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Abstract: The world of programming has been conquered by the procedure call mech-
anism, including object-oriented method invocation which is a procedure call in con-
text of an object. This paper presents an alternative, method mixin invocations, that is
optimized for flexible creation of composite behavior, where traditional invocation is
optimized for as-is reuse of existing behavior. Tight coupling reduces flexibility, and
traditional invocation tightly couples transfer of information and transfer of control.
Method mixins decouple these two kinds of transfer, thereby opening the doors for
new kinds of abstraction and reuse. Method mixins use shared name spaces to trans-
fer information between caller and callee, as opposed to traditional invocation which
uses parameters and returned results. This relieves the caller from dependencies on
the callee, and it allows direct transfer of information further down the call stack, e.g.,
to a callee’s callee. The mechanism has been implemented in the programming lan-
guage gbeta. Variants of the mechanism could be added to almost any imperative
programming language.

1 Introduction

Mixins are well-known as a device that allows for decoupling of subclasses from their su-
perclasses [BC90, FKF98, BPS99]. This paper presents a related concept, method mixins,
allowing for a novel and in some ways more profound decoupling of behavior specifica-
tions than traditional procedure or method calls.

The basic idea is that a method need not be a monolithic entity, it may be constructed from
smaller parts, method mixins, which may be reused to construct many different methods.
A procedure call or method invocation may also be used to create a more complex behavior
from existing, simpler behaviors, but method mixins represent a very different set of trade-
offs.

There are several reasons for having method mixins in a language. With a traditional in-
vocation, the caller depends on multiple characteristics of the callee, including the number
and order of arguments. With a method mixin, the caller is completely independent of the
callee. With a traditional invocation, the caller can provide extra information to a callee
by adding an extra argument to the call; this means that all callees (e.g., a given method
in many classes) must be modified to accept that extra argument. With method mixins, the
caller may provide extra information freely; if there are a hundred callees and only one



of them need the extra information, then the other 99 callees need not be changed. Tradi-
tional methods communicate with each other using arguments and shared state in objects
or globally. Mixin methods support a novel scope for shared state which improves en-
capsulation and makes programs more robust in context of recursion or multiple threads.
Finally, a novel and useful feature of method mixins is that they are able to create cus-
tomized methods at run-time.

The contributions of this paper are: The basic concept of method mixins and their proper-
ties, a detailed comparison with traditional invocation, and a presentation of mixin meth-
ods as they have been implemented in gbeta [Ern99a, Ern01].

The rest of this paper is organized as follows: Section 2 introduces method mixins and their
informal semantics, and Sec. 3 gives some examples of how they can be used. Section 4
compares method mixins with traditional method invocation. Related work is discussed in
Sec. 5. Finally, Sec. 6 describes the implementation status, and Sec. 7 concludes.

2 Method Mixins

Method mixins are building blocks for methods, enabling a similar kind of incremental
specification for behavior as that which is well-known from the world of classes. Simi-
larly to class mixins, method mixins are more flexible than traditional (single or multiple)
inheritance mechanisms. To explain this, we need to discuss the relation between invo-
cations and objects, and to take a short detour into the language BETA [MMPNO93] which
supports an important predecessor of method mixins, as well as the language gbeta in
which we have implemented full-blown method mixins. We end this section with a lan-
guage independent description of the informal semantics of method mixins.

A procedure call or method invocation is associated with an activation record on a stack,
which holds state required by the invocation such as actual arguments and local variables.
In some languages, such as Smalltalk [GR89] and BETA, activation records are full-fledged
objects, and activation records are similar to objects also in other languages. Activation
records and objects differ in that an activation record has a behavior (the code or body
of the method) whereas an object in many languages does not per se have a behavior—
it has methods, and each method has a behavior. We can bridge this gap by considering
objects that have a “default” method. A message send is then (1) dispatch, i.e., selecting the
method, (2) creation of an object that plays the role as an activation record, (3) initialization
of the activation object (method arguments are initialized according to the actual argument
list, a this pointer is initialized to refer to the receiver, etc.), and (4) execution of the
activation object. Finally, if the method returns a result it is delivered to the calling context.

Activation records are traditionally specified monolithically, as an implicit aspect of the
treatment of the given method declaration by the compiler and run-time system. Com-
monalities between methods remain implicit and cannot be exploited for reuse purposes.
When working with objects we are used to abstraction and reuse mechanisms such as
inheritance, but these mechanisms are absent for methods.

