An Approach to Abstracting and Transforming
Web Services for End-user-doable Construction
of Service-Oriented Applications’

Jian Yu', Jun Fang'?, Yanbo Han', Jianwu Wang'?, and Cheng Zhang'*

! Software Division, Institute of Computing Technology,
CAS, Beijing 100080
{yujian, yhan} @software.ict.ac.cn
http://sigsit.ict.ac.cn/
% Graduate School of CAS, Beijing 100039
{fangjun, wjw, zhch} @software.ict.ac.cn

Abstract: End-user-programmable business-level services composition is an
effective way to build virtual organizations of individual applications in a just-in-
time manner. Challenging issues include how to model business-level services so
that the end users can understand and compose them; how to associate business-
level services to underlying Web services. This paper presents a service
virtualization approach called VINCAyializaion t0 supporting the abstraction,
transformation, binding and execution of Web services by end users. Four key
mechanisms of VINCAvy;walizations Namely semantics annotation, services
aggregation, virtualization operation and services convergence are discussed in
details. VINCAviyualization has been implemented and its application in a real-world
project is illustrated. The paper concludes with a comparative study with other
related works.

1 Introduction

End-user-programmable services composition is of importance in realizing virtual
organizations of individual applications on spontaneous business requirements in a just-
in-time manner. Typical scenarios having such requirements include dynamic supply
chain management, handling of city emergency, and management of massive public
events. Since current Web services composition languages such as BPEL4WS [ACDO03]
and BPML [Bp02] are developed for IT professionals, end-users involvement is not well
promoted. As a matter of fact, to enable end-user-programmable services composition,
we have to stride a number of hurdles, e.g. how to derive user-understandable, business-
level services from business requirements, how to relate business-level services to
software-level Web services, how to enable end users to assemble business-level
services in an appropriate way, and how to ensure the interoperability and QoS
constraints of participating business-level services.

* The research work is supported by the National Natural Science Foundation of China under Grant No. 90412005
and Grant No0.90412010, National 863 High Technology Development Plan Project of China under Grant
No.2003AA414330

In meeting the above challenges, we have proposed an approach to end-user-
programmable, business-level services composition, and defined a corresponding
composition language VINCA [HGLO03], [YWHO04]. The key concepts of VINCA
include business services, service spaces, and Web service virtualization. A business
service is a user-understandable, large-granularity service abstraction with business-level
semantics. Service spaces organize and manage business services according to the user's
actual needs by grouping business services that either are interrelated or share some
common features. Web service virtualization is the process of abstracting away the Web
service's technical details, describing it with business-related semantics, aggregating
semantically substitutive Web services into service proxies, combining service proxies
into a composite one with virtualization operators if necessary, and then converging
service proxies and business services. After this virtualization process, Web services
cannot be seen and used directly, rather they delegate their capabilities to business
services. We introduce in this paper the service virtualization part of VINCA, called
VINCAVinualization-

The rest of this paper is organized as follows. Section 2 describes a real-world example
highlights the requirements of VINCA v alization- S€Ction 3 presents the basic principle of
VINCAvirualization- Section 4 illustrates the process of virtualization. Section 5 discusses
the implementation of VINCA i alization- AN application of VINCAviuatization 1S given in
section 6. In section 7, we discuss related works namely Service Domain, Service
Cluster and XMS Service Views. And finally we conclude in section 8.

2 A Real-World Example

Let’s take a real-world case as an example. This example is excerpted form the AMGrid
(Advanced Manufacturing Grid) project [Ca02] that is to build a virtual enterprise for a
large Chinese electronics manufacturing enterprise.

30 different kinds of Web services are prepared beforehand. Some are encapsulated from
legacy systems such as stock-management system, order-processing system, etc. Some
are provided by its suppliers and dealers according to the service interface agreements.
And others are newly created by the enterprise itself. One major goal AMGrid is to let
normal business users express their basic requirements by assembling and manipulating
underlying services. The above-mentioned business services are thus needed. For the
dynamism of business, business services are changed and created frequently. A
semantic matchmaking algorithm based on inputs and outputs match [PKP02] is used to
automatically bind business services to underlying web services. But frequently, the
algorithm either can’t establish the binding for inputs and/or outputs mismatch or the
binding created is not correct. The following typical scenarios appeared in the project
manifest this problem:

— Web services with similar functionalities often need to be aggregated. Only part of the
Web service outputs is needed. For example, if there is a Web service operation
named “gueryProductStock” constructed from legacy stock management system
whose function is to get the whole stock information. But when a business service

249

only needs part of its outputs according to some selection criteria, additional treatment
is need on the outputs of this Web service operation.

