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The Department of Defense High Order Language Commonality program
began in 1975 with the goal of establishing a single high order
computer programming language appropriate for DoD embedded computer
systems. This effort has been characterized by extensive coopera-
tion with the European Community and NATO countries have been
involved in every aspect of the work. The requirements have been
distributed worldwide for comment through the military and civil
communities, producing successively more refined versions. Formal
evaluations were performed on dozens of existing languages conclud-
ing that a single language meeting these requirements was both
feasible and desirable. Such a language has now been developed.

I wish to encourage your support and participation in this effort,
and I submit the design of this language for your review and comment.
Such comments and detailed justified change proposals should be for-
warded to HOLWG, DARPA, 1400 Wilson Boulevard, Arlington, VA 22209
by 30 November 1979. The language, as amended by such response,

will become a Defense standard in early 1980. Before that, changes
will be made; after that, we expect that change will be minimal.

Beginning in May 1979, the effort will concentrate on the technical
test and evaluation of the language, development of compilers and
programming tools, and a capability for controlling the language and
validating compilers. The requirements and expectations for the
environment and the control of the language are being addressed in
a series of documents already available to which comment is also
invited. We intend that Government-funded compilers and tools will
be widely and cheaply available to help promote use of the language.

Ada has been chosen as the name for the common language, honoring

Ada Augusta, Lady Lovelace, the daughter of the poet, Lord Byron,
and Babbage's programmer.

DEPUTY,






Foreword

The language Ada is the result of a collective effort to design a
language satisfying the Steelman requirements. The design
team was led by Jean D. Ichbiah and has included Bernd Krieg-
Brueckner, Brian A. Wichmann, Henry F. Ledgard, Jean-Claude
Heliard, Jean-Raymond Abrial, John G.P. Barnes, and Olivier
Roubine. In addition, major contributions were provided by G.
Ferran, I.C. Pyle, S.A. Schuman, and S.C. Vestal.

Two parallel efforts started in the second phase of this design
had a deep influence on the language. One was the design of a
test translator, with the participation of K. Ripken, P. Boullier,
J.F. Hueras, and R.G. Lange. The other was the development of
a formal definition using denotational semantics, with the par-
ticipation of V. Donzeau-Gouge, G. Kahn, and B. Lang. The
entire effort benefitted from the dedicated support of Lyn
Churchill and W.L. Heimerdinger. H.G. Schmitz served as
program manager.

At various stages of this project several persons had a con-
structive influence with their comments, criticisms and sugges-
tions. They are P. Brinch Hansen, D.A. Fisher, G. Goos, C.A.R.
Hoare, M. Woodger, and Mark Rain.

Over the two years spent on this project, three intense one-
week design reviews were conducted with the participation of
J.B. Goodenough, H. Harte, M. Kronental, K. Correll, R. Firth,
A.N. Habermann, J. Teller, P. Wegner, and P. R. Wetherall.

These reviews, other comments by E. Boebert, P. Bonnard, T.
Frogatt, H. Ganzinger, C. Hewitt, J.L. Mansion, F. Minel, E.
Morel, J. Roehrich, A. Singer, D. Slosberg, and I.C. Wand; the
numerous evaluation reports received on the preliminary
design, the on-going work of the IFIP Working Group 2.4 on
system implementation languages, and that of LTPL-E of Pur-
due Europe, all had a decisive influence on the final shape of
the language Ada.

The work for this language definition was performed by Cii
Honeywell Bull and Honeywell Systems & Research Center
under contract with the United States Department of Defense.
W.E. Carlson served as the Government's technical represen-
tative.
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1. Introduction

This report describes the Ada programming language, designed in accordance with the Steelman
requirements of the United States Department of Defense. Overall, the Steelman requirements call
for a language with considerable expressive power covering a wide application domain. As a result
the language includes facilities offered by classical languages such as Pascal as well as facilities
often found only in specialized languages. Thus the language is a modern algorithmic language
with the usual control structures, and the ability to define types and subprograms. It also serves
the need for modularity, whereby data, types, and subprograms can be packaged. It treats
modularity in the physical sense as well, with a facility to support separate compilation.