BETA has supported activation records as objects with a default method [KMMPNS87]
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since the late 1970’ies. This was a consequence of unifying the concepts ‘class’ and
‘method’ into the more general concept pattern. Henceforth, the terms class and method
are used to mean pattern in connection with BETA —a class is just a pattern that is used in
a class-like manner (instances are bound to named references and their state is significant),
and a method is a pattern that is used in a method-like manner (instances are anonymous
and the side-effects or return value of their default method is significant). Since inheritance
is needed with classes, and classes are patterns, BETA supports inheritance for patterns.
Hence, it also supports inheritance for methods. This makes it possible to reuse and extend
behaviors in a way that is similar to reuse of classes by inheritance. Arguments and local
variables are inherited in a similar way as instance variables are inherited by a subclass,
and behavior is refined by means of the INNER mechanism, as described below. For an
example, see Box 1.

BETA style method inheritance
void operation(Account a) {
int tmp; a.lock(); INNER; a.unlock();
}
void withdraw(int amount) extends operation {
tmp = a.getBalance()-amount; a.setBalance(tmp);

} Box

We use a Java-like syntax, which is quite different from BETA [pwimaBu] and super-
ficially distinguishes between classes and methods; however, we have made this choice
because BETA syntax is not widely known. The only new concept here is that a method
extends another method, which gives rise to inheritance hierarchies of methods. For a
given method in such a hierarchy, there is a chain from that method to its immediate super-
method etc. up to the top of the hierarchy (here: withdraw inherits from operation).
The local variable tmp illustrates inheritance of instance variables—withdraw inher-
its tmp from operation. For behavior, we have to consider the inheritance structure
explicitly. Execution starts at the least specific level (here: operation), and INNER
invokes the next more specific level (here: withdraw). If there is no such more specific
level, then INNER has no effect. Thus, the method operation contains the basic behav-
ior of a whole category of methods, namely the ones that need to lock the account a, do
something, and unlock it again; withdraw is but one of the possible methods using this
behavioral scheme. For illustration, here is the same method expressed without method
inheritance:

Equivalent method
void withdraw(Account a, int amount) {
int tmp;
a.lock();
tmp = a.getBalance()-amount; a.setBalance(tmp);
a.unlock();

} Box

Note that method inheritance creates a refined method based on given methods; when (in
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standard OO) a class inherits a method from a superclass no refinement takes place, so this
is an entirely different concept.

Even though BETA style method inheritance and the INNER mechanism support a kind
of invocation, it is not sufficiently flexible to justify considering INNER in BETA as an
alternative to the traditional method invocation mechanism. The problem is that each sub-
method in BETA is called by INNER in one and only one method, namely the immediate
supermethod (e.g., in Box 1, the direct call site for withdraw is INNER in the body of
operation, and it could not be anywhere else). To make it clear how restricting this is,
consider a rudimentary dialect of BASIC that supports GOTO, but does not support CALL
or RETURN. We can write a subroutine and call it (using two GOTO statements for CALL
and RETURN), but we can only call this subroutine from one particular call site because
the second GOTO will “return” to the same location every time. Similarly, a submethod in
BETA can only be called from the body of one particular method, namely the immediate
supermethod —the caller is hardwired into the callee at compile-time. Note, however, that
the callee may vary for a given INNER in BETA (e.g., INNER in operation may call
any submethod of operation,e.g., withdraw).

In gbeta, the restriction on the caller of a submethod has been removed. The language
gbeta is a generalization of the language BETA. The gbeta concepts are generalized ver-
sions of corresponding BETA concepts, so we use the words ‘method’ and ‘class’ about
patterns in the same way as in BETA, and for the same reasons. The most important dif-
ference between BETA and gbeta in this context is that a pattern [Ern99a, Ch.3] in gbeta
is an ordered composition of mixins, whereas a pattern [MMPNO93, Ch.3&6] in BETA is
constructed by single inheritance from a statically known superpattern. This means that
every BETA submethod has exactly one supermethod from which it can be called, whereas
in gbeta every mixin may be called from an unbounded set of mixins. Hence, the caller
of a gbeta mixin may vary, as well as the callee. This makes INNER in gbeta similarly
powerful as ordinary object-oriented method invocation with late binding, where a given
method may be called from multiple places, and a given call site may invoke multiple
method implementations. However, these two mechanisms represent very different trade-
offs in many other respects, so a detailed comparison is required. We will present such a
comparison in Sec. 4.

