
Cleager: Eager Schema Evolution

in NoSQL Document Stores

Stefanie Scherzinger

OTH Regensburg

stefanie.scherzinger

@oth-regensburg.de

Meike Klettke

Universität Rostock

meike.klettke@uni-rostock.de

Uta Störl

Hochschule Darmstadt

uta.stoerl@h-da.de

Abstract: Schema-less NoSQL data stores offer great flexibility in application de-
velopment, particularly in the early stages of software design. Yet over time, soft-
ware engineers struggle with the heavy burden of dealing with increasingly hetero-
geneous data. In this demo we present Cleager, a framework for eagerly managing
schema evolution in schema-less NoSQL document stores. Cleager executes declar-
ative schema modification operations as MapReduce jobs on the Google Cloud Plat-
form. We present different scenarios that require data migration, such as adding, re-
moving, or renaming properties of persisted objects, as well as copying and moving
them between objects. Our audience can declare the required schema migration oper-
ations in the Cleager console, and then verify the results in real time.

1 Schema Evolution in NoSQL Document Stores

This work concerns the maintainability of feature-rich, interactive web applications from

the view-point of schema evolution. In particular, we target web applications backed by

schema-less NoSQL document stores such as MongoDB [Mon14] or Google Cloud Da-

tastore [San12]. This is an increasingly popular software stack: The programming APIs

are easy to use, there is little setup time required with database-as-a-service offerings, and

pricing is reasonable. Another sweet spot is that the schema does not have to be specified

in advance, so developers may freely adapt the data structures as the application evolves.

Yet over time, dealing with an increasingly heterogeneous collection of persisted objects

becomes a nuisance. Since today’s schema-less NoSQL data stores still lack the proper

tools for managing schema evolution, even the most basic schema modification operations

(by the terminology of [CMDZ13]), such as adding or removing a field from persisted

objects in batch, require programmatic solutions and therefore custom coding.

Example. We consider an online role playing game hosted on Google App Engine and

backed by Google Cloud Datastore [San12]. Figure 1a shows the persisted player objects

for Frodo and Sam. Each player has a unique name, further a character class and a score.

The next release introduces paid accounts. Figure 2a shows the new object mapper class

declaration with an account property. The annotation @Id declares the identifying property

and @Index declares that a property can be queried (using Objectify [Obj14] syntax).

Figure 1b then shows the data instance after second-generation player Rosie has been

659



(a) First-generation players. (b) Adding a second-generation player. (c) After lazy migration of player Sam.

Figure 1: Screenshots from the Datastore Viewer illustrating the evolution of persisted objects

(termed “entities”) in Google Cloud Datastore over time.

@Entity

public class Player {

@Id private String name;

private String charclass;

private int score;

@Index private String account;

/* Lazy migration after loading. */

@OnLoad void onLoad() {

if (account == null)

account = "free";

}

/* Omitting getters and setters. */

}

(a) Java class declaration with Objectify annotations. (b) Query evaluation on the players from Figure 1b.

Figure 2: (a) Lazily introducing the new property account and (b) querying for free accounts.

persisted. As a schema-less NoSQL data store, Datastore allows for both generations of

players to co-exist. Thus, the new code can be released without having to immediately

migrate the legacy players Frodo and Sam. While this allows for rapid releases, it adds

complexity to the application code. For instance, to search for all players with a free

account, the GQL query (Google Query Language) in Figure 2b will return no results on

the data instance from Figure 1b, since no persisted object satisfies the query predicate.1

One (partial) solution to this problem is lazy schema evolution through life-cycle anno-

tations in object mapper class declarations, an increasingly popular approach [SHKS15].

When legacy player Sam is loaded into the application space with the class declaration

from Figure 2a, the @OnLoad-method is executed. This sets a default value for the new

attribute account. After the changes have been persisted, Sam’s player object has been suc-

cessfully migrated (c.f. Figure 1c). Yet unless Frodo’s object is loaded into the application

space, the missing property will not be added.

To reliably evaluate this query, all legacy objects need to be migrated. Today, developers

actually write custom code to eagerly migrate legacy objects. Writing custom code is time

consuming and requires careful testing, since the code is executed directly on production

data. The Cleager framework offers a new and declarative alternative for eager migration.

1In GQL, it is actually not possible to formulate a query that returns players Frodo and Sam by a SQL-style

query predicate such as “where account is not null”. GQL queries are evaluated over indexes, and

missing values are not indexed. We refer to [SKS13] for a brief overview over null values in NoSQL data stores.

