
MERCURY: User Centric Device
and Service Processing

Birgitta König-Ries, Kobkaew Opasjumruskit
Institute for Computer Science, Friedrich-Schiller-University Jena
Birgitta.Koenig-Ries, Kobkaew.Opasjumruskit @uni-jena.de

Andreas Nauerz, Martin Welsch
IBM Germany Research and Development

Andreas.Nauerz, Martin.Welsch @de.ibm.com

1 Introduction

Mobile devices are everywhere. In our personal environment we own and utilize a het-
erogeneous infrastructure of simple sensors, actuators and services. While there are com-
pelling scenarios how users could benefit from an integration of all these devices into
one coherent system [GT09] and while it is possible to realize dedicated scenarios with
today’s technology, existing solutions are not generic, but rather geared towards special-
ized scenarios. Even worse, in order to take advantage of these solutions, users need
significant IT knowledge. They are thus not accessible to the average, non-IT user.
MERCURY, a joint project of the Institute of Computer Science at FSU Jena and the
IBM Deutschland Research & Development GmbH in Boeblingen, aims at addressing
both issues. In the remainder of this paper, based on a concrete example scenario, we
will identify requirements to such a solution and will check in how far they are met by
the most closely related existing approaches. From this, we will derive a system architec-
ture to address current shortcomings.

2 Scenario, Requirements and Related Work

Fundamentally, MERCURY is based on the idea of the Web of Things [MF10] an inte-
gration of smart things found in the physical world (e.g., RFID, wireless sensor net-
works) with the cyberworld based on web protocols. [GT09] shows first examples of
implementing this idea, but also lists a number of important challenges to overcome,
some of which will be addressed in the following. Let us consider the following sce-
nario: Bob plans to go jogging in the mornings with his friend Jim. However, if it is
raining, they will visit the gym in the afternoon instead. MERCURY will offer Bob an
easy-to-use interface to specify these preferences with appropriate sensors and actuators.
To get started, Bob will ask MERCURY to identify rain sensors. MERCURY might
return a personalized and context-dependent choice of such sensors: The rain gauge near
his house, an online weather forecast, the API of the national weather service, etc. The
system will also return non-functional properties of sensors like costs, availability, and
precision.

112



Table 1 Requirements, existing approaches and components of MERCURY

Requirement Related Work MERCURY compo-
nent

User Interface and
User Model

Yahoo!Pipes1 , IBM Mashup Center2,
SensorMap3 ,Minerva Portals4

Mashup Builder, User
Management

Descriptions and
Discovery of
Sensors, Services
and Actuators

W3C Incubator Working Group on
Semantic Sensors5, Sensorpedia6
[GR10]

Sensor/ Actuator Man-
agement, Sensor/ Ser-
vice Discovery

Rights Manage-
ment

Google Latitude7, Foursquare8, Face-
book places9, ConServ [HRH09]

User Management

Sensor Integration GSN10, SenseWeb11 Middleware

Bob will choose the most appropriate sensor (or let the system choose automatically
based on his preferences) and will combine this with his alarm clock, which will be set
back an hour if it is raining in the early morning. Also, MERCURY will access the cal-
endars of both Jim and Bob and reserve a gym event at an appropriate time. When Bob
gets up, the system will display this information on displays available in his house.
Meanwhile, Jim will be informed about the changed plan via SMS.

In order to allow non-IT users to take advantage of the benefits of sensor and actuator
integration and to realize scenarios like the one described above, MERCURY will need
to meet a number of requirements. In the following, we discuss these requirements and
compare them with what is already offered by the most closely related existing ap-
proaches. Table 1 summarizes our findings and also provides the references to the ap-
proaches mentioned in the text. It also identifies the components of the MERCURY
architecture responsible for tackling the respective requirements. These components will
be explained in more detail in the next section.

