Jan Jiirjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 65

Concept-Based Engineering of
Situation-Specific Migration Methods

Marvin Grieger' Masud Fazal-Bagaie? Gregor Engels® Markus Klenke*

Abstract: Software migration methods enable to reuse legacy systems by transferring them into
new environments. Thereby, the method used needs to fit to the project’s situation by considering
conceptual differences between the source and target environment and automating parts of the migra-
tion whenever suitable. Using an inappropriate migration method may lead to a decreased software
quality or increased effort. Various method engineering approaches have been proposed to support
the development of situation-specific migration methods. However, most do not provide a sufficient
degree of flexibility when developing a method or fall short in guiding the endeavor. To address
this problem, we introduce a situational method engineering framework to guide the development
of model-driven migration methods by assembling predefined buildings blocks. The development is
centered around the identification of concepts within a legacy system and the selection of suitable
migration strategies. We evaluate the framework by an industrial project in which we migrated a
legacy system from the domain of real estates to a new environment.

1 Overview

If an existing software system does not realize all of its requirements, but is still valuable
to ongoing business, it has become legacy. This might be due to the fact that the underly-
ing technology restricts the fulfillment of new requirements that arose over time. A proven
solution is to migrate the existing system into a new environment. The migration is per-
formed by establishing a migration project during which a migration method is enacted.
The method specifies the activities to perform, roles to involve, tools to apply, and artifacts
to generate in order to systematically transfer the legacy system into the new environment.

Using a migration method that fits to the project’s situation is essential, as the method
determines the efficiency and effectiveness of the overall migration project. To support
the development of situation-specific methods, various method engineering approaches
have been developed over time. However, we identified that existing approaches mainly
suffer from two shortcomings [GFB15]: First, they do not provide a sufficient degree of
flexibility when developing a method. Therefore, a fine-grained adaptation of the method
for the situation at hand is often not possible. Second, they fall short in providing sufficient
guidance on how to develop a method, making the endeavor error-prone.

I's-lab — Software Quality Lab, Paderborn University, Zukunftsmeile 1, 33102 Paderborn, Germany, grieger@s-
lab.uni-paderborn.de

2S&N CQM Consulting & Services GmbH, Klingenderstr. 5, 33100 Paderborn, Germany, masud.fazal-
baqaie @sn-cqm.de

3 s-lab — Software Quality Lab, Paderborn University, Zukunftsmeile 1, 33102 Paderborn, Germany, engels @s-
lab.uni-paderborn.de

4 TEAM GmbH, Hermann-Lons-Strafe 88, 33104 Paderborn, Germany, mke @team-pb.de

66 Marvin Grieger et al.

Method Base

> Specific Tool -
Chain '
Migration / Migration Expert and “:' Migration Expert and MDE Software
Developers i Developers

Expert MDE Specialist MDE Specialist

'
i Migration | N d
s Concept Tool —
Modeling E . Methoc! Implementation foiaticy ’—>©
valuation Construction
L LI 1 1
Concept i Situational Situation-Specific '
Model | Context - % Migration Method
Model Specification

Fig. 1: Core activities of the method engineering framework

In this talk, a Situational Method Engineering (SME) framework that guides the devel-
opment and enactment of situation-specific migration methods is introduced [Gr16]. An
overview of the associated process is shown in Figure 1. The process begins with the
activity called Concept Modeling. Thereby the concepts, i.e., the functionalities that are
present within the system to migrate, are modeled. By focusing on the conceptual level we
aim to abstract from the technology-specific realization. This enables to develop effective
migration methods by choosing a suitable migration strategy. We propose a set of strate-
gies that are encoded by Method Patterns and stored in the Method Base. Intuitively, the
patterns represent construction guidelines for methods that follow an associated strategy.
Before choosing a pattern for a concept, we aim to assess its implication during the Method
Pattern Evaluation activity. This allows to make informed decisions in the subsequent Mi-
gration Method Construction activity. Thereby, a pattern is chosen for each concept and
multiple patterns are integrated. If the resulting specification of the constructed method in-
dicates that some parts of the migration are automated, then a corresponding model-driven
tool chain is realized during the Tool Implementation activity. In the last activity called Mi-
gration, the developed method is enacted and the legacy system is transferred to the new
environment. Thereby, developed tools get used and associated developers are included.

We evaluated the framework by applying it in an industrial context. In particular, we con-
structed and enacted a migration method to transform a legacy system from the domain of
real estates. Due to the use of model-driven engineering and the focus on the conceptual
level, we were able to automate parts of the migration while still ensuring a high quality
of the resulting system.

References

[GFB15] Grieger, Marvin; Fazal-Baqaie, Masud: Towards a Framework for the Modular Construc-
tion of Situation-Specific Software Transformation Methods. 35(2):41-42, 2015. Pro-
ceedings of the 17th Workshop Software-Reengineering and Evolution (WSRE).

[Gr16] Grieger, Marvin; Fazal-Baqaie, Masud; Engels, Gregor; Klenke, Markus: Concept-Based
Engineering of Situation-Specific Migration Methods. In: Proceedings of the 15th Interna-
tional Conference on Software Reuse (ICSR). volume 9679 of Lecture Notes in Computer
Science. Springer, pp. 199-214, 2016.

