
Model-Driven Allocation Engineering – Abridged Version

Uwe Pohlmann1 Marcus Hüwe2

Keywords: Allocation, Deployment, Constraint Programming, Automotive, Model-Driven Software
Engineering, Cyber-physical Systems

Cyber-physical systems provide sophisticated functionality and are controlled by net-
worked electronic control units (ECUs). Nowadays, software engineers use component-
based development approaches for developing the software. Moreover, software compo-
nents have to be allocated to an ECU in order to be executed. Engineers have to cope
with topology, software, and timing dependencies and memory, scheduling, and routing
constraints [Al13]. Currently, engineers use techniques like integer linear programming or
SAT-based encodings to specify allocation constraints and to derive a feasible allocation
automatically. However, encoding constraints manually is a complex task [ZP13].

This paper is an abridged version of our paper [PH15] that introduces our model-driven,
allocation engineering approach. The original paper contributes an approach for specifying
allocation constraints in an easy, expressive, and more compact way and for deriving a
feasible allocation automatically. In particular, it helps engineers if constraint satisfaction
is a crucial, safety-critical aspect.

Fig. 1 depicts the process of our approach. We provide a new domain-specific Allocation
Specification Language (ASL) that embeds the Object Constraint Language (OCL). The
OCL enables to specify object query expressions in the context of models. We generate
a system of linear inequalities automatically using the specified allocation constraints on
the basis of a software architecture model and hardware platform model. The generated
linear inequalities are independent from concrete solvers. Hence, different existing solving
methods, like integer linear programming, SAT solvers, or metaheuristics can be used
to compute feasible solutions automatically. Afterward, we generate an allocation model
from a computed solution of the system of inequalities that maps the component instances
from the software architecture to ECUs from the hardware platform.

Specify Constraints via the
Allocation Specification
Language using the Object
Constraint Language

Generate
System of
Linear
Inequalities

Solve System of
Inequalities via
Integer Linear
Programming

Generate Allocation
Model with References
to Component
Instances and ECUs

Fig. 1: Model-Driven Allocation Engineering Process

1 Software Engineering, Fraunhofer IEM, Zukunftsmeile 1, 33102 Paderborn, Germany,
uwe.pohlmann@iem.fraunhofer.de

2 Software Engineering, Fraunhofer IEM, Zukunftsmeile 1, 33102 Paderborn, Germany,
marcus.huewe@iem.fraunhofer.de

Jan Jürjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 73



The ASL provides the four constraint kinds: collocation, separateLocation, requiredLoca-
tion, and requiredResource. Each constraint kind has its own formal semantics definition
and is transformed to a different system of linear inequalities. Fig. 2 shows an example of
a constraint specification that uses all supported allocation constraint kinds.

Fig. 2: Examples of Supported Constraint Kinds of the Allocation Specification Language

We evaluate our approach with an automotive case study modeled with MechatronicUML
[Be14] based on the Brake-by-wire case study by Aleti [Al13]. Our validation shows that
we can specify allocation constraints with less engineering effort and are able to derive
feasible allocations automatically for a complex component-based software model and
hardware platform model. As a result of using our approach, the solving of the whole allo-
cation problem becomes transparent for engineers. They specify the allocation constraints
via the ASL and get a feasible solution automatically without having to know how to en-
code and solve the allocation problem as a system of inequalities like an integer linear
program.

Acknowledgments: This work was developed in the Leading-Edge Cluster ’Intelligent Technical
Systems OstWestfalenLippe’ (IT’S OWL). The IT’S OWL project is funded by the German Federal
Ministry of Education and Research.

References
[Al13] Aleti, A.; Buhnova, B.; Grunske, L.; Koziolek, A.; Meedeniya, I.: Software Architecture

Optimization Methods: A Systematic Literature Review. IEEE Transactions on Software
Engineering, 39(5):658–683, May 2013.

[Be14] Becker, Steffen; Dziwok, Stefan; Gerking, Christopher; Heinzemann, Christian; Schäfer,
Wilhelm; Meyer, Matthias; Pohlmann, Uwe: The MechatronicUML method: model-driven
software engineering of self-adaptive mechatronic systems. In: Companion Proceedings of
the 36th International Conference on Software Engineering. ICSE Companion ’14, ACM,
New York, USA, pp. 614–615, 2014.

[PH15] Pohlmann, Uwe; Hüwe, Marcus: Model-Driven Allocation Engineering. In: Proceedings of
the 30th IEEE/ACM International Conference on Automated Software Engineering. ASE
’15. IEEE, pp. 374–384, Nov 2015.

[ZP13] Zeller, Marc; Prehofer, Christian: Modeling and efficient solving of extra-functional prop-
erties for adaptation in networked embedded real-time systems. Journal of Systems Archi-
tecture, 59(10, Part C):1067–1082, 2013. Embedded Systems Software Architecture.

74 Uwe Pohlmann und Marcus Hüwe




