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Rotation Tolerant Finger Vein Recognition using CNNs
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Abstract: Finger vein recognition deals with the recognition of subjects based on their venous pat-
tern within the fingers. The majority of the available systems acquire the vein pattern using only
a single camera. Such systems are susceptible to misplacements of the finger during acquisition,
in particular longitudinal finger rotation poses a severe problem. Besides some hardware based ap-
proaches that try to avoid the misplacement in the first place, there are several software based so-
lutions to counter fight longitudinal finger rotation. All of them use classical hand-crafted features.
This work presents a novel approach to make CNNs robust to longitudinal finger rotation by training
CNNs using finger vein images from varying perspectives.
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1 Introduction

The performance of finger vein recognition systems suffers from environmental condi-

tions (e.g. temperature and humidity) and deformations due to misplacement of the fin-

ger, typically including shifts, tilt, bending and longitudinal rotation. The influence of

some of these misplacements can be reduced or even prevented completely either dur-

ing acquisition by adding support structures for finger positioning or a correction during

pre-processing, feature extraction or comparison. Especially longitudinal finger rotation is

hard to avoid. In [PKU19], the authors showed that existing finger vein data sets contain

longitudinal rotation to a non neglectable extend. By eliminating only longitudinal fin-

ger rotation (all other condition remain unchanged), they achieved performance increases

of up to 350%. This indicates that longitudinal finger rotation is not only a problem in

selected use cases, but a general problem in finger vein recognition. As finger vein recog-

nition systems evolve towards contact less acquisition (e.g. [Ma17, KPU19]), problems

due to finger misplacements will become more severe.

Longitudinal finger rotation is hard to counteract as it changes the positioning of the veins

and their visibility due to a non-linear transformation. As can be seen in Fig. 1, the acquired

vein pattern of a finger differs depending on its rotation. There is already some work on

rotation detection and compensation for single-camera systems. Prommegger et al. [Pr19]

analysed different approaches and showed that existing recognition systems, even when

applying rotation compensation, cannot handle rotational distances of >30°. Others try to

tackle the problem by acquiring the vein pattern from different perspectives (e.g. [PU19,

Ka19]). The disadvantage of multi-camera systems are the increased cost and complexity.
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Fig. 1: Schematic finger cross section showing five veins (blue dots) rotated from -30° (left) to +30°

(right) in 10° steps. The projection (bottom row) of the vein pattern changes depending on the rota-

tion angle according to a non-linear transformation (originally published in [PKU18b])

Recently, finger vein recognition systems using convolutional neural networks (CNN) are

getting more attention. These systems are either not designed to counter fight longitudinal

rotation (e.g. [HLP17, WPU20]) or require the acquisition of finger vein images from

multiple perspectives [Ka19]. Therefore, this paper is the first to present a CNN based

rotation tolerant single camera finger vein recognition system. The proposed idea is to

train CNNs using finger vein images from varying perspectives. There are two different

sources for these images: (1) images that were actually taken from different perspectives

and (2) augmented images using a novel approach that simulates longitudinal rotations

during training. This way, the CNNs should learn to recognize the connection between

images that come from different angles and thus to recognize the non-linear distortion

caused by the rotation.

2 CNN Architectures

To demonstrate that our proposed approach to increase the rotation tolerance of CNNs is

independent of the used CNN architecture and loss function, two different CNN architec-

tures and loss functions are used in our experiments:

Squeeze-Net (SqNet) with triplet loss function: The advantage of the triplet loss com-

pared to more common loss functions (e.g. SoftMax) is that the CNNs learn to group

images of the same classes together in the CNN feature output space and separate im-

ages from different classes, instead of directly classifying images. So, contrary to common

loss functions, CNNs can also be applied to images whose classes are not included in the

training data. This property is crucial in biometric applications. The triplet loss using the

squared Euclidean distance is defined as follows:

L(A,P,N) = max(|| f (A)− f (P)||2 −|| f (A)− f (N)||2 +α,0) (1)

where A and P are two images from the same class (finger), N from a different one. α

is a margin that is enforced between positive and negative pairs (in our case α = 1), and

f (x) is the CNN output of an input image x. Same as in [WPU20], we employ hard triplet

selection and the Squeeze-Net architecture.

