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Abstract: In the last years, complex applications from various domains are
implemented in embedded devices. These applications make extended use of the
dynamic memory to store dynamically allocated data structures. The implementation
of these data structures affects the performance and the memory usage of the
embedded system. A methodology for selecting the appropriate data structures at
design time is the Dynamic Data Type Refinement (DDTR) methodology. In this
paper we present an extension to this approach, by presenting a methodology for
adapting the dynamic data structure implementations to the requirements of the
embedded system at runtime. By implementing the proposed methodology to a set of
various applications from different domains, we achieve a dynamic memory size
reduction up to 32%.

1 Introduction and Motivation

In the emerging market of embedded systems, an increasing amount of applications (e.g.,
3D games, video-players) comes from the general-purpose domain and this software
needs to be mapped onto extremely compact and mobile devices, which struggles to
execute them. These complex applications hold very different restrictions regarding
memory usage features, and more concretely are not concerned with an efficient use of
the dynamic (heap) memory. Also, they receive input from and serve directly the end
user of the embedded system. This means that the actions of the user have significant
impact on the control flow of the algorithms in the applications, thus making the
execution dynamic and event-driven.

This has led to an increased reliance on specific data structures, which allow data to be
dynamically allocated and deallocated at run-time (releasing the memory they occupied
back to the Operating System, when it is no longer needed) and provide an easy way for
the designer to connect, access and process data. They can cope, in the most efficient
way, with the variations of run-time needs (e.g., network traffic, user interaction,
controller input) and the massive amounts of data processed and stored. The most
common examples of these dynamically allocated data structures are single and double
linked lists.

1 This work is partially supported by the E.C funded FP7-ICT-2009-4-248716 2PARMA Project. Official
Website: http://www.2parma.eu.
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The data structure implementations affect both the memory consumption and the
performance of the application, because each data structure has different characteristics
in terms of memory size which it occupies and memory accesses needed to access the
data (which affects the performance of the application and the energy consumption of
the whole system) [10]. However, the implementation choices made at design time do
not take into consideration runtime information that can change during the execution of
the application. This information can be derived from the system (e.g. available
memory) or from the application (e.g. the current memory size of the data structure).

We argue that the data structure implementations can change at runtime, according the
runtime information such as the available memory and the performance requirements of
the application. Thus, it is possible to achieve more efficient system resource utilization
at runtime. The approach in [10] is the Dynamic Data Type Refinement (DDTR)
methodology that provides one optimal data structure implementation for each metric
under consideration (i.e. performance and memory footprint). This is accomplished at
design time, by inserting the DDTR library interface in the application and then
executing the application using some input traces. However, the data structure selected
as optimal may not be actually the optimal under certain circumstances.

For example, consider the memory size of two data structure implementations: single
linked list (SLL) and dynamic array. The amount of memory that the data structure
occupies is obviously affected by the number of objects stored in each data structure and
the additional information that the data structure uses to store the objects (i.e. in the case
of SLL a pointer to the next object). As a motivation example, Dijkstra application [9]
contains a data structure that stores 258 objects of 12 bytes each one, which are accessed
by the algorithm. In order to optimize the application in terms of memory footprint, one
can use the DDTR approach. According to DDTR the optimal data structure
implementation is the SLL. Indeed, Figure 1 displays the comparison between the
memory size of SLL and dynamic vector up to 258 objects. However, when the data
structure holds between 193 and 256 objects, dynamic vector implementation requires
less amount of memory to store the same objects. In this case, we can achieve better
memory utilization by changing the data structure implementation from SLL to dynamic
array. Thus, in this paper, we examine whether by performing such data structure
adaptations, is possible to achieve better memory utilization.

The remainder of the paper is organized as follows. In Section 2, we describe some
related work. In Section 3, we analyze the design methodology. In Section 4 our
benchmarks are introduced and the experimental results are presented. Finally, in
Section 5 we draw our conclusions.

2 Related Work

The authors of [1] present a dynamic data type refinement methodology. Using this
methodology the designer can make tradeoffs between performance and energy
consumption by selecting different data structure combinations from a library of such
implementations.
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In [2] a set of metadata is presented that could be used to analyze the behavior of the
dynamically allocated data structures. The metadata targeted most the access pattern
characterization in sequential and random, as well as some other behaviors like the
frequency of constructions and copy-constructions.

