
101

Towards Schema Evolution in

Object-aware Process Management Systems

Carolina Ming Chiao, Vera Künzle, Manfred Reichert

Institute of Databases and Information Systems

University of Ulm, Germany

{carolina.chiao, vera.kuenzle, manfred.reichert}@uni-ulm.de

Abstract: Enterprises want to improve the lifecycle support for their businesses pro-
cesses by modeling, enacting and monitoring them based on process management sys-
tems (PrMS). Since business processes tend to change over time, process evolution
support is needed. While process evolution is well understood in traditional activity-
centric PrMS, it has been neglected in object-aware PrMS so far. Due to the tight in-
tegration of processes and data, in particular, changes of the data and process schemes
must be handled in an integrated way; i.e., the evolution of the data schema might
affect the process schema and vice versa. This paper presents our overall vision on
the controlled evolution of object-aware processes. Further, it discusses fundamental
requirements for enabling the evolution of object-aware process schemas in PHILhar-
monicFlows, a framework targeting at comprehensive support of object-aware pro-
cesses.

1 Introduction

Aiming at improved process lifecycle support, a decade ago, many researchers started

working on process schema evolution. In general, business processes may evolve for sev-

eral reasons; e.g, due to changes in the business, technological environment, or legal con-

text [RW12]. Consequently, business process changes need to be rapidly mapped to the

process-aware information system (PAIS) implementing these processes.

Activity-centric process management systems (PrMS) like YAWL [vdAtH05] and ADEPT

[RD98, RRD04, RW12] already provide comprehensive process lifecycle support, includ-

ing the controlled evolution of business processes. Regarding object-aware processes

[Kün13], however, this does not apply yet. Due to the tighter integration of process and

data, changes of the data and process schemes must be handled in an integrated way. In

other words, changing the data schema may affect the schema of an object-aware process

and vice versa. Note that respective dependencies might become complex when taking

different levels of process granularity as well as authorization constraints into account as

well.

The example below is based on a real educational scenario. It comprises a process for

managing extension course projects. Extension courses target at professionals that want to

refresh and update their knowledge in a certain area. In order to propose a new extension

course, the course coordinator must create a corresponding project description. The latter

must then be approved by the faculty coordinator and the extension course committee.



102

Example 1 (Object-aware Process: Extension course proposal). The course

coordinator creates an extension course project using a form. In this context, he

must provide details about the course, like name, start date and description. Fol-

lowing this, professors may start creating the lectures of the extension course. In

turn, each lecture comprises study plan items, which describe the topics to be cov-

ered by the lecture. After creating the lectures, the coordinator may request an approval

of the extension course project. First, an approval must be provided by the faculty

director. If he wants to reject the proposal, the extension course must not take place.

Otherwise, the project is sent to the extension course committee, which will evalu-

ate it. If there are more rejections than approvals, the extension course project is

rejected. Otherwise, it is approved and hence may take place in future.

The process from Example 1 can be characterized by its need for object-awareness; i.e.,

business processes and business objects must not be treated independently from each other.

In general, object-aware processes show three major characteristics. First, they are based

on two levels of granularity. On the one hand, the behavior of individual object instances

needs to be considered during process execution; on the other, the interactions among

different object instances must be taken into account. Second, process execution is data-

driven; i.e., the progress of a process depends on available object instances as well as

the values of their attributes. Third, flexible activity execution is crucial. In particular,

activities need not always coincide with process steps.

The PHILharmonicFlows framework we are developing targets at a comprehensive support

of object-aware processes [KR09b, KR09a, KR11, Kün13]. It comprises modules for the

modeling, execution and monitoring of object-aware processes. In this framework, object

behavior is captured through micro processes. In turn, object interactions are captured by a

macro process. Furthermore, data is modeled separately from micro and macro processes.

Note that each of these models comprises different components. For example, a data model

comprises object types as well as their attributes and relations to other object types.

Schema evolution has neither been considered by PHILharmonicFlows nor other frame-

works for artifact-based or object-aware processes yet. As a major challenge, one must

cope with the complex interdependencies that exist between the models and components

(e.g., data model, object types, attributes, or micro process types) of the framework;

i.e., changing one component (e.g., deleting an object attribute) may require concomitant

changes of other components (e.g., changing the behavior of the object type). Moreover,

changes must be handled at both the static and dynamic (i.e., instance) level. Changing an

object-aware process without any user assistance will be error-prone and time-consuming.

Therefore, user interactions should be properly supported in order to guide the modeler

when changing an object-aware process. In particular, any guidance must hide complexity

from users, taking correctness constraints and component dependencies into account.