DenseNet with SoftMax loss: A more common approach than using the triplet loss is to

train a net with the common Soft-Max loss function and then use the net as feature ex-

tractor for evaluation by using the CNN activations of intermediate layers. This approach

has already been applied in prior work (e.g. [HLP17]). As network architecture we em-

ploy the DenseNet-161. For evaluation, we remove the final layer and thereby get a 2208

dimensional feature vector output when feeding an image through the network.
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Fig. 2: ROI of sample images of the PLUSVein-FR after applying CPN. Left: palmar view (0°),

middle: vein image captured at 45°, right: 45° artificially rotated version of the palmar image.

3 Training Data

As already described, the rotated versions of the training images are provided using two

different approaches. In the first approach, the images are acquired at different rotation

angles, while in the second approach the rotation is artificially generated using data aug-

mentation. Using vein images that were actually captured from different perspectives for

CNN training is of course more effort than generating the rotated versions with the help

of data augmentation. It should be noted that rotated samples of the same finger are only

needed for training. The actual angles of rotation of these samples do not necessarily have

to be known, as long as the acquired samples cover the rotational range for which the

recognition system should be tolerant. This can be achieved by e.g. placing the finger in

different rotations on the existing single camera capturing device or by rotating the cam-

era and illumination module around the finger as done for the employed data sets. This is

certainly a reasonable expense for commercial products. Recognition is still applied using

vein images from a single perspective.

All images for training and evaluation are normalized using Circular Pattern Normaliza-

tion (CPN) [Pr19]. In principle CPN corresponds to a rolling of the finger surface assuming

a circular finger shape. After this unrolling, longitudinal rotations correspond to shifts in

the acquired images.

Finger Vein Images Captured from Different Perspectives: For the training of the

CNNs, finger vein images acquired from different perspectives are used (the finger is ro-

tated around its longitudinal axis). All images of a finger, regardless of the angle at which

they were taken, are considered as the same class. As a result of this, the CNN should

learn to recognize finger vein images independent of their perspective. The left and mid-

dle image in Fig. 2 show two such input images. The left image has been acquired from

the palmar view (0°), the middle one from 45°. It is clearly visible that the vein pattern is

vertically shifted and deformed in a non-linear manner due to the rotational difference.

CNN Training using Augmentation of Finger Vein Images: The augmented training

data is generated from images acquired at the palmar view (0°). The height of a CPN

image is hCPN = r · π , which is half the fingers perimeter with an assumed radius of r.

The displacement (in pixels) that must be applied for a rotation of a defined rotation angle

ϕrotate can be calculated as:

hshi f t (ϕrotate) =
2 · r ·π ·ϕrotate

360°
=

hCPN ·ϕrotate

180°
(2)

For data augmentation in the rotational range of ±ϕ , the height h of the input images is

enlarged by twice the maximum shift h = hCPN + 2 · hshi f t (ϕ). Augmentation is applied
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by randomly cropping patches with height hCPN (and original width) of the enlarged im-

ages, which corresponds to rotations in the range of ±ϕ . The right image in Fig. 2 is an

artificially rotated version (45°) of the original image at the left.

4 Experiments

Datasets: The datasets used for the experiments are the PLUSVein Finger Rotation Dataset

(PLUSVein-FR) [PKU18a] and the PROTECT Multimodal Dataset (PMMDB) [Ga20].

Both datasets provide finger vein images acquired all around the finger (360° in steps of

1°) and have been acquired using the same sensor and the same acquisition protocol. In

this work, only the perspectives in the range of ±45° around the palmar view are used. The

PLUSVein-FR provides vein images from 63 different subjects with 4 fingers per subject

and each finger is acquired 5 times per perspective, resulting in 1.260 finger vein images

per perspective and 115.920 vein images in total. PMMDB is acquired from 29 subjects

with 4 fingers per subject and either 5 or 10 images per finger (one or two sessions) for

each perspective with a total of 102.987 finger vein images.