Method mixins
mixin void m_operation(Account a)
{ int tmp; a.lock(); INNER; a.unlock(); }
mixin void m withdraw(int amount) A
{ tmp = a.getBalance()-amount; a.setBalance(tmp); }
method withdraw = m_operation @& m withdraw; Box

Box 3 shows the usage of gbeta mixins to express an equivalent withdraw method
as the one in Box 1. It is again given in a Java-like syntax for readability; ‘@’ is the
mixin composition operator. The symbol ‘A’ stands for a specification of the require-
ments by the mixin on other mixins, i.e., what it expects to inherit. If there is no such
specification, m_withdraw cannot be type checked, because the names a and tmp are
not declared anywhere. It would still be possible to type check compositions such as
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m_operation @ mwithdraw, but it would be very hard to type check dynamic mixin
compositions. One solution is to let A be a set of requirements on attributes in super-
mixins; each mixin would then have a composition type according to its requirements, and
the types of mixins would be used to check that all requirements are satisfied when mix-
ins are composed. In gbeta another approach is taken—the gbeta type system [ErnO1,
Ern99a] is based on structural typing at the level of mixins, not at the level of individual
declarations, and A denotes a list of mixins. Any composition that includes at least these
mixins will make the body of this mixin type safe. We may then type check and generate
code for each mixin separately.

A method mixin denotes a gbeta mixin, i.e., one of the building blocks in a gbeta pattern.
The word ‘method’ is included to emphasize that this pattern is intended to be used as
a method. This concept is novel and useful because it provides an alternative to known
invocation mechanisms, and this is not the case with other kinds of mixins. The concept
can easily be broadened in order to be introduced into various different programming
languages, which we will illustrate in the following by giving the informal semantics of
method mixins without reference to BETA or gbeta:

A method m is a list of building blocks called method mixins, m;, i.e., m = [my ... my].
Each method mixin m,; has an associated structure, S(m; ), such as arguments and local
variables, and it has an associated behavior, B(m; ), which is a list of instructions (using
S(m;)). A method invocation is an instance of a method m. Its structure .S(m) is the com-
plete activation record, which combines the structure of all the mixins S(mq)...S(my).
The behavior of the method invocation, B(m), is created by composing the behaviors
B(my)...B(my). Each method mixin behavior is parameterized with ‘the meaning
of INNER’. Let () denote the null behavior (no operation), and let B’(m;) denote the
composed behavior of all mixins with index ¢ or greater. Then B'(my) = B(my)(0),
B'(mg—1) = B(mg_1)(B'(my)), etc. up to B'(m1) = B(m1)(B’(m2)), and finally
B(m) = B'(my).

Execution of an INNER statement may also be described as a jump-subroutine instruction
from the current mixin 7, to the next mixin ;1. When the behavior of m;, terminates,
the behavior of m; is resumed just after the INNER statement.

3 Examples

Separation of concerns is the most profound reason why method mixins are useful in
addition to ordinary method invocation. The concerns are transfer of information and
transfer of control. Ordinary method invocation tightly couples the two, whereas method
mixin invocation separates them. The example in Box 4 demonstrates that this makes a
difference in practice.
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Wrapper example
class Account {
void withdraw(int amount)
{ setBalance(getBalance()-amount); }
void lock() { ... }
void unlock() { ... }
}
class StdSafeAccount extends Account {
void wrapper(Closure cl) {lock();cl.doit();unlock(); }
void withdraw(int amnt)
{Closure cl=new Closure(amnt); wrapper(cl); }
class Closure {
int amount;
Closure(int amount) { this.amount=amount; }
void doit() {StdSafeAccount.super.withdraw(amount); }

}

}

class SafeAccount extends Account ({
mixin m wrapper() { lock(); INNER; unlock();}
method withdraw = m wrapper @ super.withdraw;

} Box

Class Account provides a simple withdraw method. Assume that we need to wrap
a pair of lock and unlock operations around the body of withdraw. We could du-
plicate all the method bodies and add lock/unlock, but we want to avoid such error-
prone practices. We want the wrapper as a reusable entity that does not depend on the
wrapped method. StdSafeAccount shows how we can do this in standard Java, and
SafeAccount shows how to do it with method mixins.