This paper presents requirements necessary to enable schema evolution for object-aware

processes. To illustrate how these requirements were derived, we sketch our vision on

how the user should interact with the PHILharmonicFlows tool when changing an object-

aware process. Sect. 2 provides an overview of the PHILharmonicFlows framework. Sect.

3 presents research questions to emphasize the scope of our work. In Sect. 4, we introduce



103

our vision on how the user (i.e., modeler) should be supported when evolving object-aware

processes. Sect. 5 presents major requirements emerging in this context. Sect. 6 discusses

the related work and Sect. 7 gives a summary and outlook.

2 The PHILharmonicFlows Framework

The PHILharmonicFlows framework enforces a modeling methodology governing the

object-centric specification of business processes based on a well-defined formal semantics

[KR11, Kün13]. In general, an object-aware process schema comprises the following sub-

schemas: data model (cf. Fig. 1a), micro process types (cf. Fig. 1b), macro process types

(cf. Fig. 1d), and authorization settings (cf. Fig. 1c). In turn, each sub-schema comprises

a set of components (e.g., a data model comprises object types, object type attributes and

relations to other object types), which may be related to components of other sub-schemas

(e.g., a micro step type depends on an attribute of an object type). When changing compo-

nents, hence, concomitant changes of dependent components become necessary as well.

RUN-TIME

BUILD-TIME
Data Model

Micro Process

Macro Process

Object Type States

Micro Steps

Micro

Transitions

Macro Steps

Macro

Transitions
Relations

Attributes

Coordination
Overview

Tables
Worklists

Forms

Authorization

Process Context

Aggregation

Transverse

Permissions

User Assignment

a

b

d

c

e

Figure 1: The PHILharmonicFlows framework

As a fundamental prerequisite, object types and their relations need to be captured in a data

model (cf. Fig. 1a). Furthermore, for each object type, a corresponding micro process type

needs to be specified (cf. Fig. 1b). The latter defines the behavior of related object in-

stances, and consists of a set of micro steps as well as the transitions between them. In

turn, each micro step is associated with an object type attribute. Further, micro steps are

grouped in object states. At run-time, for each object instance, a corresponding micro

process instance is created. A micro process instance being in a particular state may only

proceed if specific values are assigned to the object instance attributes associated with this

state; i.e., data-driven process execution is enabled. In addition, optional data access is ac-

complished asynchronously to micro process execution based on the permissions granted

for reading or writing object attributes. In this context, access rights for an object instance

depend on the progress of the corresponding micro process instance as well. Altogether,



104

the framework maintains an authorization table assigning data permissions to user roles

which may also depend on the respective state of the micro process type (cf. Fig. 1c).

Extension Course

Project

name: string

start_date: date

credits: integer

description: string

decision_faculty: string

faculty: string

reason_rejection: string

date_rejection: date

date_approval: date

Study Plan Item

Decision

Commitee

Lecture

1..n 1..n

1..10

a (Simplified) Data model b Micro process type Extension

Course Project

under creation

name start_

date

faculty

under approval faculty

decision_faculty date_approval

reason_rejection

date_rejection

APPROVED

REJECTED

under approval

committee
approved

rejected

Course coordinator

Faculty director

Object type

Attributes

State type

User role

Micro transition type

description
Micro step type

Figure 2: Data model and micro process type modeled with PHILharmonicFlows

Taking the relations between the object instances of the overall data structure (i.e., the

instance of a data model) into account, the corresponding micro process instances form a

complex process structure; i.e., their execution needs to be coordinated according to the

given data structure. In PHILharmonicFlows, this is accomplished by means of macro

processes. A macro process type consists of macro steps linked by macro transitions (cf.

Fig. 1d). Opposed to micro steps, which refer to single attributes of a particular object

type, a macro step refers to a particular state of an object type. In addition, for each macro

transition, a coordination component must be specified (cf. Fig. 1e). The latter hides the

complexity of large process structures from modelers as well as end-users. More precisely,

such a coordination component coordinates the interactions among the object instances of

the same type as well as different types. Opposed to existing approaches, the semantic

relations between the object instances and their cardinalities are also taken into account.

Figs. 2 and 3 show how Example 1 can be modeled based on PHILharmonicFlows. Micro

process type Extension course project is derived from the object type having same

name (cf. Figs. 2a+b). In this micro process type, the course coordinator must write

attributes name, start date, faculty, and description. Note that this configuration needs

to be reflected in the authorization settings (cf. Fig. 3a). Furthermore, attribute credits

may be optionally written. In turn, a macro process type (cf. Fig. 3b) is composed of

macro step types. The latter reference state types from the micro process types. For

example, macro step type Extension Course Project - under creation refers to state

type under creation of micro process type Extension Course Project (cf. Fig. 2b).