User Interface. MERCURY will need an easy-to-use interface. It should be possible for
users with no programming experience to combine sensors, services, and actuators and
to easily specify even complex conditions for their connection. Portal platforms and
mashup builders like IBM WebSphere Portal, Yahoo!Pipes and the IBM Mashup Center
offer a good basis to achieve this goal. However, they focus on (coarse-granular) ser-

1 http://pipes.yahoo.com/pipes/docs?doc=editor
2 http://www-01.ibm.com/software/info/mashup-center/
3 http://atom.research.microsoft.com/sensewebv3/sensormap/
4 http://www.minerva-portals.de/
5 http://www.w3.org/2005/Incubator/ssn/wiki/Incubator Report
6 http://www.sensorpedia.com/about.html
7 http://www.google.com/mobile/latitude/
8 https://foursquare.com/
9 http://www.facebook.com/about/location
10 http://www.swiss-experiment.ch/index.php/GSN:Home
11 http : //research.microsof t.com/pubs/75857/michel icde09Demo.pdf.

113



vices rather than (fine-granular) sensors and actuators. SensorMap on the other hand
focuses on geographic mash-ups mostly and does not allow for arbitrary wiring of de-
vices and services.

User Model. Sophisticated user models that reflect users’ interests and preferences allow
tailoring the system to better satisfy users’ needs. Here, we can build on our own previ-
ous work within the MINERVA project.

Descriptions and Discovery of Sensors, Services and Actuators. In order to be dis-
coverable, the functional and non-functional properties of sensors, services, and actua-
tors will need to be described in a machine-interpretable manner and appropriate match-
ing algorithms will need to be implemented. Recently, the W3C Incubator Working
Group on Semantic Sensors has developed ontologies for describing sensors. These
ontologies allow classification and reasoning on the capabilities and measurements of
sensors and the provenance of measurements. They describe individual sensors as well
as reasoning about the connection of a number of sensors as a macroinstrument. An
example for the usage is the Semantic Sensor Web [SHS08]. It is an approach for anno-
tating sensor data with spatial, temporal, and thematic semantic metadata. While this
standardization effort provides an excellent basis, it does not yet completely solve the
problem of scalability (i.e., at what level of granularity to describe sensors and how to
deal with potentially huge amounts of these sensors). Scalability will be a major issue
when it comes to discoverability of sensors as the existing heavy-weight matchmaking
algorithms developed in the context of semantic web services will not scale to this
amount of devices. Another question is where sensor repository and the descriptions
within them will come from. A first attempt at crowdsourcing this task is Sensorpedia, a
Web service for social networking. But, instead of connecting people, it connects sensors
with users and applications. It permits users to publish, subscribe to, search for, connect
to, and view all types of sensor information. A Sensorpedia-like interface extended by
machine-interpretable descriptions in the background could be a part of the user interface
of MERCURY.

Rights Management. MERCURY shall support sharing of sensors and actuators among
users with a customizable level of detail. It thus needs a sophisticated and user-friendly
rights management that allows users to control which sensor readings they are willing to
share with whom at which level of granularity and which actuators they want to make
accessible by whom. Rights management might even depend on certain metrics like a
user’s current location or the current date or time. Nowadays, there are a number of
services for sharing location data at different levels of detail with different user groups,
such as, Google Latitude, Foursquare and Facebook places. These approaches can be
used as good (or bad) examples of rights management concerning sensor data. ConServ
is a more general approach which presented a lifecycle for web-based context manage-
ment services (WCXMS) and provided details of an example implementation. By pro-
viding context as a Service (CXaaS), WCXMS enables the sharing of context data be-
tween applications. Thus, each application can access other applications’ context data
with little or no interconnecting bridges while giving the user full control about the con-
text shared. ConServ has the potential to increase the number of context-aware applica-
tions available to users while still providing the user with authority over their context

114



data. For MERCURY, we can follow the general idea of ConServ and extend it with
respect to different sensors types and usability by non-IT users.