In StdSsafeAccount we need to call the original method (Account.withdraw) in
the body of wrapper, and we do not want to depend on exactly what method to call, to
give arguments to it, nor to transfer returned results from it. The ‘closure’ object c1 makes
this possible. The method withdraw is overridden to create an instance of Closure,
initialize it to hold arguments, and give it as an argument to wrapper, which will then
call doit on the closure which will in turn call super .withdraw, bracketed by lock
and unlock. If the wrapped method had a return type different from void, the returned
value could be stored in the closure object and extracted after the call to wrapper. So,
it is possible but hard to create a wrapper that is independent of the signature of the
wrapped method.

The signature of a method is a specification of the transfer of information from the caller
to the callee and back. The problem with the standard Java approach is that the transfer of
information is tightly coupled with the transfer of control: wrapper cannot directly call
super .withdraw without depending on the signature of super .withdraw. Method
mixin invocation differs from traditional method invocation because INNER does not de-
pend on the signature of the callee.

In SafeAccount, we can create a wrapped version of withdraw by simply composing
super .withdraw and m_wrapper. The signature of the composition is the signature
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of super.withdraw, because m_wrapper does not accept any arguments nor return
results. The composition operator in gbeta is based on a linearization algorithm that is
described in [Ern99b], and the space does not permit a detailed explanation here. However,
a similar approach could be used to add method mixins to other languages. The actual
composition operation is as follows:

[mwrapper| ® [m_-237] = [m.wrapper,m_237]

The method Account.withdraw is denoted by [m_237] here. The name m_237 is
machine-generated because that method mixin is anonymous in the program.

To summarize, the signature independent wrapper requires an elaborate machinery in stan-
dard Java, because transfer of information and transfer of control are inseparable in ordi-
nary method invocation. Using method mixins, transfer of information happens when the
composite method is invoked, and transfer of control happens when INNER is executed in
the wrapper. Thus, the wrapper is easily kept independent of the wrappee.

We now outline a number of useful kinds of method mixins, leaving pieces of code unspec-
ified by using symbols A and A’ to stand for sequences of statements that do not contain
INNER, and B to stand for boolean expressions that do not contain INNER. See Box 5.

Five archetypes
mixin m before() { A; INNER; }
mixin m_after() = { INNER; A'; }
mixin m_around() = { A; INNER; A'; }
mixin m maybe() = { if (B) INNER; }
mixin m repeat() = { while (B) INNER; } Box

The first archetype, m_before, is very common. When composing m_before with a
method foo as in m_before & foo the code A runs before the body of foo, like a
before: method in CLOS [Kee89]. This provides simple, sequential composition of
behavior, using shared state: If my ...m,, are of this kind then the method [m; ...m,]
runs the actions in my, let us call them A4, followed by the actions .45 in meo, etc.

For the second archetype, a similar method [my ...m,] will execute the actions in the
order A/, Al ;... A}, ie., in reverse order, similar in effect to an after: method in
CLOS.

The mixin composition operation does not depend on whether it is composing method
mixins of type 1, type 2, a mixture, or something entirely different, so a method mixin
writer can specify composition order rules separately from the composition itself.

The third archetype combines the two first types by having actions both before and after
the INNER statement, and the result is that the actions are executed in a “parenthesized”
order: Ay, As,... A, AL, Al,_1,... Aj. Of course, m_wrapper in Box 4 is an example
of this.

The fourth and fifth type of method mixins can be used to control the execution of other
method mixins; m_maybe is able to determine whether or not the remaining (more spe-
cific) method mixins should be executed or not, and m_repeat is able to repeat the exe-
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cution of the remaining method mixins until some criterion () is satisfied. These method
mixins are reusable building blocks for specific aspects of behavior, which is a novel reuse
domain.

4 Comparison

A method mixin (MM) has behavior and local state, just like a method, and it has an
enclosing object, just like a method. However, it is invoked by INNER rather than by
name, and it does not accept arguments or return results at the call site. It communicates
with other method mixin instances (MMIs) via shared (inherited) state in other MMISs. It is
also possible for method invocations to communicate with each other by means of shared
state, e.g., state in a common receiver object; but the shared state of a list of MMIs is not
located in an enclosing object, it is located directly in the MMIs.

We have described MM composition as mixin composition extended with behavior com-
position. This means that the semantics of MM composition depends on the underlying
semantics of mixin composition. In particular, it makes a difference whether or not mixins
can be composed dynamically, and whether or not an existing object (possibly an activa-
tion object) can be transformed by, e.g., adding part objects corresponding to additional
(method) mixins. Both of these facilities are available in gbeta, subject to some con-
straints that are required for type safety [Ern99a, Ch.7]. However, it is easier to ensure
good performance when such dynamic features are known to be unused.

