
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 79

A Primer on Counterexample Guided Abstraction

Refinement of Product-Line Behavioural Models

Maxime Cordy1, Bruno Dawagne2, Patrick Heymans3, Axel Legay4, Martin Leucker5, and

Pierre-Yves Schobbens6

Abstract: The model-checking problem for Software Products Lines (SPLs) is harder than for sin-
gle systems: variability constitutes a new source of complexity that exacerbates the state-explosion
problem. Abstraction techniques have successfully alleviated state explosion in single-system mod-
els. However, they need to be adapted to SPLs, to take into account the set of variants that produce a
counterexample. In this paper, we recall the main ideas of a paper published elsewhere that applies
CEGAR (Counterexample-Guided Abstraction Refinement) and desings new forms of abstraction
specifically for SPLs. Experiments are carried out to evaluate the efficiency of our new abstractions.
The results show that our abstractions, combined with an appropriate refinement strategy, hold the
potential to achieve large reductions in verification time, although they sometimes perform worse.

Keywords: Software Product Lines, Model Checking, CEGAR, Abstraction

Summary7

Software Product Lines (SPLs) are families of similar software systems developed to-

gether. SPL engineering aims to facilitate the development of the members of a family

(called products or variants) by identifying upfront their commonalities and differences.

Variability in SPLs is commonly represented in terms of features, i.e., units of difference

between products that appear natural to stakeholders. The emergence and the increasing

popularity of SPLs have raised the need for SPL-specific quality assurance techniques. In-

deed, engineers have to provide solid evidence that all the products they build satisfy their

intended requirements. Moreover, in case of failure, they should identify which features,

or combinations of features, are responsible for the errors in order to facilitate repair.

Model checking is an automated technique to verify a behavioural model of a system

against a property expressed in temporal logic. It relies on an exhaustive exploration of the

model in search for counterexamples, i.e., executions that violate the property to verify.

Due to its exhaustiveness, model checking is costly in time and memory. When applied

to real systems with a typically huge state space, model checking faces a combinatorial

blow-up called state explosion. The model-checking problem is even harder for SPLs: in

this case, the model checker must either prove the absence of errors or find a counterex-

ample for each variant that can produce a violation. Given that the worst-case number of

products of an SPL is exponential in the number of features, variability dramatically exac-

erbates state explosion. As a consequence, it is not feasible to apply single-system model

1 University of Namur, Belgium, mcr@info.fundp.ac.be 2 University of Namur, Belgium,

bdawagne@student.fundp.ac.be 3 University of Namur, Belgium, phe@info.fundp.ac.be 4 INRIA Rennes,

France, axel.legay@inria.fr 5 University of Lübeck, Germany, leucker@isp.uni-luebeck.de 6 University of

Namur, Belgium, pys@info.fundp.ac.be 7 This paper summarizes the paper published in [Co14]. References

and further details can be found there.



80 Maxim Cordy et al.

checking to the thousands of variants that can compose real-world SPLs. In recent years,

many variability-aware techniques have been designed to address the SPL model checking

problem. These techniques keep track of variability information contained in an SPL be-

havioural model to associate each execution path to the exact set of variants able to produce

it. By doing so, they are able to identify the set of products that violate a given property,

and to report a counterexample of violation for each of them. Moreover, being aware of

variability allows them to check behaviour common to several products only once. One

of the most effective answers to state explosion is model abstraction, which creates more

concise and therefore easier to verify models of the system, typically by merging similar

states. This reduced size often comes at the cost of inaccuracies in the models: A reported

counterexample can therefore be spurious, that is, it exists within the abstract model but

the not in the real, concrete model. In this case, the abstraction must be refined to eliminate

this false positive. Common methods to achieve this refinement make use of the spurious

counterexample itself. They give rise to Counterexample Guided Abstraction Refinement

(CEGAR), i.e. abstraction techniques that iteratively refine an abstract model until either

they find a real counterexample or they can prove the absence of violation.

In spite of their success in single-system model checking, abstraction techniques for SPLs

have received little attention. In [Co14], this gap is filled by proposing SPL-specific ab-

straction procedures based on CEGAR. Applying CEGAR to SPLs is more tedious be-

cause a counterexample can be real for some products and spurious for others. This ob-

servation leads to two refinement strategies: one refines the model as soon as it finds a

spurious counterexample, whereas the other performs the spuriousity check and the re-

finement after the discovery of all counterexamples. As for the abstraction of the model,

we distinguish between (1) state abstraction that only merge states as in single-model ab-

straction, (2) feature abstraction that modifies only the variability information contained

in the model, and (3) mixed abstraction that combines the previous two types. This lat-

ter type is the most complicated to implement, as spuriousness can originate from the

merging of states, the abstraction of features, or both. In [Co14], the correctness of the

approach is proven on the basis of mathematical relations such as simulation relations.

Morover, both abstractions and their combination were implemented in ProVeLines, an

SPL model checker previously developed by some of the authors. Experiments were car-

ried out to evaluate the efficiency of different combinations of refinement strategies and

abstractions. The results tend to show that state abstraction brings performance gains most

of the time, whereas feature abstraction generally results in small losses of performance

but achieve huge decreases of verification time in some cases. Preliminary experiments on

mixed abstraction tend to show that its performance is comparable to that of state abstrac-

tion, although slightly worse on average. Other abstractions of this kind could, however,

be designed as part of future work and yield better results

References

[Co14] Cordy, Maxime; Dawagne, Bruno; Heymans, Patrick; Legay, Axel; Leucker, Martin;
Schobbens, Pierre-Yves: Counterexample Guided Abstraction Refinement of Product-Line
Behavioural Models. In: FSE’14. ACM, Hong Kong, China, November 2014.