— Some business service needs to bind to more than one Web services. For example, if
there is a business service wants to query the products that are not in stock. But only
“queryProduct” and “queryProductStock” Web service operations are available. In
fact, we do not need to program a new Web service operation, the outputs of
“queryProduct” exclude the outputs of “queryProductStock” will satisfy this business
service. Another example is that there is a business service wants to get the product
parts information from all the suppliers. For each supplier only gives its own parts
information through a Web service operation, only by combining the outputs of these
operations can the business service be satisfied.

3 Basic Principle of the Virtualization Approach

Figure 1 illustrates a basic reference model of VINCAviwatizationr YINCAvirualization
follows the convergent engineering methodology, which tries to bridge the gap between
business domain and software domain and enable software to adapt to ever-changing
business [Ta95]. In VINCA viuatization, DUsiness services are modeled and created from
business requirements in a top-down fashion; Web services are virtualized into service
proxies in a bottom-up way; and then they are converged in the middle.

Business services are user-understandable, large-granularity service abstractions defined
by domain experts independent of the underlying implementation details. Their
definition is based on domain-specific norms of concepts and functionalities. A business
service is formulated based on meaningful combinations of business activities (verbs)
and business concepts (nouns) as defined in domain standards, e.g. the OTA travel
information standard [Ot05]. The structure of a business service includes five parts:
identification, functionality, inputs, outputs, and nonfunctional properties (NFP in short).
The formal definition of business service can be found in [YWHO04]. With the support of
VINCA service space and VINCA studio, the visual programming environment, end
users can explore and then compose business services into Web-based applications
easily.

250

Service proxies are the aggregation of Web services. When providing Web services, the
service provider also needs to provide its semantics. Such semantics can become the
descriptions of service proxies, so functional substitutive Web services can be
aggregated into one service proxy. The structure of a service proxy includes six parts:
functionality, inputs, outputs, nonfunctional properties (NFP), Web services links, and
virtualization operation (VO). The VO field is used in the convergence between business
services and service proxies, which will also be discussed in detail in section 4.3. We
implement the convergence algorithm based on both semantic matching and
virtualization operation. As to the semantic matching, we adopt the matching algorithm
proposed by [PKP02] where the inputs and outputs of business services and service
proxies are matched and their matching degrees are calculated semantically. But
according to the matching algorithm of [PKP02], whenever one of the business service’s
outputs is not matched by any of the service proxy’s outputs, the matching fails. At this
time, the virtualization operation as our novel approach takes effect. The virtualization
operation transforms/combines service proxies into a new service proxy with one of the
virtualization operators. For example, if both service proxy VS1 and service proxy VS2
can not match business service BS alone for the mismatch of outputs, but the combined
outputs of VS1 and VS2 can match BS. Then we can use the virtualization operator
“Union” on these two service proxies to create a new service proxy whose outputs are
the combination of its component service proxies to achieve the matching. At a certain
situation, the convergence between a business service and a service proxy can’t be
established after the effort of both semantic matching and virtualization operation, and
this business service will be marked as DISSOCIATIVE and will not be seen by the end
user until a convergence relationship is established successfully.

Business A
T Dnia . .
Requirements 3 Business Service Modeling

business services
05 550

I
Mechanism
4. Converging

ice Proxies,

2. Aggregation

|
1
1
1
1
1
3. Vinualiza:lion Operfa
:
I
I
I
I
|
: 1. Semantics Annotation

Figure 1: Basic Principle of VINCAv;iualization

251

4 Process of Virtualization

In this section, we present the core mechanisms of VINCAvyiiulizaion that are also
illustrated in Figure 1. These mechanisms include semantics annotation, Web services
aggregation, virtualization operation, and convergence of business services and service
proxies.

4.1 Semantics Annotation

Semantics annotation is critical to reach unanimous understanding among syntax-diverse
but functionality-similar Web services. As stated in the next subsection, our aggregating
mechanism bases on the semantics of services. According to the structure of service
proxy, a Web service operation is annotated with functional classification, inputs,
outputs, and nonfunctional properties. Such annotation is saved in OWL [Ow04] format.
To annotate, service providers use the ontology repository that is an extension to the one
in business domain. Currently we only support the “equivalent class” extension, which
facilitate service providers describing services with their own jargon.

