
Exploiting Bit-level Parallelism in GPGPUs: a Case Study

on KEELOQ Exhaustive Key Search Attack

Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi

Dipartimento di Elettronica e Informazione (DEI)

Politecnico di Milano

Via G. Ponzio 34/5, 20133 Milan, Italy

{agosta,barenghi,pelosi}@elet.polimi.it

Abstract: Graphic Processing Units (GPU) are increasingly popular in the field of
high-performance computing for their ability to provide computational power for mas-
sively parallel problems at a reduced cost. However, the programming model exposed
by the GPGPU software development tools is often insufficient to achieve full per-
formance, and a major rethinking of algorithmic choices is needed. In this paper, we
showcase such an effect on a case study drawn from the cryptography application do-
main. The pervasive use of cryptographic primitives in modern embedded systems is
a growing trend. Small, efficient cryptosystems have been effectively employed to de-
sign and implement keyless password-based access control systems in various wireless
authentication applications. The security margin provided by these lightweight ciphers
should be accurately examined in light of the speed and area constraints imposed by
the target environment. We present a re-design of the ASIC-oriented KEELOQ imple-
mentation to perform efficient exhaustive key search attacks while fitting tightly the
parallel programming model exposed by modern GPUs. Indeed, the bitslicing tech-
nique allows the intrinsic parallelism offered by word-oriented SIMD computations to
be effectively exploited. Through proper adaptation of the algorithm implementation
to a platform radically different from the one it was designed for, we achieved a ×40

speedup in the computation time with respect to a single-core CPU bruteforce attack,
employing only consumer grade hardware. The outstanding speedup obtainable points
to a significant weakening of the cipher security margin, since it proves that anyone
with off-the-shelf hardware is able to circumvent the security measures in place.

1 Introduction

In the last years, Graphics Processing Units (GPUs) have raised wide interest as sources

of computational power for non-graphical applications, due to the availability of program-

ming models such as CUDA and OpenCL that are vastly more accessible to experts of

other domains than graphics rendering APIs (OpenGL and DirectX) [JDOP08]. A major

strength of GPGPU-based platform are their appealing cost-performance figures of merit.

In recent times even in the field of High Performance Computing there have been major

investments to build GPGPU-based supercomputers.

However, there are also factors that hinder the expansion of GPGPU computing, espe-

cially the difficulty of programming efficient applications using the available program-

ming models. Special attention must be placed to tailor the application and its algorithmic

385

385

components to the specific needs of the parallel hardware, e.g. by minimizing control flow

divergence and exposing as much parallelism as possible while minimizing synchroniza-

tion overheads [JDOP08]. In this paper, we show how the use of specialized techniques

can lead to large speedups, thus allowing the GPU to contend on an equal or favorable

base (in terms of computation throughput per euro) with solutions based on CPUs or re-

configurable hardware.

The field of cryptography has been explored since the first GPGPU attempts using graph-

ics rendering APIs [HW07]. Especially, code breaking is attractive [BBAP09, ABSP10,

ABS+09], because it requires vast amounts of computational power. We use as a case

study the KEELOQ algorithm [Mic11], which is used in remote keyless entry systems

(e.g., vehicle doors or building entrances) or as authentication mechanism in wireless pro-

tocols.

Remote keyless entry systems are based on a password based access control mechanism

realized through the unidirectional transmission between a secure token (encoder) and a

receiver (decoder). Unauthorized accesses are possible when the encoded password (ac-

cess code) is fixed or it is derived from a relatively low number of possible combinations.

In order to prevent this kind of threat, KEELOQ is employed in the so-called rolling code

(also known as hopping code) mode of operation.

The basic idea is to have the access code change each time it is used through picking it

from a sequence of codewords that cannot be predicted even knowing a very large number

of previously used ones. The generation of such a sequence is based on the definition of

both a uni-directional command transfer protocol and an encryption engine to provide the

codewords to be transmitted.

From an operational point of view, the information transmitted by the encoder is composed

by two parts: the code-hopping part (which changes each time the encoder is activated)

and a second un-encrypted part, principally containing the encoder serial number, used

for identifying the transmitter at a receiving decoder. To this end, the receiver decrypts

the codeword, and compares the recovered counter value with its internal one, and the

recovered serial number with the one received along with the codeword. If both values

match, the token is granted access.