The Dynamic Data Type Refinement methodology provides a set of Pareto points, at
design time, which the designer can use to make trade-offs between performance,
memory footprint and energy. Each Pareto point represents a data structure (or a
combination of data structures). These data structure implementations are set at design
time and remain the same during the execution of the application. In this paper we
present a new approach: We argue that by changing the dynamic data type
implementation at runtime, we can achieve better resource utilization. The reason that
our approach achieves better results that the DDTR, is the fact that it takes into account
runtime information that determine which dynamic data type (or combination) is optimal
at each point of the execution of the application.

Figure 1: Memory size evolution of single linked list and dynamic array

Several approaches have been proposed for runtime adaptation of applications. For
example [3] concentrates in the software adaptation using dynamic change in application
components. The authors introduce a framework that monitors changes in the execution
environment of applications and performs a dynamic recomposition of the application
components, when significant changes in the environment take place.

A few works focus on the dynamic configuration of parallel applications. For instance,
in [4] is described a runtime optimization approach that allows the automatic on-the-fly
reconfiguration of the parallel simulation code for increasing the performance of the
application. The dynamic adaptation is performed by collecting and combining runtime
information from the application with static parallel performance models.

There are several tools that focus on runtime software adaptation. For example, Pin [5] is
a dynamic binary instrumentation tool that performs in process-level and allows the
modification of application instructions prior to the instruction execution. Similar tools,
that operate in similar fashion, are Strata [6] and DELI [7].
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Runtime adaptation has also been proposed for task migration. For example in [8] is
described a mechanism for reducing task migration latency in multi-core architectures,
by performing trade-offs between latency and bandwidth. Runtime adaptivity is achieved
by using a latency/bandwidth trade-off parameter, which controls the trade-offs. All the
aforementioned approaches that refer to the runtime adaptation can be used along with
our approach.

3 Methodology Overview

The runtime information that our methodology takes into account is the number of
objects stored in each data structure. As mentioned before, the amount of data in the data
structure affects both the memory size and, in most cases, the number of accesses needed
to access each object. We take advantage of this fact, in order to achieve better memory
utilization at runtime.

3. 1 The modes

Since different implementation types for each data structure exists, we define each
different combination of data structure implementations of the application as a different
mode at which the application can run. For each mode the following information is
calculated at design time:

• The size of the data structures for each number of objects

• The memory size and the performance overhead of the transition to each other data
structure type implementation for each number of objects.

Table 1: Example of a mode

Data
Structure

Implem
entation

Number of
objects

Memor
y size Transition to

Performa
nce

overhead

Memory
size

overhead

DDT 1 SLL 150 128

DLL 300 200

Dynamic
Array 320 400

DDT 2 DLL 100 140 Dynamic
Array 320 450

354

354



Using the aforementioned information, it is possible to compare the modes and keep
only the optimal ones, by discarding those for which better one already exist in terms of
memory size for a specific number of objects. Modes that violate the designer constraints
are also discarded. The modes are defined at design time and the runtime manager
handles the transition between the available ones at runtime.

Table 1 presents an example of a mode for an application that uses 2 data structures. The
first one is considered to be a single linked list that holds 150 objects and the second a
double linked list where 100 objects are stored. For the first data structure a possible
transition to double linked list and dynamic array is considered and the necessary
overhead information is presented. For the second one, only the transition to single
linked list is presented, since any other transformation is supposed to have intolerable
overhead. Another mode, for example, would be DDT1 implemented as a vector and
DDT2 as a SLL for a different number of objects. The conditions to consider a mode
available at runtime are the following:

• The memory size of the mode plus the overhead of the transition is less that the
memory size of the mode corresponding to the DDTR data structure combination.

• The performance and the memory footprint overhead of the transition to the specific
mode from some other mode, do not violate the constraints set by the designer.

To evaluate each mode, we use as a reference mode, the one corresponding to the DDTR
methodology. This is done, in order to prove in this paper that using this methodology
we can achieve better results in terms of memory utilization than using only the DDTR
methodology.

The condition to make a transition at runtime is the following: The memory footprint of
the target mode to be less that the memory footprint of the current mode.

3.2 Methodology Description

The methodology is composed of the following three steps and is presented in Figure 2:
1) DDTR exploration; 2) Insertion of the necessary data structure information to the
design time manager that automatically detects the available modes; and 3) Execution of
the application along with the runtime manager.

The DDTR exploration is exhaustively described at [10]. By implementing the DDTR
methodology, the designer obtains a set of optimal data structure implementations, in
terms of memory footprint and performance. From this set, the one provided to our tool
is the combination that is better in terms of memory footprint. The inputs of the design
time manager are the following:

• Input from the DDTR exploration. The optimal dynamic data type implementation
for each data structure of the application.
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• Object size of each data structure. This information is necessary to calculate the size
of each data structure and obtain the set of available modes.