Sensor Integration. Various types of sensors, services, and actuators need to be in-
cluded in the system with as little effort as possible. To achieve this, heterogeneity be-
tween these different types has to be overcome. Another important factor is the need for
scalability. MERCURY will have to deal with individual sensors as well as with entire
sensor networks and incorporate a potentially huge number of sensors and actuators.
GSN, the Global Sensor Network, is one attempt to overcome the heterogeneity of sen-
sors and to offer declarative access to individual sensor or entire sensor networks. It is a
middleware designed to facilitate the deployment and programming of sensor networks.
It takes data, stores it into a database and provides a web-based query interface. It is
completely generalized and able to handle sensors of all types. This hides the complexity
of connecting to a sensor network and allows the developer to focus only on high-level
application logic. Another attempt to ease sensor integration is Microsoft SenseWeb. It
allows developing sensing applications that use the shared sensing resources and its
sensor querying and tasking mechanisms. SensorMap is an application that mashes up
sensor data from SenseWeb on a map interface, and provides interactive tools to selec-
tively query sensors and visualize data, along with authenticated access to manage sen-
sors. We are currently investigating whether GSN or SenseWeb meet all of our require-
ments and could be used as a basis for MERCURY.

3 System Architecture

The MERCURY architecture is depicted in Figure 1. On the client side, a Sen-
sor/Actuator Management UI allows the user to register his devices with the system in
order to publish their descriptions and to assign them with access rights. The information
will be propagated to the User Management and Sensor/Service Discovery components.
The Runtime UI is responsible for displaying events and the status of defined pipelines to
the user. Finally, the Portal or Mashup Builder allows the user to select and combine
devices. The results of this process are transmitted to the Execution Environment.
In the bottom part of the architecture, sensors and actuators are accessible either indi-
vidually or as a network via Gateway components. These help to overcome technical
heterogeneity. Gateways are also responsible for publishing sensor and actuator descrip-
tions in the Sensor/Service Discovery.
At the heart of the system is a middleware layer, which will be realized as a cloud appli-
cation. It consists of a User Management component that stores user models (expertise,
preferences, etc.) and access rights defined for devices and services. The Sensor/Service
Discovery module manages the description repository and performs matchmaking of
requests from the Mashup Builder and descriptions. The Execution Environment obtains
the script-like results of the Mashup Builder before it directly accesses sensors and ac-
tuators via aMiddleware component and services.

115



Figure 1: The architecture of MERCURY

4 Summary

In this paper, we have described the vision of the MERCURY project to provide seam-
less, user-friendly integration of sensors, actuators, and services. We have introduced a
motivating scenario and reviewed similar projects and possible functional modules for
our solution. Currently, we are developing a prototypical implementation which will
then be evaluated in user studies and will gradually be extended to address the open
research questions in particular with respect to a non-expert user interface, scalable sen-
sor and actuator discovery and exploitation of context information.

References

[BKRHS11] Fedor Bakalov, Birgitta König-Ries, Tobias Hennig, and Gabriele Schade. Usability
Study of a Semantic User Model Visualization for Social Networks, 2011.

[GT09] Dominique Guinard. Towards the web of things: Web mashups for embedded de-
vices. In Proceedings of WWW 2009. ACM.

[GR10] Bryan Gorman and David Resseguie. Final Report: Sensorpedia Phases 1 and 2.
Technical report, 2010.

[HRH09] Gearoid Hynes, Vinny Reynolds, and Manfred Hauswirth. A Context Lifecycle For
Web-Based Context Management Services. In Proceedings of the 4th European Con-
ference on Smart Sensing and Context (EuroSSC), 2009.

[MF10] Friedemann Mattern and Christian Floerkemeier. From the Internet of Computers to the
Internet of Things, volume 6462 of Lecture Notes in Computer Science. Springer,2010.

[SHS08] Amit Sheth, Cory Henson, and Satya Sahoo. Semantic Sensor Web. In IEEE Internet
Computing, pages 78–83, 2008.

116