A crucial difference between method invocation and MM invocation is the transfer of in-
formation. For methods, this happens as part of the invocation, but for MMs there is
greater flexibility. Let us consider the possibilities, leaving the mixin composition mech-
anism very open by just saying that MMIs on the call stack may access attributes in other
MMIs further up the stack. One possible choice is to let access be unlimited, such that the
entire call stack may be searched for any name that is not defined locally. This is effec-
tively the same as dynamic scope, as in some old versions of LISP. This would however
be very hard to make type safe, and it has obscure and surprising semantic properties. For
this reason, MMIs are grouped, and every lookup across MMIs is limited to be inside the
group. Hence, the MMIs in a group together are an entity—an object, or an activation
record if you wish.

Usage of attributes across MMI boundaries may also vary. With a per-declaration struc-
tural typing of mixin requirements (cf. A and Box 3), the same name application in a
given MM may resolve to many different declarations. This ensures flexibility, but we
suspect that it gets harder to understand the effect of code in an MM. As mentioned, mix-
ins in gbeta require specific other mixins, thereby ensuring that the applied names refer
to statically known declarations. There is still late binding, but we know exactly which
declaration we are using the late-bound value of.

Another design decision is concerned with the life-time of MMIs. An activation record
lives from the invocation to the termination of its call, but MMIs may not have to live
exactly for the same period as the method invocation that they are part of. Obviously, if an
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MM m; depends on state in an MM m,; then m; must exist at least at every moment where
m; runs. It would be sound to allow any kind of life-times that respect this criterion.
In gbeta we have chosen the following approach: an MMI group can be extended, but
no members can be taken out once they are in. This is because other properties of the
language —in particular virtual patterns— would make the type analysis unsound if it were
possible to remove an MMI from a group.

At this point we can compare MMs with ordinary methods from several different points of
view, and that is what we will do in the next section.

4.1 Method Mixins vs. Ordinary Methods

MMs are a supplement to—not a replacement for—ordinary methods. They are so differ-
ent that programmers should make the trade-offs explicitly. To characterize the purposes
for which each is most suitable, consider two different points of view. External: Once we
have written an entity that solves a particular problem, it may be reused many times by
being accessed from many different contexts. This point of view emphasizes the use of
a preexisting entity; we call it black-box reuse. Internal: An entity may have a general
structure that allows it to solve many different problems, if only we are able to express
variants. This point of view emphasizes creation of variants of a flexible entity; we call
it white-box reuse.! To apply this to behaviors, consider a method or MM ‘m’. Black-
box reuse focuses on being able to call m flexibly; white-box reuse focuses on flexibly
controlling what methods/MMs m calls.

The two kinds of reuse complement each other. Black-box reuse is governed by an explicit
interface and is often easy. However, it does not help much if a suitable entity is not
available. White-box reuse may then allow us to build the kind of entity that is needed.
White-box reuse can be more difficult than black-box reuse, in the sense that it usually
requires more knowledge about the internal structure of an entity to create a specialized
variant of it. In return for this investment, white-box reuse gives us flexibility. It is also
reasonable to say that black-box reuse is a large scale mechanism, because a reusable entity
could be reused from anywhere in a large scope, e.g., an entire program. On the other
hand, white-box reuse is focused on the internals of the entity that is being specialized.
We believe that ordinary methods are the most suitable choice for black-box reuse, and
MMs are more powerful for white-box reuse. In the following we will compare MMs and
ordinary methods from various different points of view, thereby also exposing their weak
and strong points.

4.1.1 Communication.

Ordinary methods may communicate with each other by means of arguments and returned
results, or by means of shared access to mutable state in some reachable entity, e.g., global

IThe terms black-box reuse and white-box reuse are used in many contexts, including [GHJV95]; it is not
quite clear who coined these terms.
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variables or instance variables in an object. Arguments can transfer information from a
caller to an immediate callee, and return values can transfer information in the opposite
direction. Shared state can be used for communication across multiple activation records,
but it is error-prone if there are resource conflicts, e.g., when recursion or multiple threads
cause more than one invocation of those methods to exist simultaneously. If an argument
is of reference or pointer type then it may be used to establish aliased access to mutable
state. Aliases may be used in a similar way as other kinds of shared state. They may have
fewer resource conflicts than state in an enclosing object or global state, but they require
declaration of a corresponding argument in all methods on a contiguous part of the stack,
even if some methods do not use it.

