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Abstract: Static program analysis by abstract interpretation is an efficient method to
determine properties of embedded software. One example is value analysis, which
determines the values stored in the processor registers. Its results are used as input to
more advanced analyses, which ultimately yield information about the stack usage and
the timing behavior of embedded software.

1 Abstract Interpretation

Failure of a safety-critical application on an embedded processor can lead to severe damage
or even loss of life. Therefore, utmost carefulness and state-of-the-art machinery have to
be applied to make sure that an application meets all requirements. To do so lies in the
responsibility of the system designer(s).

Classical software validation methods like code review and testing with debugging are
very expensive. Furthermore, they cannot really guarantee the absence of errors. In con-
trast, abstract interpretation [CC77] is a formal verification method that yields statements
valid for all program runs with all inputs, e.g., absence of violations of timing or space
constraints, or absence of runtime errors.

Nowadays tools based on abstract interpretation are commercially available and have
proved their usability in industrial practice. For example, stack overflow can be detected
by AbsInt’s StackAnalyzer, and violations of timing constraints are found by AbsInt’s
aiT tool [FHL+01] that determines upper bounds for the worst-case execution times of the
tasks of an application. Among other things, these tools perform a value analysis that tries
to determine the values stored in the processor’s memory for every program point.

Value analysis is a static analysis method based on abstract interpretation. It produces re-
sults valid for every program run and all inputs to the program. Therefore, it cannot always
predict an exact value for a memory location, but determines abstract values instead that
stand for sets of concrete values. There are several variants of value analysis depending
on what kinds of abstract values are used. In constant propagation, an abstract value is ei-

125



ther a single concrete value or the statement that no information about the value is known.
In interval analysis, abstract values are intervals that are guaranteed to contain the exact
values. Further extensions of value analysis record known equalities between otherwise
unknown values, or more generally, upper and lower bounds for their differences, or even
more generally, arbitrary linear constraints between values.

Value analysis, even in its simple form as interval analysis, has various applications as an
auxiliary method providing input for other analysis tasks. Some of these applications are
listed in the next few sections.

2 Stack Usage Analysis

A possible cause of catastrophic failure is stack overflow that usually leads to run-time
errors that are difficult to diagnose. The problem is that the memory area for the stack
usually must be reserved by the programmer. Underestimation of the maximum stack
usage leads to stack overflow, while overestimation means wasting memory resources.
Measuring the maximum stack usage with a debugger is no solution since one only obtains
a result for single program runs with fixed inputs. Even repeated measurements cannot
guarantee that the maximum stack usage is ever observed. Some, but not all compilers
provide information about stack usage, but this requires the availability of the source code,
and the information becomes invalid when the generated code is optimized by hand or by
some automatic tool.

AbsInt’s StackAnalyzer provides a solution to this problem: By concentrating on the
value of the stack pointer during value analysis, the tool can figure out how the stack
increases and decreases along the various control-flow paths. The predicted worst-case
stack usages of individual tasks in a system can be used in an automated overall stack
usage analysis for all tasks running on one Electronic Control Unit, as described in [Jan03]
for systems managed by an OSEK/VDX real-time operating system.

3 Checking of Spatial Partitioning

Spatial partitioning means that the address spaces of the various tasks of a multi-threaded
application are not corrupted by other tasks or by the operating system. To check spatial
partitioning, one has to verify that the tasks get disjoint address spaces from the operating
system, and that each task (including the operating system) accesses its own address space
only. More precisely, there are relations “is allowed to read” and “is allowed to write”
between code pieces and data areas, and the spatial partitioning checker should list the
memory accesses that surely or potentially violate the relations. Information about the
addresses of memory accesses is obtained by a value analysis covering the contents of the
processor registers, the layout of the stack(s), and the contents of the stack cells.
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4 WCET Analysis: Worst-Case Execution Time Prediction

Many tasks in safety-critical embedded systems have hard real-time characteristics. Fail-
ure to meet deadlines may be as harmful as producing wrong output or failure to work
at all. Yet the determination of the Worst-Case Execution Time (WCET) of a task is a
difficult problem because of the characteristics of modern software and hardware.

Embedded control software (e.g., in the automotive industries) tends to be large and com-
plex. The software in a single electronic control unit is usually developed by several
people, several groups or even several different providers. It is typically combined with
third-party software such as real-time operating systems and/or communication libraries.

Caches and branch target buffers are used in virtually all performance-oriented proces-
sors to reduce the number of accesses to slow memory. Pipelines enable acceleration by
overlapping the executions of different instructions. Consequently the timing of the in-
structions depends on the execution history.

The widely used classical methods of predicting execution times are not generally ap-
plicable. Software monitoring and dual-loop benchmark change the code, which in turn
changes the cache behavior. Hardware simulation, emulation, or direct measurement with
logic analyzers can only determine the execution time for some fixed inputs.

In contrast, abstract interpretation can be used to efficiently compute a safe approximation
for all possible cache and pipeline states that can occur at a program point in any program
run with any input. These results can be combined with ILP (Integer Linear Programming)
techniques to safely predict the worst-case execution time and a corresponding worst-case
execution path.

AbsInt’s WCET tool aiT determines the WCET of a program task in several phases
[FHL+01]: CFG building decodes, i.e. identifies instructions, and reconstructs the control-
flow graph (CFG) from a binary program; value analysis computes value ranges for reg-
isters and address ranges for instructions accessing memory; loop bound analysis deter-
mines upper bounds for the number of iterations of simple loops; cache analysis classifies
memory references as cache misses or hits; pipeline analysis predicts the behavior of
the program on the processor pipeline [LTH02]; path analysis determines a worst-case
execution path of the program [TF98].

The results of value analysis are used to determine possible addresses of indirect memory
accesses—important for cache analysis—and in loop bound analysis. They are usually
so good that only a few indirect accesses cannot be determined exactly. Value analysis
can also determine that certain conditions always evaluate to true or always evaluate to
false. As a consequence, certain paths controlled by such conditions are never executed.
Therefore, their execution time does not contribute to the overall WCET of the program,
and need not be determined in the first place.

Cache Analysis uses the results of value analysis to predict the behavior of the (data) cache.
The results of cache analysis are used within pipeline analysis allowing the prediction of
pipeline stalls due to cache misses. The combined results of the cache and pipeline analy-
ses are the basis for computing the execution times of program paths. Separating WCET
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determination into several phases makes it possible to use different methods tailored to
the subtasks. Value analysis, cache analysis, and pipeline analysis are done by abstract
interpretation [CC77]. Integer linear programming is used for path analysis.

aiT allows to inspect the timing behavior of (time-critical parts of) program tasks. The
analysis results are determined without the need to change the code and hold for all execu-
tions. aiT takes into account the combination of all the different hardware characteristics
while still obtaining tight upper bounds for the WCET of a given program in reasonable
time. Its results are documented in a report file and as annotations in the control-flow
graph that can be visualized using AbsInt’s graph viewer aiSee.

5 Conclusion

Tools based on abstract interpretation can perform static program analysis of embedded
applications. Their results hold for all program runs with arbitrary inputs. Employing
static analyzers is thus orthogonal to classical testing, which yields very precise results,
but only for selected program runs with specific inputs. The usage of static analyzers
enables one to develop complex systems on state-of-the-art hardware, increases safety,
and saves development time. Precise stack usage and timing predictions enable the most
cost-efficient hardware to be chosen. As recent trends, e.g., in automotive industries (X-
by-wire, time-triggered protocols) require knowledge on the WCETs of tasks, a tool like
aiT is of high importance.
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