3 Research Questions

To emphasize the scope of our problem, we consider the following research questions:

Research Question 1 (RQ1): How to change an object-aware process schema without

violating correctness neither of the modified component itself nor any dependent compo-



105

a Authorization settings for micro process type Extension Course Project

Extension Course

Project

under

creation

Lecture

requested

Study Plan

Item

create

item

Study Plan Item

finished

Lecture

finished

Extension Course

Project

under approval

faculty

Extension Course

Project

under approval

committee

Decision

Committee

requested

Decision

Committee

approved

Decision

Committee

rejected

Extension

Course Project

approved

Extension

Course Project

rejected

b Macro Process Type

under

creation

under approval

faculty

under approval

committee

approved rejected

Course

coordinator

Course

coordinator

Faculty

Director

Course

coordinator

Faculty

Director

Course

coordinator

Course

coordinator

name MW R R R R R R

start_date MW R R R R R R

faculty MW R R R R R R

credits OW R R R R R R

description MW R R R R R R

decision_faculty R MW R R R R

date_approval R MW R R R R

reason_rejection R MW R R R R

date_rejection R MW R R R R

Macro step typeMacro transition type

Read attribute

permission

User role

State type
Mandatory write

attribute permission

Optional write

attribute

permission

refers to Object

Type Lecture

refers to State

type of Micro

Process Type

Lecture

Figure 3: Authorization settings and macro process type modeled with PHILharmonicFlows

nents?

Research Question 2 (RQ2): How to handle active instances (i.e., object and micro pro-

cess instances) when evolving the object-aware process schema?

Research Question 3 (RQ3): How to assist users in evolving an object-aware process

schema?

RQ1 refers to changes at the static level. It deals with structural changes of an object-aware

process schema; i.e., its sub-schemas and their components. In turn, RQ2 addresses issues

related to dynamic changes; i.e., managing different schema versions and adopting the best

policy to migrate active instances to the new schema version. Finally, RQ3 deals with user

issues, such as providing user guidance while hiding the complexity of schema changes

from them. These research questions guide our vision discussed in Sect. 4. Further, they

serve as starting point for eliciting requirements related to the evolution of object-aware

processes.

4 Overall Vision

To illustrate the scope of our research, we define a number of scenarios (i.e., user stories)

dealing with schema changes of our sample process. While some scenarios are rather

simple, not requiring any concomitant change, others are more complex involving several

schemas of the object-aware process. Thereby, a major challenge concerns user interaction

as changing an object-aware process schema constitutes an error-prone and complex task.

Hence, user guidance is required to assist users when changing the schema of an object-

aware process, e.g., by indicating the components affected by an intended change. For



106

Delete the attributes

decision_faculty,

reason_rejection,

date_rejection, and

date_approval from object type

Extension Course Project!

Extension Course Project

name: string

start_date: date

credits: integer

description: string

decision_faculty: string

faculty: string

reason_rejection: string

date_rejection: date

date_approval: date

Decision CommiteeLecture

1..n 1..n

under

creation

under approval faculty

decision_faculty date_approval

reason_rejection

date_rejection

3

1

APPROVED

REJECTED

2

under approval

committee approved

rejected

under creation under approval faculty under approval committee approved rejected

Course coordinator Course

coordinator

name MW R R R R R R

start_date MW R R R R R R

faculty MW R R R R R R

credits MW R R R R R R

description MW R R R R R R

decision_faculty R MW R R R R

date_approval R MW R R R R

reason_rejection R MW R R R R

date_rejection R MW R R R RStudy Plan Item

1..10

Course coordinator

R MW R R R

Create an empty

micro step type

Deleting the following micro step types will leave

an empty state type. What do you want to do?

Delete the empty

state type

Lecture

finished

Extension Course Project

under approval

faculty

Extension Course Project

under approval

committee

(…)

Deleting the following macro step type will leave

the respective macro step type inconsistent.

Please review the macro transition types!

Ok!

You have realized the following changes:

Yes

Data model

Object type Extension Course Project

Micro Process Type Extension Course Project

Authorization Settings

Macro Process Type

Total components on the schema changed: 34

+
-

+
+

Do you want to commit the changes and create a

new schema version?

No

+

b c

d e

f

The following ongoing instance groups are allowed to be

migrated to the new schema version:

· OAPi0001 – see more details

· OAPi0002 – see more details

· OAPi0008 – see more details

g
Instance group OAPi0001

Data model

Micro process

Extension Course Project

-
-

+
-

id name start_date faculty credits

0001 Creative 20/06/2015 English 4

Extension Course Project

Total of object instances to be migrated: 1

Total ofmicro process instances to be migrated: 1

Total ofmacro process instances to be migrated: 1

Yes

Do you want to migrate the following

instances to the new schema version?

