirectly by-
passing the IOMMU is by using cache side-channel attacks.
They allow an adversary to read otherwise not accessible
data by observing changes in cache behavior. In 2012, Intel in-
troduced Data Direct I/O (DDIO) [12], which is present on the
Xeon E5 and E7 v2 lines of processors [9]. It applies DMA op-
erations in the last level cache (LLC) instead of main memory.
This makes DMA vulnerable to cache side-channel attacks.
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Kurth et al. managed to exploit this by reading out sensitive
data over the network using a PRIME+PROBE attack [12].

Through reverse engineering, the authors have been able
to compute eviction sets, which are a set of addresses that,
for a target address x, evict x from the cache when all writ-
ten to. The target program, RDMA-memcached, only allows
for RDMA accesses relative to an unknown (though page-
aligned) base address. It is therefore necessary to dynamically
probe the target machine in order to compute eviction sets
through observing the results of educated guesses. Once evic-
tion sets for the desired addresses are found, it is possible
to evict a targeted cache line by performing writes to the
eviction set addresses. It also becomes possible to observe
whether the currently loaded cache lines from any eviction
set have changed through timed reads. Cached reads will be
consistently faster, even over RDMA [12, fig. 3].

One attack based on this records the timings of network
packets, specifically the inter-packet times [12]. The exploit
is achieved by sieving the DDIO cache lines for certain evic-
tion patterns that are typical for networking ring buffers.
Once the cache location of the correct ring buffer is found, it
is possible to deduce that a packet has arrived by observing
cache evictions. This enables an attacker to, for example,
approximate the pressed keys in an interactive SSH session,
where arriving packets map to the times between keystrokes
[12].

The aforementioned exploits show that the high through-
put and low latency of RDMA networking make it possible
to exploit vulnerabilities which were formerly restricted to
local adversaries. Therefore, DMA-based devices need to be
better isolated when designing hardware, as the protection
from the IOMMU is insufficient in these cases.

6 CONCLUSION

As direct device pass-through spreads out to production
multi-tenant environments, the importance device security
grows. In this survey, we outlined several cases where IOM-
MUs were not able to guarantee their apparent role. For-
tunately, many mitigations already exist and are deployed
as operating system, device firmware, or BIOS updates. Al-
though, in some cases, like the Rowhammer attack, new
hardware is the only efficient remedy. Nevertheless, experi-
ence demonstrates that IOMMU s are not invincible.

Our intention was to rise awareness of potential secu-
rity issues connected to IOMMU-based isolation for device
and protocol implementors. Implementation bugs can be
addressed by design and test automation tools. Vulnerabil-
ities in specifications can be reduced through verification
processes. But even with all these precautions, physical re-
source sharing must be considered as a potential threat and
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PCle-based connectivity should be handled with similar cau-
tion as other untrusted networks.
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