Algorithms such as KEELOQ are designed for dedicated hardware implementation, since

the target devices (remote controllers) are manufactured as very low cost ASICs. So, their

direct implementation in software has much lower performances – which, in principle,

makes it easier to carry out an attack using configurable hardware such as FPGAs. How-

ever, we show how the introduction of a level of parallelism not commonly seen in GPGPU

algorithm design, bit-level parallelism, can lead to a ×40 speedup over a CPU core.

The rest of this paper is organized as follows. Section 2 introduces the KEELOQ cipher,

while Section 3 reviews the characteristics of the NVIDIA GPU families target in this

study, as well as the programming model implemented by the CUDA development tools.

Section 4 describes the design of our solution and Section 5 provides the experimental

evaluation on the case study. Finally, Section 6 outlines the most closely related works,

while Section 7 draws some conclusions.

386

386

(a) Encryption (b) Decryption

Figure 1: KEELOQ Cipher

2 The KEELOQ Cipher

KEELOQ is the most scrutinized encryption engine used in remote keyless entry systems.

It is a proprietary hardware-dedicated block cipher designed as a pair of Feedback Shift

Registers (FSR) coupled with a Non Linear function (NL). Figure 1 shows the internal

structure of the KEELOQ cipher: the secret key is stored in the red register on the left

and is at most 64-bit wide. The key register is a FSR, and the key is mixed with the

output of the state one bit per clock cycle. The 32-bit long Non Linear Feedback Shift

Register (NLFSR) on the right hand side constitutes the nonlinear component of the cipher

providing its effective security margin. Five bits of the NLFSR are combined together by

means of a non linear function described by an equation over Z2 among five bits of the

status register. The non linear function outputs a single bit per clock cycle, which is added

to the aforementioned key bit and to b16 and b0, and employed as the feedback bit of the

NLFSR. To encrypt a 32-bit plaintext block, the NLFSR is initialized with the value of the

plaintext, and subsequently the entire system is clocked 528 times. After the 528 updates

of both registers, the content of the NLFSR is the final ciphertext.

The most common mode of operation for KEELOQ is the so-called hopping code, in a sce-

nario where a remote encoder transmits a codeword to the authorizing decoder (receiver).

This mode of operation involves encrypting a plaintext built out of a counter and a unique

identifier (ID) of the encoding device. Every time a new 32-bit codeword (i.e. a ciphertext

block) must be generated, the counter is incremented and the new plaintext is encrypted.

Then, the codeword is transmitted along with the encoding device ID. The secret 64-bit

key of any encoder is generated through the decoder engine as a pair of 32-bit codewords.

Such a procedure implies that the decoder is able to generate the secret keys for a number

387

387

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

MT issue MT issue

I cache

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

L1 Data Cache

MultiprocessorStream

L2 Cache

Figure 2: Overview of the NVIDIA GTX470 (Fermi) streaming processors architecture: each stream
multiprocessor (SM) contains 32 streaming processors (SP), plus four special function units (SFU).
A configurable L1 cache/shared memory is local to each stream multiprocessor, while L2 cache is
shared among the entire set of SM. Up to 16 SM can be present in a single unit.

of encoders starting from: (i) an embedded 64-bit master key (which is fixed by the manu-

facturer of the keyless entry system), (ii) the ID of the encoding device, (iii) and a random

seed composed by 32, 48 or 60 bits.

A potential attacker may retrieve the master key from the decoding device (receiver) and

eavesdrop the ID of an encoder when it is transmitted along with a codeword. Therefore,

the use of a secret random seed in the secret key generation phase avoid the leakage of the

secret key of the targeted encoder.

A brute-forcing attack aimed at recovering the secret key of the transmitting encoder (EK)

employs two consecutively transmitted codewords, each of which is bound to the encoder

ID. The attacker computes a candidate 64-bit value for EK through guessing on the bits of

the random seed, while the value of the remaining part of the secret key is easily derived

from the specification of the key generation protocol. Subsequently, she checks the ID

value resulting from the decryption of the first codeword, and whether a match is found,

the output derived from the decryption of the second codeword (employing the same EK)

is used as a confirmatory step.