No

a CHANGE IMPACT ANALYSIS
Change Operation: DELETE ATTRIBUTE SET (decision_faculty,

reason_rejection, date_rejection, date_approval)

DATA MODEL MICRO PROCESS

TYPES

AUTHORIZATION

SETTINGS

MACRO PROCESS

TYPE

Extension

Course Project

Lecture

Decision

Committee

Study Plan

Item

R

R

R

Extension

Course Project

Lecture

Decision

Committee

Study Plan

Item

Extension

Course Project

Lecture

Decision

Committee

Study Plan Item

Macro

Process

Type –

Extension

Course

Project

Figure 4: Sketch of end-user guidance for object-aware process schema changing



107

illustration purpose, we provide a mockup showing how to guide a user in the context of a

concrete change scenario.

Change scenario (SC): The extension course project needs not be approved by the

faculty director anymore, and the overall schema shall be adapted accordingly.

Since for an extension course project the approval of the faculty director is no longer

needed, the user wants to delete the attributes referring to it (e.g., decision faculty,

reason rejection, date rejection, and date approval); i.e., he wants to change the data

model. In turn, this requires concomitant schema adaptations. First of all, the user should

be notified about the effects of the change; i.e., a change impact analysis is required. Based

on such an analysis, it can be visualized which sub-schemas and components are affected

by the change and how they are related. Regarding our mockup (cf. Fig. 4a), the object-

aware process schema is divided into four levels corresponding to the sub-schemas data

model, micro process types, authorization settings, and macro process type. The dotted

arrows represent potential effects caused by the change. In the given scenario, changing

object type Extension Course Project affects the corresponding micro process type as

well as the authorization settings. Changing the micro process type Extension Course

Project, in turn, may further affect the macro process type.

Being aware of the possible effects of the intended change, the user may then be guided

in performing required concomitant changes (cf. Fig. 4b). According to PHILharmon-

icFlows (cf. Sect. 2), micro steps of a particular micro process are directly related to the

attributes of the corresponding object type. Therefore, when an attribute is deleted, the

corresponding micro step type needs to be deleted as well. In Fig. 4c, in turn, the deletion

of the respective micro step types will result in an “empty” state type. According to the

correctness constraints of the framework, this is not possible, and would leave the micro

process type in an inconsistent state. Therefore, the user should be notified about this

problem and guided in resolving it. In Fig. 4d, the user decides to delete the entire state

type, which, in turn, causes another inconsistency in the macro process type. Again, the

user should be notified about this, enabling him to redefine the macro transition types that

link the respective macro step type. In general, every time the user changes a component,

respective correctness checks should be performed automatically in order to be able to

guide the user in resolving potential inconsistencies.

Since changes of one component might trigger changes of others, the user will not al-

ways be aware of the number of components actually changed. Hence, after guiding him

through required adaptations of the object-aware process, an overview of all components

to be changed should be provided; e.g., such overview could present information about

the components to be changed as well as quantitative metrics (e.g., number of components

and models to be changed) (cf. Fig. 4e). Finally, the user should explicitly commit the

changes, resulting in a new version of the object-aware process schema.

In addition to structural adaptations and structural consistency, active instances must be

taken into account; i.e., it should be possible to adapt the running instances according

to the changed object-aware process schema. Fig. 4f presents the active instances that

may be migrated to the new schema version without causing any run-time error. To foster



108

visualization, instances are grouped according to the underlying object type; i.e., each

instance group refers to one particular object type. In our example, the instances refer to

an extension course project. Then, the user may choose which group of instances he

wants to migrate. Further, he may retrieve more detailed information about the respective

instances (cf. Fig. 4g). Finally, like in the context of model changes, the user will get an

overview of the instances to be migrated.

5 Requirements

Based on our research questions, the sketched vision, and an extensive literature study, we

derived major requirements. The requirements of Sect. 5.1 are related to RQ1, while the

ones of Sect. 5.2 are related to RQ2. Finally, the requirements of Sect. 5.3 are related to

user guidance issues (i.e., RQ3).

5.1 Structural Changes at the Static Level

Requirement 1 (Change primitives). To accomplish structural adaptations of an object-

aware process schema, change primitives are required to directly operate on single schema

elements. In our context, such primitives denote atomic operations like add attribute

type, delete micro step type, and add state type. In general, the set of available

change primitives should be complete and minimal [CCPP98, RD98, RW12]. Complete-

ness means that the available set of change primitives shall allow transforming any object-

aware process schema S into any other object-aware process schema S’. In addition, the

core set of provided change primitives should be minimal; i.e., it should not contain any

primitive that can be simulated through the combination of other primitives. Finally,

for each change primitive, a precise definition of parameters, pre-conditions, and post-

conditions (i.e., effects) is required [CCPP98].