For finger region detection and finger alignment, an implementation that is based on [Lu13]

is used. The ROI extraction differs from [Lu13]: Instead of cutting out a defined rectangle

within the finger, the width of the finger is stretched to a fixed width and normalized using

CPN. It is worth to note, that no image enhancement techniques (e.g. contrast enhance-

ment) have been applied to the input images.

CNN Training: In order to study the influence of using training data from different longi-

tudinal rotations on the rotation invariance of the CNNs, the range of rotation from which

the training samples were taken was varied. The ranges are 0° (which corresponds to the

training of a classical single-camera recognition system with images from palmar view)

and ±5°, ±15°, ±30° and ±45° from the palmar view (0°). All experiments are executed

using (1) images acquired at different rotations and (2) augmented images simulating dif-

ferent rotations for CNN training.

Training is performed for 400 epochs starting with a learning rate of 0.001 for SqNet

and 0.005 for DenseNet. The learning rate is divided by 10 each 120 epochs. For both

nets, training is performed on batches of 128 images. The images are resized to 224×224

pixels and normalized to zero mean and unit variance before feeding them into the CNNs.

The two employed nets are pre-trained on the ImageNet database. In order to ensure a

100% separation of the training and evaluation data set, the training data was taken from

the PMMDB, while for evaluation it was taken from PLUSVein-FR.

Evaluation Protocol: The EER is used to assess the recognition performance. The evalu-

ation follows the test protocol of the FVC2004 [Ma04]. The employed similarity metric to

measure the similarity between CNN feature outputs of different images (genuine and im-

postor scores) is derived from the Euclidean distance. To transform the Euclidean distance

to a similarity metric, the Euclidean distances are inversed (d → 1/d) and normalized so

that the resulting similarity values range from zero to one.
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Fig. 3: Trend of the EER across different longitudinal rotations applying Triplet-SqNet and

DenseNet-161 trained with different rotational ranges

Evaluation of the CNN’s Rotation Invariance: For the evaluation of the rotation invari-

ance of the CNNs, we apply networks trained using images from different rotational ranges

(0°, ±5°, ±15°, ±30° and ±45°). For the evaluations, the vein images acquired at a certain

rotation angle ϕ are compared to the ones acquired at the palmar view. ϕ is varied from

-45° to 45°.

The trend of the EERs for Triplet-SqNet are shown in the top row of Figure 3. The left

image holds the results for the experiments using training images actually acquired at dif-

ferent angles, whereas the right plot depicts the results for the augmented training images,

where the images have been acquired at the palmar view and the rotation has been simu-

lated as described in Section 3. The plots reveal that the proposed approach to train CNNs

with vein images from different rotations works quite well. For Triplet-SqNet, the recogni-

tion rates of the reference evaluation (training only with images of the palmar view) drop

rapidly for increasing rotational differences. With an increasing rotational range of the

actually acquired training data, this decline becomes far less pronounced. For a training

range of ±45°, the EER at the palmar view (0°) is approximately 3%. For the perspectives

at +45° and -45° it is still around 6% for using training data acquired at different rotation

angles. Training the CNN with augmented image data improves the results as well, but not

to the same extent. For the training range of ±45°, this results in EERs below 10% at +45°

and -45°.

The same evaluations have been executed for DenseNet-161 (bottom row of Figure 3).

Training the DenseNet-161 using images acquired from larger rotational ranges improves

the recognition results, and therefore also the CNNs invariance to longitudinal rotations.

Training with larger rotational ranges leads to slightly smaller improvements compared

to the reference setting (training images only taken from the palmar view) as for Triplet-
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Fig. 4: Trend of the EER (left) and RPD (right) across different longitudinal rotations comparing the

proposed systems with hand-crafted single perspective recognition systems

SqNet, but the performance of the reference settings is also noticeable better for DenseNet-

161 over the whole range of ±45°. The results using augmented input data for DenseNet-

161 show no clear improvements.