4.2 Services Aggregation

VINCAvirulizaion aggregates Web service operations with the same functional
classification, inputs and outputs into one service proxy. Web services often operate in a
dynamic environment as providers remove, modify, or relocate their services frequently.
Aggregation of services is an effective mechanism to cope with the dynamism of Web
services [BSD03]. When services are aggregated into one service proxy, they can be
selected dynamically and application-level fault tolerance is yielded [MMOS5]. Every
service proxy has its corresponding nonfunctional-property-based service selection
policy. When executing a service proxy, it can avoid selecting an unavailable Web
service and select the right Web service to run according to its nonfunctional properties.

4.3 Virtualization Operation

It’s not always possible to bind a business service to the right service proxy for the
incompatibility of semantics. At this time, virtualization operators can be used to
transform/combine service proxies into a new service proxy to meet the semantics of this
business service. We design our virtualization operators from two perspectives, one is on
the selection of services and the other is on the filtering/uniting of the outputs of services.
Fundamental virtualization operators include select, project, union, and difference etc.
Next we will introduce these operators together with some examples.

4.3.1 Selection
The selection operator, denoted as o, is used both in filtering the execution outputs and
filtering the involved services based on their NFP.

252

For example as for filtering execution outputs, we need the Web service operation
“queryProductStock” only present to the sale agent the corresponding product stock
information they can sale while the default result can produce the whole product stock
results. Following virtualization operation (VOP in short) creates a new service proxy
“queryProductStock fi” by filtering the execution outputs of service proxy
“queryProductStock” with condition “prodcutType="4AA"”, so only part of the result
satisfying the selection condition is given.

queryProductStock _ fr = o, .(queryProductStock) 1

out . productType="AA4"

As for selecting involved services, following VOP creates a new service proxy
“supplyparts_fs” by selecting the component Web services of “supplyparts” service
proxy with response time less than 5 days. It means that the supplier that can provide its
service in five days will be selected as the part supplier.

supplyParts _ fs = o, (supplyParts))

responseTime<5day

4.3.2 Projection
The projection operator, denoted as 7, is used to select one or more attributes of the
execution outputs. Following VOP creates a new service proxy “queryProduct p” by
only rendering the price information of the execution outputs of service proxy
“queryProduct”.

queryProduct _p=r, queryProduct) &)

ut. productname ,out . price (

4.3.3 Union

The union operator, denoted as \~, is used for combining execution outputs of two
service proxies. Suppose that the information of suppliers and their current supply parts
is needed. But there are only two Web service operations, one can provide the
information of suppliers and the other can provide the information of these suppliers’
supply parts. Then we can define a new service proxy to present the union of these two
operations. Following VOP creates a new service proxy “query u” by uniting the
execution outputs of both “querySupplier” and “queryParts”.

query _u = querySupplier U queryParts “4)

4.3.4 Difference

The difference operator is denoted as ©. The following equation creates a service proxy
“query d” which gives the attributes provided by “queryParts” excluding the attributes
also provided by “queryDisks”.

253

query _d = queryParts © queryDisks (5)

4.3.5 Power
The power operator is denoted as y/ . This operator is used when a business service

needs to combine all the outputs of the Web service operations that aggregate to one
service proxy. The following equation creates a service proxy “queryParts p” whose
execution outputs will combine all the outputs of the Web service operations that
aggregate to service proxy “queryPart”.

queryParts _ p = w(queryParts) (6)

4.3.6 Intersection
The intersection operator is denoted as M. The following equation creates a service
proxy “query i” which provides the attributes provided by both “querySupplier4” and
“querySupplierB”.

query i = querySupplierA N querySupplierB (7

4.4 Convergence of Business Services and Service proxies

Convergence is the process of creating the binding relations between business services
and service proxies. This process includes two phases:

— The first phase is automatic: The system will check the semantics of both business
services and service proxies, the binding between a business service and a service
proxy is established if they are semantically equivalent in functionality, inputs, and
outputs.

— The second phase is manual: The Domain expert is responsible for converging a
business service and a service proxy by constructing a new service proxy with
virtualization operators if automatic binding can not be established for this business
service.