Example 2 (Requirement 1: Change primitives). For removing micro step type

date rejection of state type under approval faculty, change primitives for deleting

the micro step type and its related micro transition types are required (cf. Fig. 5).

under approval faculty

decision_faculty date_approval

reason_rejection

date_rejection

APPROVED

REJECTED
(…)

DELETE MICRO STEP TYPE

date_rejection

DELETE MICRO

TRANSITION TYPE

DELETE MICRO

TRANSITION TYPE

(…)

Figure 5: Example of change primitives

Requirement 2 (Cascading effects). Fig. 6 presents the meta model of PHIlharmon-

icFlows, expressed in terms of an UML class diagram. The dependencies between the

different components of the framework are represented as bidirectional associations, com-

positions and aggregations. Regarding the class diagram, the bidirectional association



109

represents components linked with each other in the context of a particular model (e.g.,

micro step types are linked with micro transition types within a micro process type). A

composition dependency indicates a “strong” association between components, making

one component (i.e., parent component) responsible for the creation and destruction of

other components (i.e., child components). For example, an object type is strongly as-

sociated with attribute types. If the object type is deleted, all related attributes must be

deleted as well. In turn, the aggregation dependency constitutes a “weaker” relationship

between components: even when deleting the parent component, the child components

will not be removed. An example of an aggregation dependency is provided by the re-

lationship between the micro step types and attributes. If a micro step type is deleted,

the associated attribute is preserved. Due to these dependencies and associations among

different components of the framework, changing one of them might require changes of

dependent components as well. In turn, such concomitant changes might again trigger ad-

ditional changes on other components (i.e., a cascading change). In general, mechanisms

are required to detect necessary concomitant changes and to guide the user in applying

them.

Data Model

Object Type

*1

Value Type

User Type

* 1

Attribute Type

*

1

*

1
1

-source

1

1

-target

1

Micro Process Type

1

1

State Type

2..*

1

Micro Step Type

1..*

1

1

1

-source

0..1

1

-target0..1

1 External
Implicit

Explicit

Empty

Atomic

Value-Specific

Value Step Type

*

1

Macro Step Type

0..*

1

Macro Process Type

*

1

Port Type
*1

-source1

1

Macro Transition Type
-source

0..1

1 -target 1

1

Process Context Type

1

0..1

1

0..1

1

0..1

1..*
1

1

1

1..*

1

1

1

1

1

1..*

1

responsible

1

1

Backward Transition Type

-source

1

1

-target1
1

1..*

1

responsible

1..*

1

responsible

1..*

1

responsible

1..*

1
responsible

Relation Role Type
1

-source

1

1
-target1

Internal

1

*

1

1..*

1
*

*
1

*

1

1

1..*Black-box Activity Execution Permission

Black-box Activity Template

Black-box Activity

Object Permission

User Role

Micro Transition Type

Attribute Permission

Aggregation Type Transverse TypeRelation

Figure 6: PHILharmonicFlows meta-model

Requirement 3 (Change operations and change patterns). Realizing structural adap-

tations based on change primitives might introduce errors and inconsistencies. Usually,

at such a low level of abstraction, the combined application of several change primitives

is required to ensure schema correctness. As an alternative, high-level change operations

may be used; e.g., it should be possible to move an entire state type within a micro pro-

cess type based on a single change operation. Like change primitives, high-level change

operations should have pre-conditions. Generally, empirically-grounded change patterns

should be defined, which capture the semantics of frequent changes, thus raising the level



110

of abstraction [WRRM08, RW12].

Example 3 (Requirement 3: Change operations). Deleting state type under approval

faculty (cf. Fig. 5) requires deleting all micro step types associated with this state type as

well (i.e., decision faculty, date approval, reason rejection, and date rejection).

Further, this deletion includes the micro transition types linking the micro steps and the

authorization settings of state type under approval faculty. In this context, a change

operation allowing for the deletion of the entire state type together with its components

would facilitate change definition significantly, and hence reduce errors and inconsisten-

cies of the object-aware process schema.

Requirement 4 (Complex changes). When adapting an object-aware process schema, the

integrity and consistency of the various sub-schemas must be preserved; i.e., the changes

applied to the sub-schemas will only be applied if this does not result in any inconsis-

tency. Like for database transactions, the changes applied jointly to an object-aware pro-

cess schema must be treated atomically (i.e., as transaction). Accordingly, modelers must

explicitly commit complex changes. Finally, multiple users may want to change the same

schema version at the same time, requiring proper concurrency control.

Requirement 5 (Change traceability). When changing an object-aware process, infor-

mation on who applied which changes, when and why shall be recorded in logs; i.e., change

traceability needs to be ensured.