MMIs communicate with each other by means of shared state in the MMIs themselves;
they may of course also use shared state elsewhere. Communication via local shared state
is considerably more flexible than communication via arguments. In particular, commu-
nication may happen across multiple, possibly oblivious MMIs. For instance, m_repeat
in Box 5 can be used to repeat a part of an method until some condition in the enclos-
ing object is satisfied, and the other MMIs may depend on each other across the repeater
without having any knowledge about it. Conversely, the repeater need not depend on the
name space inside that method at all. Similarly, the mixin m_wrapper in Box 4 is in-
dependent of the information passed to the body of Account.withdraw. The class
stdSafeAccount illustrates how much machinery is needed to obliviously pass in-
formation through a method such as wrapper, and that is not even entirely obliviously
because wrapper handles the closure object.

4.1.2 Callee dependencies.

Consider the situation where an ordinary method foo is called. This is achieved by writing
the name foo at the call site, along with an explicit argument list. The call may also be
used as an expression if foo returns a result. This means that the caller depends on the
number, order, and types of arguments; on the name of the callee; and on the result type of
the callee. Methods are not first class entities in many object-oriented languages, including
Java [AG98] and Eiffel [Mey97], so the only way in which the implementation of foo may
vary is by late binding. In other languages such as Ci+ [Str97] we may also use function
pointers or similar devices, but the dependency on the signature of the callee is common
to all cases.

MMs are very different in this respect. An invocation of an MM is simply the keyword
INNER, and the caller is entirely independent of the callee. There is no mention of a name
for the callee; there are no arguments; and there is no returned result. It is even possible
that there is no callee, in which case INNER will do nothing. This means that an MM is in
a sense maximally flexible with respect to the callees that can be attached to it.

4.1.3 Caller dependencies.

Consider the task of writing an ordinary method bar; part of the job is to specify the exact
arguments and their types, as well as a return type. This works well as an interface to the
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callers because it is explicitly defined and it allows the body of the method to use infor-
mation received from callers without knowing anything about them. Hence, an ordinary
method does not depend on its callers.

On the other hand, if bar needs more information in order to carry out the prescribed task
then there is no way to get more information out of the callers except for changing the
interface of bar and then changing all call sites, e.g., to add some new arguments. This
is especially laborious if the bar we are working on is one of many implementations of
bar in many different classes —all those method implementations must then have the new
arguments added to their declarations, even if few of them use it.

An MM is again very different. It may depend on declared names in one or more of the
MMs in the same method. This means that an MM can only be called when caller MMs
provide a suitable name space, and that it is necessary to type check MM composition in
order to ensure that all required names are indeed defined, with appropriate types. On the
other hand, the MM uses names in its callers one by one, and it is not affected by changes
applied to names that it does not use. For instance, we could add a new declaration to a
caller and then use that name in one or more callees; all the other callees could remain
unchanged.

In summary, an MM may depend on an inferred (partial) interface of some of its fellow
MMs. Different MMs may depend on a given MM via different inferred interfaces. In
contrast, an ordinary method uses information exclusively from the immediate caller, and
via an explicitly defined interface. Different methods called from the same call sites must
agree precisely on the interface that they present to those call sites.

4.14 Encapsulation.

Ordinary methods are encapsulated in relation to each other, in the sense that a caller
knows nothing about the callee except for its name and signature. However, the encap-
sulation of a group of methods that have a need to communicate with each other may be
broken by the reliance on external shared state. When a method changes the state of its
enclosing object it may be conceptually well-motivated, but when object state or global
state is used mainly for the transfer of information between method invocations then it
becomes error-prone.

For communication, MMIs support an exact match between the involved MMIs and the
life-time and scope of the state that is used for this communication, hence they enable an
improved encapsulation towards the external environment. On the other hand, MMIs are
able to use the internal structure of each other, hence they are mutually unencapsulated.
In other words, they are optimized for intense collaboration and white-box reuse of each
other. Of course, access declarations (private, etc.) may be used to make the white box
turn gray, thus imposing some discipline upon the collaboration. Considering that methods
are generally simpler entities than classes, this style of encapsulation support is arguably
sufficient for methods because it is well-known and works for classes.