3 General Purpose Computing with GPUs

The GPGPU devices targeted in this work are based on the NVIDIA GT200 and Fermi

architectures. Figure 2 shows a sketch of the NVIDIA GTX470 (Fermi) streaming pro-

cessor array. A streaming multiprocessor (SM) contains 32 streaming processors, four

special functional units and a multithreaded instruction issue unit (respectively indicated

388

388

as SP, SFU and MT-Issue in Figure 2. This is a fourfold increase over the GT200 SMs. A

streaming multiprocessor concurrently executes two groups of 32 threads called warps, for

a total of 64 concurrent threads. Since each thread in a warp has its own control flow, their

execution paths may diverge due to the independent evaluation of conditional statements;

when this happens, the warp serially executes each path. Each multiprocessor executes

warps much like the Single Instruction Multiple Data (SIMD) paradigm, as every thread

is assigned to a different SP and every active thread executes the same instruction on dif-

ferent data. Finally, the Fermi architecture includes both L1 and L2 cache memories, with

the L1 configurable between cache and shared memory behavior and shared by the SPs in

a single SM, and the L2 shared among all SMs in the device. The earlier GT200 only has

a fast shared memory shared within each SM.

GPGPU computing requires the programmer to manage a heterogeneous system (CPU

host plus GPU device) as well as to handle the massive parallelism exposed by the GPU

hardware. The Compute Unified Device Architecture (CUDA) [NBGS08, NVI08], pro-

posed by NVIDIA for its graphics processors starting with the G80 series [ELM08], ex-

poses a programming model that integrates host and GPU code in the same C++ source

files. On the GPU device side, a Single Instruction, Multiple Threads (SIMT) program-

ming model is exposed, where a single kernel is executed by a user-specified number of

threads. Every CUDA kernel is explicitly invoked by host code and executed by the de-

vice, while the host-side code continues the execution asynchronously after instantiating

the kernel. On the host side, a specific synchronizing function call is provided to wait for

the completion of the active asynchronous kernel computation.

The CUDA programming model abstracts the actual parallelism implemented by the hard-

ware architecture, providing the concepts of block and thread to express concurrency in

algorithms. A block captures the notion of a group of concurrent threads. Blocks are

required to execute independently, so that it has to be possible to execute them in any

order (in parallel or in sequence). Therefore, the synchronization primitives semantically

act only among threads belonging to the same block. Intra-block communications among

threads use the logical shared memory associated with that block. Since the architecture

does not provide support for message-passing, threads belonging to different blocks must

communicate through global memory.

Note that while the OpenCL language and API [Khr11] are gaining momentum as the

industry standard in programming heterogeneous platforms composed of host CPUs and

programmable accelerators, including GPGPUs, the implementations provided are still

not mature enough to compete, on NVIDIA devices, with the vendor-specific software

development tools. However, the programming model provided in OpenCL is, as far as

GPGPU programming goes, essentially based on the same principles as the SIMT model

exposed in CUDA, so the techniques and results shown in this work can be easily extended

to OpenCL-driven devices.

389

389

4 Adaptation to Parallel Architectures

Many-core architectures offer large amount of parallel computing power by supplying the

developer with hundreds of processing cores, each endowed with limited resources. In

GPGPU, key resource limitations include:

Control flow divergence as multiple divergent control flows can be handled safely from

the point of view of functionality, but with major performance losses as parallelism is

inhibited along the different control flows – essentially, divergent flows of control are

serialized, regardless of the data dependences among the divergent threads (which may

well be non-existent). This limitation is due to the hardware design of GPGPU, where the

processors in a multiprocessor unit are bound to the same program counter.

Local memory availability as a limited amount of very fast local memory must be shared

among numerous processing elements. While the sharing allows fast communication

among the processing elements, the local memory is much more useful when used in a

read-only way, or partitioned for local use by each processing element, since true shared

accesses still require costly synchronization operations, and are often difficult to code.

To exploit such parallel computing power, the critical issue is to be able to express a given

application or algorithm in a form amenable to parallel execution on the target device. The

literature reports three main sources of parallelism, which can be exploited with different

degrees of success on various types of parallel architectures:

Thread-level parallelism is obtained when two or more tasks (regions of code with in-

dependent control flow) can be executed in parallel with few or no data dependencies (in

the former case, synchronizations will be needed within each task, in the latter the syn-

chronization point will be the end of the tasks). Thread-level parallelism is exposed by

complex applications, where multiple independent tasks are performed, and is best ex-

ploited on symmetric multiprocessors, where each processor is endowed with sufficient

resources to executed its assigned task. It is not suited for GPGPUs, since control flow

divergence is a major factor for performance reduction in these architectures.