Requirement 6 (Correctness). Changing an object-aware process schema must not result

in errors in any of the sub-schemas and not lead to soundness violations (e.g., deadlocks

due to data inconsistencies or missing data at run-time). Moreover, a changed object-

aware process schema must comply with the correctness criteria established in [Kün13].

Correctness checks are required at two different stages. First, when specifying the various

changes of an object-aware process schema, correctness checks are “soft”; i.e., they pro-

vide basis to inform the modeler about potential inconsistencies or missing components.

Second, correctness needs to be ensured when committing a change transaction; i.e., all

sub-schemas forming an object-aware process schema must be correct.

5.2 Changing Active Instances at the Dynamic Level

Requirement 7 (Versioning support). Active instances whose processing started before

the schema change must be properly handled. One strategy frequently applied in the con-

text of database and process evolution, is schema versioning [Rod96, GdSEM05, KG99].

Every time a schema is changed, a new schema version is created; already active instances

continue their processing based on the old schema version. In our context, there are various

sub-schemas forming the overall object-aware process schema (i.e., data model, micro and

macro process schemas, and authorization settings). Hence, for each object-aware process

schema version, the versions of its sub-schemas need to be maintained (cf. Fig. 7). In

particular, the instances are linked to a sub-schema version as well as the object-aware

process schema version.

If a change is performed, which concerns only a part of the entire object-aware process

schema, creating a new version of all sub-schemas involved (even the unchanged ones) will



111

Object-aware process

schema version S‘

a

b c

a b c a

Sub-schemas Instances

a

b

a

c

b

a a

b b

c

MP-a

MP-a

MP-a

a

b c

Sub-schemas Instances

a
a b

a a

b‘

MP-a
MP-a

a

b

c

a

b

c
a

b

c
a

b‘

c

a

b‘

c

a

b‘

c

a b c a

MP-a

Object-aware process

schema version S

a

b
a c

b

a
a

b
b

c

b

MP-a
MP-a

Figure 7: Object-aware process schema versions

not be optimal. Hence, a new version of an object-aware process schema shall comprise

the new versions of the changed sub-schemas in combination with the versions of the

unchanged sub-schemas. Fig. 7 illustrates this concept. The object-aware process schema

S on the left side contains a data model with object types A, B and C. Each object type is

associated with a micro process type as well as authorization settings. The latter express

who may access which attributes at which stages during process execution. Finally, macro

process type MP-a describes the interaction of the object types. The small squares represent

the instances created according object-aware process schema version S and being active at

the moment. On the right side, a new version S’ of S is depicted; it resulted due to a change

of micro process type b. The latter led to a new version b’ of b and a change of related

authorization settings. Instead of generating copies for all sub-schemas, S’ comprises the

new version b’, the new version of the respective authorization settings, and references

to the versions of the unchanged sub-schemas. New instances run according to the new

schema version S’, while the older, but still active instances continue running on the old

schema version S; i.e., instances running on the two schema versions will co-exist. In Fig.

7, new instances are represented as triangles and old ones as squares.

Requirement 8 (Instance migration). To ensure that active instances may continue run-

ning on the old schema version is not sufficient. In addition, it shall be possible to re-

assign active instances to the new object-aware process schema version if desired. Like

in activity-centric PrMS [CCPP98, JH98, RD98, RRMD09], such migration of active in-

stances must be handled in a controlled manner. In general, not all instances can be mi-

grated to the new schema version, particularly if they have progressed too much in their

execution. Since there may be numerous concurrently running instances of an object-

aware process (i.e., object and micro process instances), the selection of the migratable

instances should not handle the instances individually. In the example from Fig. 8a, a new

state is inserted in micro process type A. Moreover, the progress of the instances of micro

process B now depends on the execution of micro process A; i.e., the instances of B will

only reach state s5 if all instances of A’ reach state s7 (cf. Fig. 8b). However, not all



112

active instances of micro process A can be migrated to A’. More precisely, micro process

instances A1 and A2 have already completed their executions, which means that they can-

not be migrated to A’. In turn, micro process instance A3 may be migrated. However, the

individual migration of A3 will cause a deadlock at run-time, since micro process instance

B1 will continue waiting for instances A1 and A2 to reach state s7. Therefore, a group of

instances associated to a particular changed component must not be migrated individually.

Micro Process A (before change)Object-aware process schema S‘Object-aware process schema S

Micro Process Type B

s4 s5 s6

s1 s2 s7 s3

Micro Process Type A‘Micro Process Type A

s1 s2

s7

s3

Micro Process Type B

s4 s5 s6

s1 s2 s3instance A1

instance A2 s1 s2 s3

s1 s2 s3instance A3

a b c

Micro Process B

instance B1 s4 s5 s6

d

Figure 8: Example of instance migration

Requirement 9 (Data consistency). One of the biggest issues concerning database schema

evolution is to prevent data loss when changing a database schema [Ra04]; i.e., the deletion

of object types or attributes must not delete the data associated to them, since there may be

software systems that still depend on this data. In the context of object-aware processes,

data inconsistency might cause run-time errors (e.g., deadlocks). Therefore, it becomes

necessary to prevent data inconsistencies (e.g., data loss or missing data important to the

logic of the process) relevant for process execution.