• Maximum number of objects for each data structure. This information is obtained
during the DDTR exploration methodology. Although the application is dynamic,
and it is not possible to know the exact maximum number of objects in each data
structure, the traces used in the DDTR exploration phase, can provide an estimation
of the maximum number of objects each data structure holds.

Designer constraints. In the case of real time applications performance constraints may
exist. Thus, since the transition from one mode to another causes a delay, these
constraints determine whether a mode or a transition to a mode is available or not.

Figure 2: The proposed methodology

The designer inserts the aforementioned information to the design time manager tool.
The tool, using the aforementioned inputs, produces a set of candidate modes in which
the application can run. Each mode is a different set of dynamic data structure
implementations of the application. For all the available modes, which are propagated to
the runtime manager, the size of the data structure plus the overhead of the transition to
this mode is less that the size of the dynamic data structure selected as optimal by the
DDTR methodology. All the dynamic data structure combinations (i.e. modes), for
which the aforementioned condition is not valid, are discarded. Thus, from the pool of
all the candidate modes, only the optimal ones are provided to the runtime manager.

The input of the runtime manager is the set of the available modes selected by the design
time step and the current number of objects in each data structure of the application. The
application runs along with the runtime manager. The runtime manager handles the
transition between the modes created at the design time phase. Each time an operation
takes place in a data structure, the runtime manager checks if transition to another mode
is possible.
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3.3 The overhead of the methodology

In this subsection we examine the overhead of the presented methodology. The
overheads are the following:

• Design time exploration to obtain the available modes. This overhead is rather
trivial, since the whole process is based on mathematical calculations. The duration
depends on the number of data structures and the maximum number of objects that
each one holds. For example, for 5 data structures of 10,000 objects each one, the
exploration takes less that 1 minute.

• Increased code size (Memory size overhead). The code size of the application
increases, since the runtime manager is also compiled along with the application.
This overhead less than 1 KB of memory, so can be considered trivial, especially for
large applications.

• Performance overhead (runtime overhead): The fact that the runtime manager
checks whether a better mode or not exists each time a data structure operation takes
place, causes a delay in the execution of the application. However, as shown in the
experimental results section, this delay is rather trivial, since every calculation
needed is made at design time. Also, the routine that the runtime manager uses to
check the available modes is very simple.

• Overhead of mode changes (runtime overhead):

o Performance overhead: This overhead is affected by the number of objects
and the type of source and target data structures. (E.g. It is more time
consuming to transfer or remove data from a dynamic vector, than from a
single linked list, since the dynamic vector is resized). The performance
overhead is known at design time. If the overhead is tolerable, then the
corresponding mode is provided to the runtime manager. Otherwise, it is
discarded.

o Memory footprint overhead: During the transfer of data from one data
structure to another, there are 2 data structures (the source and the
destination) that coexist in the memory. Thus, there is a memory size
overhead, which is affected by the type of source and destination data
structures and the number of objects to be transferred. However, this
overhead is calculated at design time and only if it is tolerable, the
corresponding mode is forwarded as an input to the runtime manager.

Our tool precalculates the aforementioned overheads and ensures that a mode is
available only when the destination data structure characteristics and the overhead of the
transformation are better (in terms of memory footprint or performance) from the current
data structure.

3.4 The tool
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The tool which implements the described methodology is composed by two parts. The
first one is the design time manager which provides the available modes to the runtime
manager. The runtime manager handles the transitions between the different modes.

• Design time manager: To use the design time manager the designer provides the
necessary input to the tool in text mode. The manager is composed by a set of
routines which make the necessary calculations to generate all the possible modes.
Then, the manager automatically produces the set of the available modes.

• Runtime manager: To use the runtime manager, the designer sets the provided
interface to the data structures of the application. This is a straightforward process,
especially, if the application uses the STL data structures. The runtime manager
contains a set of dynamic data structures, along with a routine which decides when
to change the current mode, taken as input the current number of objects of each
data structure.

Table 2: Cumulative experimental results

4 Experimental Results

To validate our approach, we have chosen a wide range of applications from various
application domains. By implementing each step of the methodology, we calculated the
memory size gains, as well as the overhead added to each application by the tool. More
specifically, we calculate the maximum and the average memory size reduction during
the execution of the application, in comparison with the memory size of the data
structure implementations suggested by the DDTR. All memory size information
provided in the experimental results is the size of all data structures of each application.