Loop-level parallelism is found in parallel loop constructs, where each iteration of the

loop is data-independent from the others (or has limited synchronization requirements).

Loop level parallelism is an excellent fit for vector processors, SIMD processors and GPG-

PUs, since control is fixed and identical for all iterations (barring nested conditionals,

which can often be transformed to predicated code).

Instruction-level parallelism is achieved at the finest of the three common granularities,

where independent instructions can be parallelized. It is commonly exploited by super-

scalar and Very Long Instruction Word architectures, but, like Thread-level parallelism,

it is unsuitable for GPGPU due to the need to executed different instructions in parallel,

rather than the same instruction of different data.

It would therefore seem that Loop-level parallelism is the only viable choice for GPGPUs,

but this model is not exposed by many types of codes. A typical example are encryp-

tion primitives designed for hardware implementation. In this case, parallelism is rarely

available, but this is not an issue, since the implementation is performed through dedi-

cated ASIC, and may be even considered a benefit, since software implementations are

390

390

#define NLF 0x3A5C742E

#define bit(x,n) (((x)>>(n))&1)

#define g5(x,a,b,c,d,e) \

(bit(x,a)+bit(x,b)*2+bit(x,c)*4+bit(x,d)*8+bit(x,e)*16)

uint32_t KeeLoq_Decrypt (uint32_t data, uint64_t key){

uint32_t x=data, r;

for (r=0; r<528; r++)

x= (x<<1)^bit(x,31)^bit(x,15)^(u32)bit(key,(15-r)&63)

^bit(NLF,g5(x,0,8,19,25,30));

return x;

}

Figure 3: Plain C KEELOQ implementation [kee11].

often aimed at breaking the encryption through brute force attacks. The usage of GPGPUs

to perform brute force attacks is well-documented, but is often limited to mere juxta-

position of several encryption operations with different keys. However, it is possible to

push the parallelization further, by introducing an entirely different level of parallelism,

Bit-level parallelism. Here, the goal is to parallelize operations at the single bit level,

thereby obtaining remarkably uniform parallel operations. This technique is know as bit-

slicing [Bih97].

Bitslicing refers to a software technique of using a general purpose CPU to implement

Single Instruction Multiple Data (SIMD) operations. The strategy consists of packing the

bit values belonging to different operands within a single register and of using general-

purpose arithmetic/logic instructions as specialized virtual processing elements designed

for SIMD operations at bit level. Most of the symmetric cryptographic primitives are

designed to process input data at bit level. Therefore, the software implementations of

such algorithms on not-specialized architectures may greatly benefit from the application

of the bit-slicing strategy as long as the underlying hardware resources in terms of number

of registers are easily available.

Figure 3 reports a public domain, plain C implementation of KEELOQ from [kee11], while

Figure 4 reports our bitsliced CUDA implementation.

In the case of KEELOQ breaking, the bitslicing technique is employed through the decryp-

tion of the same 32-bit value using all possible keys. In the original code, operations on

individual bits of the input are performed by means of shift and mask operations. In the

optimized code, all operations work on full 32-bit words. To this end, the 32-bit input data

is expanded (on the CPU host side) to a 32-word array, bitsl_data_in, where the i-th

word in the array is 0xFFFFFFFF if the i-th bit of the original text is set, or 0x00000000

otherwise. Input data is identical for each thread, but the same is not true for the key and

decrypted output, which are stored separately for each of the nthreads × nblocks threads.

The bitsliced keys (each of 64 bits) are generated in blocks of 32 keys, starting from zero

and progressively increasing its value. Each 64-word array bitsl_key[bI][tI] generated

in this way has the five last words (corresponding to the lower bits of the original keys)

always equal to the encoding of the same 32 values, which are added to a “base” key value.