5.3 User Requirements

Requirement 10 (User guidance). Changing an object-aware process schema is a non-

trivial task from the viewpoint of the user (i.e., process modeler). Our experiences with

the change scenarios have shown that user guidance is required to hide this complexity and

hence to make schema changes more intuitive and less error-prone (cf. Sect. 4). Moreover,

user guidance not only eases the adaptation of an existing schema, but also the modeling

of new object-aware process schemas.

Requirement 11 (Change impact analysis and metrics). To better control potential costs

of a change, a change impact analysis should be performed before actually applying the

change. Such an analysis must consider the cascading effects; i.e., it must show to users

which components are going to be affected by the change. Moreover, metrics help users

to evaluate change complexity.

6 Related Work

The described requirements have been partially addressed by existing work. Fig. 9 sum-

marizes which requirements have been addressed by which approach. We investigated

data-centric approaches and traditional activity-centric ones.

Data-centric Approaches

Data-driven Process Coordination (COREPRO) [MRH07, MRH08] presents a set of change

primitives and operations to change both data and process structures. Since the latter

are directly related, the approach automatically adapts the process structure when chang-



113

COREPRO Artifact-

centric

processes

Product-

based

workflow

FLOWer ADEPT YAWL

Req. 1 (Change primitives) + + o + + +
Req. 2 (Cascading effect) + + o -
Req. 3 (Change operations and

change patterns)
+ + - + + -

Req. 4 (Complex changes) + - - + + +
Req. 5 (Change traceability) + - - o + +
Req. 6 (Correctness) + - + o + +
Req. 7 (Versioning support) o - - + + +
Req. 8 (Instance migration) o - - - + -
Req. 9 (Data consistency) o - - -
Req. 10 (User guidance) o - - - + -
Req. 11 (Change impact analysis

and metrics)
- o - - o -

+ supported

o partially supported

- not supported

Figure 9: Evaluation of different approaches

ing the corresponding data structure. Moreover, it enables change traceability as well as

change transactions. Correctness is ensured when changing the structures at static or in-

stance level. In case of inconsistencies, the modeler is notified accordingly. However, even

though the data objects are explicitly represented, the control of the data structures is still

realized outside the scope of the PrMS. Hence, versioning support and instance migration

is only available for the process structures.

Regarding artifact-centric processes, [WW14] proposes an approach for dealing with the

change impact analysis of three-level artifact-centric business processes (ACBP). The au-

thors first classify the types of changes that may be applied to an ACBP. This classification

provides the basis for the change analysis. For this analysis, a graph representing the

different element dependencies is created. Based on this graph, it becomes possible to

calculate the direct impact of a change. The approach, however, just covers the changes at

static level, without addressing the problems of complex changes and traceability. In turn,

[XSY+11] allows for ad-hoc changes on the artifacts’ life cycles. Such changes are based

rules and declarative constructs such as skip, add and replace and are applied to the tasks.

The artifacts, in turn, cannot be changed. Besides, the authors do not provide information

on how the active instances should be handled when a change is applied.

In the context of product-based workflows, [RVV10] presents four change primitives en-

abling changes of the product (i.e., data) structure. These are then reflected in the corre-

sponding process models without need for any manual adaptation. Changes at the process

level, however, are not considered. Moreover, information regarding change traceability

and run-time issues are neglected.

The case-handling system FLOWer [vdAWG05, MWR08] does not address cascading ef-

fects; i.e., inconsistencies in a dependent component caused by a change are not properly

handled by the system. Moreover, the system does not use formal correctness criteria in



114

the context of schema evolution [WRRM08]. Regarding schema versioning, FLOWer al-

lows for overwriting a process schema as well as for the co-existence of instance running

on different schema versions. Instance migration is not considered.

Activity-centric Approaches

In activity-centric approaches, the processes are described on a single level (i.e., the pro-

cess model). Additionally, data is managed outside the scope of the PrMS. For these

reasons, requirements regarding cascading effects (Req. 2) and data consistency (Req. 9)

were not addressed to the analyzed approaches. ADEPT [RD98, RRD04, RW12] is an

activity-centric PrMS that enables both schema evolution and ad hoc changes of single

process instances. Moreover, it focuses on the ease of use of its process support features.