5 Implementation

We have implemented a prototype of VINCAyiuaiization that works as the core module of
VINCA integrated business-end development and execution environment [YWHO04]. For
VINCA yirualization 18 @n indispensable part of VINCA, it is necessary for us to introduce the
overall architecture of VINCA.

254

As illustrated in Figure 2, the architecture of VINCA is constituted of three parts: Basic
Service Layer, Service proxy Layer, and End-User Programming Environment.

Application

End-User Programming
Composer

Environment

BS2VS
Mapping
Programmingable Business Organ Coordinator |

£ ¢

Expert Service Proxy Layer
% Composite Service Service Proxy
§1 Proxy Composer Interpreter
| T

Service
¢—=)| Registry/Aggregation

Service
Provider |

Business
Service Builder

Ontology
Repository

Selection

Service Routing/Selection

Basic Service Layer

Web Web Web Web
service service service service

Figure 2: The Architecture of VINCA Environment

At the bottom layer, various available resources should be wrapped into web services,
and we can access and invoke specific services according to their WSDL descriptions.

The Service proxy Layer is in the middle, its main responsibility is to create, manage and
execute the aggregated service proxies. It provides service registering and annotating
tool for service providers submitting their services. A newly registered service will be
aggregated into an already-existing service proxy or it will trigger the creation of a new
service proxy according to its annotated semantic description. During registering a
service, its semantics is given referring to the Ontology Repository. Note that the
Ontology Repository in this part is an extension to the one in the upper End-User-
Programming Environment. For the Ontology description language, we use OWL and
the “equivalentClass” relationship is supported for Ontology mapping. Virtualization
tools could assist the domain expert to combine service proxies into a composite service
proxy according to business needs. Then he could bind the new service proxy to business
service. To execute a service proxy, first it is processed by the Service Proxy Interpreter
component that will decompose composite service proxies into fundamental ones, and
then the Service Selection/Routing component will select the right web services to
execute according to the QoS specification of services and the Service Selection Policy.

255

6 Application

In this section we demonstrate the application of VINCA yiualization by @ real-world example.
Suppose that one of the end users creates a business service named “queryOutOfStock”,
whose function is to query the products that are out of stock. The end user can construct
this business service with Business Service Builder. There are also numbers of Web
services registered in our system. Presently, this business service can’t be automatically
bound to any service proxy with BS2VS Mapping tool. At this time, the domain expert
can use Service Proxy Composer to produce a new service proxy from two existing ones
namely “queryProductStock” and “queryProduct”. The tool can achieve this goal by the
following virtualization operation:

queryOutOfStock = (queryProduct) © ®)

producttype

queryProductStock)

ﬂ.praducttype (

Then this new service proxy could be bound to the business service mentioned above.
This process is illustrated in Figure 3.

#lnputs

#Functionalit)
#Date Query | ZLenctonans, #QueryOutOfStock

#ProductName —ZQUIPULS) QutOfStock [ZVER
#ProductMode

#ProduciPrice

legends

Convergence > viualservice
C> Web service

g Virlual operatior

#QueryOutoistodt Victanaliy

#Date #lnputs

#ProductName #QOutputs
#ProductMode
#ProduciPrice

#CesignDate

AFunctionality

-, #Functigpaliy
#QueryProduct e R HEryProductStock
#Date #IOBYIS (Tl o Product_r Ve, #Date
T T
#Outputs
#ProductMode E AOUIDULS gproductMode

TTeroductiviode
H FFunctionalit
H 6ue’¥yProductStoc}<

#lnputs #Date

#QueryProduc!

#Date Anputs queryProduc)
#ProductName #Outputs

#ProductMode.
#ProductMode #Outputs

\ | #StockNumber
#ProductPrice Semantics : #InStockNumber
#CesignDate \Annotation+Aggregation #OutStockNumber
Produci RroductStock
Produc Info g Date date) q ate date)

String roduc Price Stiing nStockNumbe:
String < esignDate String outStockNumber

String ¢ roductName String § roductiode
String § roductiode String ¢ tockNumbet

Figure 3: An Example of Service Virtualization

256

7 Discussion

A common characteristic of all service virtualization approaches is that it aggregates
functional substitutive services into a virtualized service. Such aggregated virtualized
service is given different name in different approaches.