The base key value, in turn, increases in steps of 32. Thus, the number of parallel encryp-

391

391

__device__ uint32_t bitsl_data_in[32];

__device__ uint32_t bitsl_data_out[NBLOCKS][NTHREADS][32];

__device__ uint32_t bitsl_key[NBLOCKS][NTHREADS][64];

__global__ void KeeLoq_Decrypt_Bitslice() {

int bI = blockIdx.x, tI = threadIdx.x;

uint32_t data[32];

#pragma unroll 32

for (int j=0;j<32;j++) data[j]=bitsl_data_in[j];

uint32_t key_r, nlf, rs_data;

for (int r=0; r<528; r++) {

key_r = bitsl_key[bI][tI][(15 - r) & 0x3F];

nlf = NonLinearFunction(data, 0, 8, 19, 25, 30);

rs_data = data[31] ^ data[15] ^ key_r ^ nlf;

for (int i=31; i>0; i--) data[i] = data[i - 1];

data[0] = rs_data;

}

#pragma unroll 32

for (int j=0;j<32;j++) bitsl_data_out[bI][tI][j]=data[j];

}

Figure 4: Bitsliced KEELOQ CUDA kernel. The plaintext, key and ciphertext are stored in the GPU
main memory at the beginning of the kernel execution, then copied to registers during the kernel
itself.

tion runs is 32 per thread, as shown by the kernel in Figure 4, with configurable number

nthreads of threads per each CUDA block. Overall, a grand total of 32×nthreads×nblocks

encryption runs are performed at every time by the GPU. It is worth noting that the shared

memory is not used, since the Fermi architecture provides a large number of registers. A

full analysis of the tradeoffs will be shown in the next section.

5 Experimental Results

We implemented a fully bitsliced version of the KEELOQ cipher both employing the

CUDA programming model and pure C. The pure C version has been run on the host

CPU to provide a reference implementation as far as throughput goes. The running envi-

ronment where the bruteforcing speed tests were performed is an Intel Core i7 920 based

system with 12Gb DDR3 DRAM, running Gentoo Linux AMD64. All the GPU binaries

were compiled employing nvcc 4.0 from nVidia CUDA toolkit 4.0, while the CPU base-

line versions were compiled with gcc 4.4.6. The bitsliced implementation of the cipher

has been tested on two different GPUs, which have been mounted as the only device on the

16 lane PCI-Express 2.0 port available on the motherboard in order to test the difference

in performances. The first GPU card is a GeForce GTX 260 equipped with 894 Mb of

GDDR5 video RAM and 192 CUDA cores, while the second card employed for testing

is a GeForce GTX 470 with 448 CUDA cores and 1280 MB of GDDR5 video RAM. An

important step in the evaluation of the performances of our bitsliced implementation of

392

392

0

2

4

6

8

10

12

14

16

18

20

32 64 128 256 384 512

T
h
ro

u
g
h
p
u
t
[M

k
e
y
s
/s

]

Threads per block

256 blocks
128 blocks
64 blocks
32 blocks
16 blocks
8 blocks

Figure 5: Throughput of the bitsliced implementation of the KEELOQ breaker on the Geforce
GTX470 card, related to the number of threads per block and the number of blocks per CUDA
kernel invocation

KEELOQ on CUDA is the exploration of two parameters: the number of threads compos-

ing a CUDA block and the number of blocks constituting a CUDA kernel call. The first

parameter regulates the level of register pressure on the shared register file of the streaming

multiprocessor and the number of warps into which a CUDA block is split. Since the basic

execution unit of a streaming multiprocessor is a single warp, the choice of the number of

threads should consider only multiples of 32 to achieve the best fit. The level of regis-

ter pressure on the Fermi architecture is dictated by the fact that the 32768 registers are

shared among the contexts of up to 3 different blocks which can be scheduled on the same

streaming multiprocessor. In addition to this, the SMP issue unit of the Fermi architecture

is able to dual issue warps, thus it is necessary to keep twice the contexts in the registers.

Combining these data with the fact that a single bitsliced KEELOQ breaking thread em-

ploys at most 45 registers, we obtain a SMP register pressure which can be computed as

270×nthreads. The second parameter to be chosen regulates the level of global computa-

tional load imposed on the GPU. The main point in choosing this parameter is provide at

least enough computations to the GPU so that no SMPs remain idle. Moreover, since the