App. name Maximum
memory
size
reduction

Average
memory
size
reduction

Maximum
Memory
footprint
overhead

Average
memory
footprint
overhead

Perf.
overhead

Code
size
increase

Dijkstra 25.1% 8.6% 50.9% 12.16% 22.4% 50%

2D Game 30.3% 16.4% 11.3% 7.1% 3.4% 27%

3D Engine 32% 5.23% 10.3% 6.58% 18.3% 14%

3D Game 25% 3.32% 65.4% 30.38% 22% 3%

358

358



As far as the overhead is concerned, we calculated the memory footprint overhead
which exists when a mode change takes place at runtime. This overhead exists only
during the mode change process and is eliminated after the end of the transformation.
Performance overhead is compared with the performance of the original application.
Finally, the code size shows the increase in the size of the executable of the application
due to the tool. The cumulative results of our case studies are presented in Table 2.

4.1 Dijkstra application

The first test case is Dijkstra algorithm taken from the Mibench Suite [9], which stores
network nodes in a data structure. As mentioned earlier, the optimal data structure
implementation in terms of memory footprint according to the DDTR approach is the
single linked list. Implementing the DDTR solution (i.e. the mode that corresponds to the
DDTR solution), no mode changes take place. However, using the adaptive approach, a
number of data structure implementation transformations are being made during the
execution of the application, which results in a memory size reduction up to 25.1% in
comparison with the memory size occupied by the application using single linked list
during the whole execution, (which is the solution proposed by the DDTR approach).
This is achieved by implementing 63 mode changes during the execution. The memory
size overhead due to mode changes (shown in table 2) is not presented in figure 3. It is
considered tollerable, thus only the data structure memory footprint evolution is shown.
Figure 3 displays the memory size evolution of the application during the whole
execution. It can be seen that the memory size using the adaptive approach can be higher
that the memory size using the DDTR approach, at some points of the execution of the
application. This is because the transformation to the optimal data structure
implementation in terms of memory size has very low benefits or is intolerable,
according to the constraints set by the designer. Figure 4 shows the memory size
reduction achieved by using the adaptive approach. The maximum memory footprint
overhead that takes place during the transformation is 50.9%, which can be considered
relatively high. However, this overhead can be decreased by the designer, by setting the
appropriate constraints, with a corresponding decrease to the memory size reduction.

4.2 Comboling application

A 2D game named Comboling contains a grid of tiles, which are stored in a singly linked
list that is filled with tile elements (thus, the memory size is constantly increasing) and
accessed in a random pattern [11]. The optimal data structure implementation according
to the DDTR approach is the single linked list. Figure 5 displays the memory size
comparison between the solution proposed by the DDTR against our approach. Using
the adapting approach 8 transformations take place and 30.3% memory size reduction
during the execution of the application is achieved. For instance, when the size of the
data structure is between 786 and 1024 bytes the vector solution provides less memory
size than the single linked list. The memory size gains are presented in Figure 6. The
main overhead of our methodology in this application is the code size that seems
relatively high. However, the code size of Comboling is less than 1 KB, so the overhead
added by our tool can be considered trivial.
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4.3 Simblob application

Simblob is a 3D environment creation engine that utilizes vectors to hold its dynamic
data [12]. The optimal data structure in terms of memory footprint according to the
DDTR approach is the single linked list. Figure 7 shows the comparison between the
DDTR and our approach. Implementing the adaptive approach,4 transformations take
place and the maximum memory size reduction is 32%. Figure 8 displays the memory
size gains. It can be seen by Table 2 that the overheads of our methodology in this test
case are relatively low.
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Figure 8: Simblob application – reduction of
memory footprint

4.4 VDrift application

Vdrift is a 3D open source racing game with realistic physics [13]. The application uses
vectors to store its dynamic data for graphics, physics and collisions. The DDTR
approach suggests single linked lists as the optimal data structure implementations in
terms of memory footprint. Figure 9 displays the memory size comparison between the
DDTR approach and the adaptive one. During the adaptive approach 23 mode changes
take place and the maximum memory size reduction achieved is 25%. The memory gains
are presented in Figure 10.

The memory footprint overhead of the transformations is relatively high, as can be seen
in Table 2. However, as mentioned with the Dijkstra test case as well, the overhead can
be decreased by the designer, by setting the appropriate constraints. It should be taken
into account that in this case, the amount of memory reduction will be also decreased,
since some mode transformations will not take place.
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5 Conclusions

In this paper we presented a methodology for adapting the dynamic data structure
implementations of an application to the runtime environment at which the embedded
system executes the application. We proved that it is possible to achieve better dynamic
memory utilization by using a runtime manager that adapts the data structure
implementations by adding a tolerable overhead. Our future work addresses the
extension of the data structure implementation library of the runtime manager, as well as
the further reduction of the overheads of the proposed methodology.
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