IBM proposed the Service Domain technology [TTBO03]. A Service Domain is an
abstraction to a cluster of functional interchangeable Web services. It applies autonomic
computing principles for aggregating Web services and Grid services. The Service
Domain technology provides a service proxy layer — so called service Grid that can
create, filter, discover, cluster, organize, select, route, recover, and switch Web services
and Grid services autonomically. An impressive feature of Service Domain Technology
is its service selection mechanism: the selection of a service instance is not just based on
availability, but can also be based on QoS characteristics dynamically. The performance
of Web service instances is monitored and their service level may be modified
dynamically. It can also perform failover processing if required.

Service Container [BSD03] is a constitutive part of Self-Serv Web services composition
environment. Its purpose is to cope with the dynamism of Web services. A Service
Container is also a virtualized service that aggregates several substitutable services. An
interesting feature of Service Container is its service functionalities related change
management [ZBNO1].

Service Views [Se05] are also abstractions and aggregation of back end services. It's an
industry product and the main purpose is to ensure the QoS of Web services based
applications and serve as an infrastructure for Service Oriented Architecture.

All the above-mentioned approaches aim at making the service oriented applications
more reliable. So they put much effort on the mechanisms of service instances
monitoring and QoS-based service selection. VINCAvirulization fOCUSES on how to
virtualized Web services to semantically match the needs of business-level services. So
VINCA virualization Nas its unique feature of service virtualization operators for coping with
the incompatibility of semantics.

8 Conclusion and Future Work

In this paper, we have presented VINCAvyiaizaion, an approach for Web service
virtualization, which is a main component of VINCA business-end services composition
approach. VINCAviruiizaien has the core mechanisms of services annotation, services
aggregation, virtualization operation, and services convergence that provide key support
to the binding and execution of business services. With VINCA i atizations €0d Users can
construct business-service based applications in an easy and effective way and business
efficiency can be reached eventually.

257

This approach needs to be evaluated more exhaustively in the future based on diverse
application scenarios. We also intend to incorporate service instances monitoring facility
into VINCAvirualization t0 €nhance its capability in QoS-based service selection.

References

[ACDO03] Andrews, T., Curbera, F., Dholakia, H. et al: Business Process Execution Language for
Web Services. http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
(2003)

[Bp02] BPMI: Business Process Modeling Language. http://www.bpmi.org/ (2002)

[BSDO03] Benatallah, B., Sheng, Q., Dumas, M.: The Self-Serv Environment for Web Services
Composition. IEEE Internet Computing Jan/Feb 2003 (2003) 4048

[Ca02] CAFISE group: AMGrid Project. Technical Report, Software Division, ICT, CAS (2002)

[HGLO3] Han, Y., Geng H., Li H. et al: VINCA - A Visual and Personalized Business-level
Composition Language for Chaining Web-based Services. Proc. of the 1st International
Conference on Service-Oriented Computing, LNCS 2910, Springer-Verlag (2003) 165—
177

[MMO5] Michael, N., Muninda, P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing Jan/Feb 2005 (2005) 75-81

[Ot05] OTA: Open Travel Alliance. http://www.opentravel.org/ (2005)

[Ow04] OWL: OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/ (2004)

[PKP02] Paolucci, M., Kawamura, T., Payne, T., and Sycara, K.: Semantic matching of web
services capabilities. International Semantic Web Conference, Sardinia, Italy (2002)

[Ta95] Taylor, D.: Business Engineering with Object Technology. John Wiley & Sons (1995)

[TTBO3] Tan, Y., Topol, B., Vellanki, V. et al: Business service grid: Manage Web services and
Grid services with Service Domain Technology.
http://www-106.ibm.com/developerworks/grid/library/gr-servicegrid (2003)

[Se05] Service Views: XMS Service Views. http:// www.westbridgetech.com/serviceview.html
(2005)

[YWHO04]Yu, J., Wang, J., Han, Y. et al: Developing End-User Programmable Service-Oriented
Applications with VINCA. Proc. of the 2nd Ljungby Workshop on Information Logistics,
Ljungby, Sweden (2004)

[ZBNO1] Zeng, L., Benatallah, B., Ngu, A.: On-Demand Business to Business Integration. Proc.
Int’l Conf. Cooperative Information Systems (CooplS). Springer-Verlag New York
(2001) 403-417

258