SMP issue unit is able to interleave different blocks in order to hide global memory access

latencies, it is wise to provide extra workload to the GPU to exploit this feature. These

two considerations pointed to the creation of a CUDA kernel as large as possible with

architectures up to the GT200, since the static scheduling of the blocks on the SMPs did

not account for extra time overhead. With the introduction of a new scheduler for multiple

kernels on the Fermi architecture, this consideration may not be still valid. Figure 5 reports

the results of the exploration of the implementation parameter space: coherently with the

previous considerations, the best solution is reached with 128 threads per block (34560

393

393

Seed Single Core Four Cores Single GPU

Length Core i7 920 [h] Core i7 920 [h] GTX260 [h] GTX470 [h]

32 2.6 0.73 0.14 0.04

48 1.73 10
5

4.84 10
4

9.45 10
3

3.98 10
3

60 7.08 10
8

1.98 10
8

3.81 10
7

1.63 10
7

Throughput [key/s] 4.51 10
5

1.61 10
6

8.27 10
6

1.96 10
7

Table 1: Expected timings and measured throughput for the exhaustive search of the KEELOQ key
generation seed.

employed registers), when the number of blocks per SMP is enough to fill all the issue

queues completely. Raising further the number of blocks per kernel leads to a decrease in

performances which can be ascribed to the extra context switching effort imposed on the

new scheduler. As expected also raising further the number of threads per block leads to a

significant decrease in throughput due to the hindering of context switches caused by the

frequent register spills and fills. An analogous exploration campaign has been lead also

on the GTX260 card, yielding 64 threads per block as the best performing choice of the

parameter. This choice is coherent with the fact that the shared register file of the GTX260

is 16384 since 64 threads per block allow the issue unit of the streaming multiprocessor to

perform the context switching between the three blocks in queue without the need to spill

part of the register file to the global memory. In this case, however, increasing arbitrar-

ily the number of blocks per kernel did not induce any performance penalty as expected

from the GT200 architecture. After choosing the optimal number of threads per block

and blocks per kernel invocation, we evaluate the effective time needed in order to break

the KEELOQ key generation mechanism, with respect to the length of the employed seed.

Table 1 reports the expected running times of an attack, depending on the chosen platform

to perform the exhaustive search. Taking as a reference value the throughput obtained

by the bitsliced implementation of KEELOQ running on the host CPU (419430 keys/s),

we notice that employing a 32 bit seed for the key generation does not yield a sufficient

security margin, as the remote key can be recovered in 3 hours of computation. The bit-

sliced implementations running on the GTX260 and GTX470 GPUs achieve a ×20.5 and

a ×43.5 speedup respectively, allowing a possible attacker to breach even the security of

the 48 bit seed key generation mechanism in a few months. Since the exhaustive search

can be split over multiple GPUs, it is possible to lower the attack time to a single week,

while keeping the cost envelope of the equipment below $10000, as this budget allows an

attacker to build a 20 GTX 470 cluster with the current market prices.

6 Related Work

The first cryptanalysis of KEELOQ is presented in [Bog07]. The attack is based on the

slide technique and a linear approximation of the non-linear Boolean function used in the

cryptographic engine. The attack requires 252 encryptions, 16GB of storage and the entire

394

394

codebook, i.e., 232 known plaintexts. In [IKD+08] the authors introduce a specific key

recovery attack against KEELOQ which combines the technique of slide attacks with a

novel meet-in-the-middle approach. Their method requires 216 chosen plaintexts and has

a time complexity of 244.5 encryptions which results in about two days of computation

employing 50 dual core CPUs at the cost of approximately e10000. The widely adoption

of KEELOQ in practice, paved the way to side-channel analysis as a further viable option

for attacking chips that implement it. In [EKM+08] the first successful DPA and DEMA

attacks on KEELOQ implementations applied to both Identify Friend or Foe (IFF) and

code hopping devices, are presented. The attack is prevented if a 60-bit seed value, with

good random properties, is employed for the key derivation. Nevertheless, considering the

other commonly implemented options of the cipher, the authors reported how to reveal a

manufacturer key from a receiver using a few 1000 power traces, and how to recover the

device key of a remote control with as few as 10 traces. In [CBW08] the authors apply

algebraic techniques to cryptanalyze the cipher. This attack employs the entire codebook,

2
27 encryptions and has an estimated success probability of 44%. The results of a brute-

force attack, implemented on the FPGA-based code-breaker COPACOBANA, are reported

in [NK09]. The authors claim the secret key recovery of a remote control in less than 0.5

seconds if a 32-bit seed is used and in less than 6 hours in case of a 48-bit seed. The

case of a 60-bit seed needs in the worst case about 1011 days at the cost of approximately

$10000. However, the technical effort needed to build an FPGA-based code-breaker, and

even more one the size of the COPACOBANA, is much greater than that needed to carry

out a GPU-based attack. Moreover, while FPGA-based code-breakers require specialized

hardware, the GPU-based attack can benefit of a large installed base of CUDA-enabled

devices, allowing distributed attacks to be carried out by groups of users, or by botnets.