5 Discussions

In order to be able to quantify the performance of the proposed method, the best per-

forming methods for actually acquired rotated training data (DenseNet-161 using CPN

and ±45°) and for using augmented training data (Triplet-SqNet using CPN and ±45°)

are compared to the best performing methods of a previous evaluation on longitudinal

rotations in finger vein recognition [Pr19]. The comparison methods comprise Princi-

pal Curvature (PC) [Ch09], Maximum Curvature (MC) [MNM07], Deformation Tolerant

Feature-Point Matching (DTFPM) [Ma16], a SIFT based approach [Qi13] and Finger Vein

Recognition With Anatomy Structure Analysis (ASAVE) [Ya17]. The evaluations in [Pr19]

showed, that the mentioned recognition schemes achieve their best results when combined

with Elliptic Pattern Normalization (EPN) [Hu10] and the Fixed Angle Approach [Pr19]

to counteract longitudinal finger rotation.

The results presented in the left plot of Fig. 4 indicate, that the performance of classical

hand-crafted recognition systems is good if the samples contain little to no longitudinal

rotations. With an increasing rotational distance between the probe and enrolment samples,

the performance drops noticeable. The best performing classical systems are the simple

vein pattern based approaches PC and MC. For more sophisticated approaches (DTFPM,

SIFT and ASAVE), the absolute performance degradation due to longitudinal rotation is

higher. In contrast, the EER of the proposed CNN based approaches are higher for smaller

rotations, but the drop of the performance is lower when the rotation increases. The right

plot of Fig. 4 should visualize this effect by plotting the relative performance degradation

(RPD), calculated as RPD =
ERRrotated−ERRpalmar

ERRpalmar
, of the different methods. It is obvious that

the two CNNs using our proposed training strategies are most robust against longitudinal

rotation as their drop in performance is the least.

Besides to the robustness against longitudinal rotation, the proposed CNN approach has

some additional advantages over traditional hand-crafted solutions:
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Pre-Processing: Most traditional finger vein recognition systems require different pre-

processing steps (e.g. image enhancement) that have to be tailored to each data set. Apart

from the ROI extraction, the approach presented in this article does not require any pre-

processing except of resizing and normalization (which are standard preprocessing steps

for CNNs and require hardly any computation time and do not require any adaption to

different data sets).

Cost of Time: Once the CNNs are trained, executing a single comparison is very fast. On

average, feature extraction takes 7 ms, a single comparison 0.01 ms. This is way faster

as for hand-crafted approaches applying time consuming approaches to increase rotation

invariance. Experiments in [Pr19] have shown that e.g. for PC with the rotation compen-

sation scheme ”fixed angle” and EPN feature extraction takes just below 130 ms, and a

comparison 2.4 ms.

6 Conclusions

In this article, we presented a novel CNN training strategy to increase the CNN’s toler-

ance against longitudinal finger rotation. It is the first CNN-based approach to achieve

rotation tolerance on single camera finger vein recognition systems and it can be applied

to any CNN, regardless of the used net architecture and loss function. We showed, that

by training the CNNs using vein images acquired from different perspectives, the toler-

ance with respect to longitudinal finger rotation of the CNNs can be increased noticeable.

For Triplet-SqNet, the same holds true if images acquired from a single perspective are

artificially rotated into different perspectives for the training (data augmentation), but to a

smaller extent.

Although the trained CNNs do not yet achieve the same baseline performance (when all

samples are acquired from the same perspectives) as systems utilizing classic hand-crafted

features, their tolerance against longitudinal finger rotation is exceptional good. The per-

formance degradation caused by longitudinal finger rotation is noticeable lower for the

trained CNNs compared to classical systems. Besides the CNN’s robustness to rotations,

other advantages compared to classical systems are that CNNs do not need any special

pre-processing (besides of the ROI extraction) and that a single biometric comparison is

very fast.
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