Additionally, metrics regarding instance migration are provided. In turn, YAWL supports

evolutionary changes in workflows based on Worklets [vdAtH05]. The latter refer to an

extensive repertoire of self-contained sub-processes and association rules, which can be

inserted into the process model without any system downtime. Even though it provides

primitives for changing the process model, there are no change patterns or operations to

realize changes at a higher abstraction level. Regarding the user, no guidance or change

impact analysis are provided.

7 Summary and Outlook

Our overall vision is to enable schema evolution in object-aware processes. The major

challenge lies on the very tight integration of the components of the framework. Such

component dependencies might not only affect the object-aware process schema at static

level, but active instances as well; i.e., new versions of a particular sub-schema must co-

exist with unchanged versions of other sub-schemas. Moreover, we observed that user

guidance is crucial to hide the complexity from the modeler and to avoid schema errors.

In future work, we will provide detailed insights into our solution tackling the discussed

requirements.

References

[CCPP98] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data & Know Eng,
24(3):211–238, 1998.

[GdSEM05] R. Galante, C. Saraiva dos Santos, N. Edelweiss, and A. F. Moreira. Temporal and
Versioning Modeling for Schema Evolution in Object-oriented Databases. Data &
Know Eng, 53(2):99–128, 2005.

[JH98] G. Joeris and O. Herzog. Managing Evolving Workflow Specifications. In
Proc.CoopIS’98, pages 310–319, 1998.

[KG99] M. Kradolfer and A. Geppert. Dynamic Workflow Schema Evolution Based on Work-
flow Type Versioning and Workflow Migration. In Proc. CoopIS’99, pages 104–114,
1999.

[KR09a] V. Künzle and M. Reichert. Integrating Users in Object-aware Process Management
Systems: Issues and Challenges. In Proc. BPM’09 Workshops, pages 29–41, 2009.



115

[KR09b] V. Künzle and M. Reichert. Towards Object-aware Process Management Systems:
Issues, Challenges, Benefits. In Proc. BPMDS’09, pages 197–210, 2009.

[KR11] V. Künzle and M. Reichert. PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Mainteinance and Evolution: Re-
search and Practice, 23(4):205–244, 2011.

[Kün13] V. Künzle. Object-aware Process Management. PhD thesis, Ulm University, 2013.

[MRH07] D. Müller, M. Reichert, and J. Herbst. Data-driven Modeling and Coordination of
Large Process Structure. In Proc. CoopIS’07, pages 131–149, 2007.

[MRH08] D. Müller, M. Reichert, and J. Herbst. A New Paradigm for the Enactment and Dy-
namic Adaptation of Data-driven Process Structures. In Proc. CAiSE’08, pages 48–63,
2008.

[MWR08] B. Mutschler, B. Weber, and M. Reichert. Workflow Management versus Case Han-
dling: results from a Controlled Software Experiment. In Proc. SAC’08, pages 82–89,
2008.

[Ra04] Y.-G. Ra. Relational Schema Evolution for Program Independency. In Proc. CIT 2004,
volume 3356, pages 273–281, 2004.

[RD98] M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Information Systems, 10(2):93–129,
1998.

[Rod96] J. F. Roddick. A Model for Schema Versioning in Temporal Database Systems. Aus-
tralian Computer Science Communications, 18:446–452, 1996.

[RRD04] S. Rinderle, M. Reichert, and P. Dadam. Flexible Support of Team Processes by Adap-
tive Workflow Systems. Distr. Parallel Databases, 16(1):91–116, 2004.

[RRMD09] M. Reichert, S. Rinderle-Ma, and P. Dadam. Flexibility in Process-Aware Information
Systems. Trans Petri Nets and other Models of Conc III, pages 115–135, 2009.

[RVV10] H. A. Reijers, J. Vogelaar, and I. Vanderfeesten. Changing Products, Changing Pro-
cesses: Dealing with Small Updates in Product-Based Design. In Proc. eKNOW’10,
pages 56–61, 2010.

[RW12] M. Reichert and B. Weber. Enabling Flexibility in Process-aware Information Sys-
tems: Challenges, Methods, Technologies. Springer, 2012.

[vdAtH05] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

[vdAWG05] W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm
for Business Process Support. Data & Know Eng, 53(2):129–162, 2005.

[WRRM08] B. Weber, M. Reichert, and S. Rinderle-Ma. Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data & Know
Eng, 66(3):438–466, 2008.

[WW14] Y. Wang and Y. Wang. Change Analysis for Artifact-Centric Business Processes. In
Proc. BIS 2014, pages 98–109, 2014.

[XSY+11] W. Xu, J. Su, Z. Yan, J. Yang, and L. Zhang. An Artifact-centric Approach to Dynamic
Modification of Workflow Execution. In Proc. OTM 2011, pages 256–273, 2011.