7 Conclusions

In this paper, we report our experience with bit-level parallelism in GPGPU programming,

using as a case study the brute force attack on the KEELOQ cipher. We proposed a full

redesign of the computation strategy from the original hardware implementation-oriented

algorithm to reach high performance in parallel software, by exploiting SIMD techniques

down to the bit level. We report a speedup of ×40 speedup in the computation time with

respect to a CPU brute force attack, even though only consumer-grade hardware is used.

References

[ABS+09] Giovanni Agosta, Alessandro Barenghi, Fabrizio De Santis, Andrea Di Biagio, and
Gerardo Pelosi. Fast Disk Encryption through GPGPU Acceleration. In PDCAT, pages
102–109. IEEE Computer Society, 2009.

[ABSP10] Giovanni Agosta, Alessandro Barenghi, Fabrizio De Santis, and Gerardo Pelosi. Record
Setting Software Implementation of DES Using CUDA. In Shahram Latifi, editor,
ITNG, pages 748–755. IEEE Computer Society, 2010.

395

395

[BBAP09] Andrea Di Biagio, Alessandro Barenghi, Giovanni Agosta, and Gerardo Pelosi. Design
of a parallel AES for graphics hardware using the CUDA framework. In IPDPS, pages
1–8. IEEE, 2009.

[Bih97] Eli Biham. A Fast New DES Implementation in Software. In Eli Biham, editor, FSE,
volume 1267 of Lecture Notes in Computer Science, pages 260–272. Springer, 1997.

[Bog07] Andrey Bogdanov. Linear Slide Attacks on the KeeLoq Block Cipher. In Dingyi Pei,
Moti Yung, Dongdai Lin, and Chuankun Wu, editors, Inscrypt, volume 4990 of Lecture
Notes in Computer Science, pages 66–80. Springer, 2007.

[CBW08] Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and Slide Attacks
on KeeLoq. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer
Science, pages 97–115. Springer, 2008.

[EKM+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salma-
sizadeh, and Mohammad T. Manzuri Shalmani. On the Power of Power Analysis in
the Real World: A Complete Break of the KeeLoq Code Hopping Scheme. 5157:203–
220, 2008.

[ELM08] Stuart Oberman Erik Lindholm, John Nickolls and John Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. Micro, IEEE, 28(2):39–55, 2008.

[HW07] Owen Harrison and John Waldron. AES Encryption Implementation and Analysis on
Commodity Graphics Processing Units. In Pascal Paillier and Ingrid Verbauwhede,
editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 209–226.
Springer, 2007.

[IKD+08] Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart Preneel. A
Practical Attack on KeeLoq. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[JDOP08] David Luebke Simon Green John E. Stone John D. Owens, Mike Houston and James C.
Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[kee11] C KEELOQ Implementation. [On line] http://cryptolib.com/ciphers/
keeloq/KeeLoq.c. December 2011.

[Khr11] Khronos OpenCL Working Group. OpenCL–The Open Standard for Parallel Pro-
gramming of Heterogeneous Systems. [On line] http://www.khronos.org/
opencl/, January 2011.

[Mic11] Microchip Technology Inc. Security and Authentication Design Center–KEELOQ c�
3 Development Kit. [On line] http://www.microchip.com/stellent/

idcplg?IdcService=SS_GET_PAGE&nodeId=2074, December 2011.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro-
gramming with CUDA. ACM Queue, 6(2):40–53, March 2008.

[NK09] Martin Novotny and Timo Kasper. Cryptanalysis of KeeLoq with COPACOBANA.
In Workshop on Special Purpose Hardware for Attacking Cryptographic Systems
(SHARCS’09), 2009.

[NVI08] NVIDIA Corporation. CUDA Technology. [On line] http://www.nvidia.com/
CUDA, September 2008.

396

396