660



(a) Adding a property in the Cleager console.

def map(String key, JSON value) {

if value is a Player object

then value.addProperty("account", "free");

put(key, value); // Persisting the change.

}

/* A map job is sufficient. */

(b) The MapReduce job for adding a property.

(c) Copying a property in the Cleager console.

def map(String key, JSON value) {

if value is a Player object

then emit(value.name, value);

if value is a Mission object

then emit(value.playerName, value);

}

def reduce(String key, List<JSON> valueList) {

let p be the Player object in valueList;

for each Mission m in valueList do

m.setProperty("account", p.account);

put(m.key, m); // Persisting the change.

od

}

(d) The MapReduce job for copying a property.

Figure 3: The Cleager console with schema modification operations ((a) and (c)) for migrating first-

generation players. The declarative operations are then executed as MapReduce jobs ((b) and (d)).

2 MapReduce-powered Eager Data Migration with Cleager

In [SKS13] we have proposed a declarative NoSQL schema evolution language by which

developers can specify common schema modification operations, such as adding, deleting,

or renaming properties in batch. This covers the bulk of operations frequently required in

web development, according to a study in [CMTZ08]. In addition, our language allows

that properties are moved or copied between objects, since data duplication and denormal-

ization are fundamental principles in NoSQL data stores. This goes beyond the schema

modification operations commonly supported by relational databases. For more complex

and infrequent modifications (e.g., splitting or merging property values), developers can

always resort to custom MapReduce jobs. We refer to [SKS13] for the full specification

of the Cleager language.

Figure 3a shows the Cleager console with a declarative statement that adds an account

property to all players. Cleager executes this migration as a MapReduce job. For adding,

removing, and deleting properties from persisted objects, a simple Map jobs suffices. Fig-

ure 3b shows the MapReduce job for adding an account-property in pseudo-code. Here,

the reducer implements the identity function. This eager migration is to be executed on

the legacy player objects prior to the new release, which introduces paid accounts.

Figure 3c shows the declaration for copying property account from the player object to all

661



missions belonging to this player. Since Google Cloud Datastore, like most NoSQL data

stores, does not support joins in its query language, data denormalization is a common

practice to avoid having to implement joins at runtime within the application code. In

Figure 3d, we show the pseudo-code of the corresponding MapReduce job.

Cleager thus translates declarative schema migration operations into MapReduce jobs,

making use of massive parallelization on the Google Cloud Platform infrastructure [Goo14].

3 Demo Outline

1. We present a small gaming application running as software-as-a-service on Google

AppEngine backed by Google Cloud Datastore. Our audience can inspect the player

data in the Datastore Viewer. We then show how changes to the application code

cause heterogeneous player objects to co-exist in the data store, as in Figure 1.

2. We show that lazy schema evolution via object mapper libraries only affects those

objects that are loaded into the application space at application runtime.

3. We show how queries over heterogeneous data can lead to unexpected results, since

legacy objects may not be considered in query evaluation, as depicted in Figure 2b.

4. Our audience may write eager schema migration operations using our language

from [SKS13], within the web-based Cleager console (e.g., as seen in Figure 3a).

5. We monitor the execution of the schema migration operations as MapReduce jobs in

the Google Cloud Platform on large data sets. Together, we then inspect the results.

Acknowledgements: We thank Kok Wing Tang from OTH Regensburg for implementing a first

prototype of Cleager as part of his Bachelor thesis.

References

[CMDZ13] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Automating the
Database Schema Evolution Process. The VLDB Journal, 22(1):73±98, 2013.

[CMTZ08] Carlo Curino, Hyun Jin Moon, Letizia Tanca, and Carlo Zaniolo. Schema Evolution in
Wikipedia - Toward a Web Information System Benchmark. In Proc. ICEIS’08, 2008.

[Goo14] Google Inc. Google Cloud Platform, November 2014. https://cloud.google.
com/.

[Mon14] MongoDB, November 2014. http://www.mongodb.org/.

[Obj14] Objectify, November 2014. https://code.google.com/p/

objectify-appengine/.

[San12] Dan Sanderson. Programming Google App Engine. O’Reilly Media, Inc., 2012.

[SHKS15] Uta Störl, Thomas Hauf, Meike Klettke, and Stefanie Scherzinger. Schemaless NoSQL
Data Stores - Object-NoSQL Mappers the Rescue? In Proc. BTW’15, 2015.

[SKS13] Stefanie Scherzinger, Meike Klettke, and Uta Störl. Managing Schema Evolution in
NoSQL Data Stores. In Proc. DBPL’13, 2013.

662