Note that it is possible for MMISs to contain state that is used throughout the life-time of the
MMI group, but not depended upon by all members. A method could for instance include
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an m_maybe MM (see Box 5) that declares and uses its own state to determine whether
or not to invoke the remaining MMs. This would affect the semantics of the method as a
whole, but the other MMs in the method need not depend on that local state.

4.1.5 Life-time.

Ordinary method invocations have nested life-times: A caller lives at least as long as any
of its callees, and possibly much longer. The number of invocations on the run-time stack
is (practically) unbounded. This makes it possible to organize an entire program execution
in terms of traditional invocations.

MMs are composed into groups and then invoked as a unit. Different design decisions
could be made with respect to the ability to add or remove members from this group
during the execution; gbeta supports addition of new members, but execution must then
be restarted, so it is recommended to finish building the MMI group before executing it.
When the topmost member of the group terminates, the whole MMI group is considered
terminated.

Hence, MMs can not be the behavior structuring principle for an entire program execution.
Also, MMI groups are expected to consist of relatively few members because they are
optimized for intense collaboration and openness.

4.1.6 Kinds of entities communicated.

A method argument may only be an entity of certain kinds in some languages, usually
known as “first-class” entities. For instance, a Java method cannot receive a method as an
argument, and a class can only be given as an argument if it is accessed via the reflection
system, which means that type safety is lost and special syntax must be used to create
instances of that class, etc. With MMs, the communication takes place by means of shared
name spaces. Hence, anything that can be declared can also be communicated.

4.1.7 Name spaces.

An ordinary method provides a name space by means of the formal argument list, and it
is up to the caller to initialize this name space. It is possible in some languages, e.g. G,
to define default values for some of the arguments (argument number N and upwards for
some V). This makes it possible to call a method with fewer arguments than the argument
list contains, corresponding to the situation where the caller “does not say enough” about
the arguments. Note that this only provides information to the callee that the callee already
had in its declaration.

An MMI cannot be called from a group of callers that “do not say enough”, that would
violate the (A) requirements check at mixin composition time. This restriction might be
lifted by introducing a notion of “default declarations”, but we have not investigated this
possibility in details. However, the fact that an MM may choose to use only some of the
declared names in statically known callers allows another phenomenon, namely that the
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callers “say too much”. This enables us to change a callee to use more of the provided
information at the call site without having to synchronize with all the other callees. As
usual, MMs emphasize the ability to flexibly enhance the effect of its callers, whereas
ordinary methods emphasize the ability to be called from arbitrary call sites.

Common Lisp [GLS90] supports the notion of a &rest parameter, i.e., a name that is
bound to the list of arguments given at the current call site in addition to the explicitly
declared parameters. Similar mechanisms are provided in Java 1.5 and in C+- by means of
an ellipsis, ‘..., representing any number of additional arguments. This seems to enable
callers to “say too much”, but since it is just a list of nameless values, it is essentially just
syntactic sugar for an ordinary argument of type List. To illustrate the difference: if two
extra names are provided by an MM caller, then callees can use one of them without being
affected by the existence of the other new name; if a Common Lisp call site provides two
arguments to the &rest parameter then the callees must know about both in order to be
able to use the second one—the callee would not be unaffected by the provision of the
unused argument.

4.1.8 Invocation.

An ordinary method is invoked by calling it. It does not involve other methods, except if
it takes one or more arguments of type ‘function pointer’ (or whatever it is called in the
given language) and calls it.

MMs must be composed into an MM group, a method, which is then invoked. One of the
MMIs is positioned as the topmost one, and that one is called when the group as a whole
is called; the others may or may not be called using INNER.

Because it makes a given MM call another one, the operation of composing MMs may be
compared to a higher-order function in a functional language. However, such a higher-
order function would have to rely on a traditional call chain as described earlier: transfer
of information in a pure functional language is even more strictly confined to arguments
and returned results than it is in imperative and object-oriented languages.

5 Related Work

Since the comparison between MMs and ordinary methods was the main topic of Sec. 4,
a kind of related work has already played an important role. However, some other mecha-
nisms still need to be considered.

The language BETA [MMPNO93] is important in relation to everything in gbeta, but the
similarities and differences have already been described in earlier sections. Briefly, gbeta
generalizes the BETA concepts and mechanisms in such a way that INNER becomes com-
parable in power to ordinary method invocation (though different in nature).

A language mechanism that seems to be usable for similar purposes as MMs is the macro
mechanism in Common Lisp [GLS90]. Such macros are capable of manipulating source
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code (not individual characters, but syntax trees) in an extremely flexible manner, because
it is based on program transformations by means of arbitrary user-defined functions. This
very general transformation capability makes it hard to ensure that the output from a macro
has known properties. E.g., in a host language that otherwise supports static type checking,
such as gbeta, there would hardly be any other way to check typing properties of a macro
call than to actually expand the macro. This indicates that macros are unlikely to be able to
coexist with static typing, and at the same time be able to be expanded dynamically. MMs
in gbeta can be composed dynamically, and they do not conflict with static type checking.

Dylan [Sha97] macros are similar, but hygienic, which means that they do not allow names
used in macro calls to be captured in a new binding environment associated with the macro
definition, or vice versa. It is possible to ‘intentionally violate’ the hygiene, e.g., to let a
binding of a name in a macro definition be used by expressions in macro calls, but this is
considered to be a dangerous practice. In other words, macros are not intended to combine
behaviors having shared access to a name space, which is a core idea for MMs.

The composition filters [AWBB94, Ber94] approach allows for very flexible adaptation
of the effect of sending messages. Composition filters can be used to redirect a message
to another receiver, they can be used to change the selector (method name), and they can
be used to modify arguments in a message. There are also some special filters for other
purposes, e.g., for delaying a message until some condition is satisfied. This approach is
largely orthogonal to MMs, because method mixins are concerned with the construction
of methods, whereas composition filters are concerned with selection of which method to
call, and how.

Aspect Oriented Programming [FECAOQS5] is also an approach that aims to provide new
abstraction mechanisms in programming languages. An Aspect] [KHH'01] aspect could
be used to transfer information from one method activation to another, across oblivious
invocations. In particular, a c£low pointcut in a percflow aspect would provide a
location to store such information at a particular point on the call stack, and a way to
retrieve it from invocations further down that call stack. This is rather costly in terms of
performance and also less well integrated into the method call mechanism than method
mixins, but it may prove useful as a small design pattern in cases where method mixins
would have been an obvious solution.

There has been much work on (class) mixins since the seminal paper [BC90] where mixins
were established as a separate concept. We do not know of any other language than gbeta
where mixins are used as composable method building blocks, so the connection between
gbeta mixins and other mixins is not very close in context of this paper. However, we
should mention a few points in this area.

In [SCD*93] the notion of a mixin method is introduced. Execution of a mixin method
makes the receiver object change class and, e.g., obtain some new instance variables. In
other words, mixin method invocation is the mechanism that is otherwise known as mixin
application (we used the term mixin composition), and mixin methods are therefore unre-
lated to our concept of MMs (method mixins). On another related point, [FKF98] presents
an extension of a subset of Java with mixins, called MIXEDJAVA. In this paper they in-
troduce the notion of an inheritance interface, specifying the requirements of a mixin on
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potential superclasses. In gbeta, the inheritance interface is expressed via the set of re-
quired mixins that each mixin must have available. In both cases the mechanism ensures
statically that name lookup will indeed succeed at run-time, and the looked up entity will
have an appropriate type.

6 Implementation Status

The language gbeta implements method mixins, and the source code is available> under
the GPL license. The syntax in this paper has been adjusted to be Java like and we omitted
some details like module import statements, but apart from that the examples correspond
to actual running code in gbeta.

7 Conclusion

We have presented the notion of method mixins; compared their characteristics extensively
with those of traditional method invocations; and argued that method mixins represent a
substantially different trade-off. Method mixins are optimized for white-box reuse, i.e., the
creation of variants of behaviors based on flexible building blocks. Traditional invocation
is optimized for black-box reuse, i.e., invoking existing functionality as-is, from many dif-
ferent places. We believe that these two mechanisms supplement each other well. Some
special characteristics that make method mixins attractive are as follows: With method
mixin invocation, the caller is completely independent of the callee; with traditional in-
vocation, the caller depends at least on the signature of the callee. With method mixins,
communication is based on an inferred signature that allows callees to use different subsets
of the available information; with traditional invocation the communication via arguments
and returned results must be identical on all callees. With method mixins, communi-
cation is free to occur across oblivious intermediate method mixin instances; traditional
arguments and returned results only support communication between a caller and its im-
mediate callee. Method mixins have been implemented in the language gbeta, where they
are tightly integrated with other features of the language, but the basic ideas could be used
in many other languages.
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