In addition to these classical aspects, the language covers real time programming, with facilities to
model parallel tasks and to handle exceptions. It also covers systems program applications. This
requires access to system dependent parameters and precise control over the representation of
data. Finally, both application level and machine level input-output are defined.

1.1 Design Goals

The Ada language was designed with three overriding concerns: a recognition of the importance of
program reliability and maintenance, a concern for programming as a human activity, and
efficiency. .

The need for languages that promote reliability and simplify maintenance is well established.
Hence emphasis was placed on program readability over ease of writing. For example, the Ada
language requires that program variables be explicitly declared and that their type be specified.
Automatic type conversion is prohibited. As a result, compilers can ensure that the types of objects
satisfy their intended use. Furthermore, error prone notations have been avoided, and the language
syntax avoids the use of encoded forms in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the same degree of checking as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt
was made to keep the language as small as possible, given the ambitious nature of the application
domain. We have attempted to cover this domain with a minimum number of underlying concepts
integrated in a consistent and systematic way. Nevertheless we have tried to avoid the pitfalls of
excessive involution, and in the constant search for simpler designs we have tried to provide
language constructs with an intuitive mapping on what the user will normally expect.

No language can avoid the problem of efficiency. Languages that require overly elaborate com-
pilers or that lead to the inefficient use of storage or execution time force these inefficiencies on all
machines and on all programs. Every construct in the Ada language was examined in the light of
present implementation techniques. Any proposed construct whose implementation was unclear
or required excessive machine resources was rejected.



Perhaps most importantly, none of the above goals was considered something that could be
achieved after the fact. The design goals drove the entire design process from the beginning.

1.2 Language Summary

A program in the Ada language is a sequence of higher level program units, which can be compiled
separately. Program units may be subprograms (which define executable algorithms), package
modules (which define collections of entities) or task modules (which define concurrent computa-
tions). The facility for separate compilation allows a program to be designed, written, and tested in

largely independent parts. This facility is especially useful for large programs and the creation of
libraries.

Program Units

A subprogram is the basic unit for expressing an algorithm. A subprogram can have parameters,
which specify its connections to other program units. The Ada language distinguishes two kinds of
subprograms: procedures and functions.

A procedure subprogram is the logical counterpart to a series of actions. For example, it may read
in data, update variables, or produce some output. A function subprogram is the logical counter-
part to a mathematical function for computing a value; unlike a procedure, a function can have no
side effects. Value returning procedures are also allowed.

A package module is the basic unit for defining a collection of logically related entities. For exam-
ple, packages can be used to define a common pool of data and types, a collection of related sub-
programs, or encapsulated types with associated operations. Portions of a package can be hidden

from the user, thus allowing access only to the logical properties expressed by the package
module.

A task module is similar to a package module, but with additional capabilities for parallel process-
ing. Tasks may be implemented on multiple processors or with interleaved execution on a single
processor. Synchronization is achieved by entries which are called like procedures but are

executed in mutual exclusion. Like procedures, entries can contain parameters specifying the tran-
smission of data between tasks.

Declarations and Statements

Each program unit generally contains two parts: a declarative part, which defines the logical

entities to be used in the program unit, and a sequence of statements, which define the execution
of the program unit.

The declarative part associates names with declared entities. A name may denote a type, a cons-
tant, or a variable. A declarative part also introduces the names and parameters of other sub-
programs, task modules, and package modules to be used in the program unit.

Statements describe actions to be performed. An assignment statement specifies that the current
value of a variable is to be replaced by a new value. A subprogram call statement invokes execu-

tion of a subprogram, after associating any arguments provided at the call with the corresponding
ormal parameters of the subprogram.

If and case statements allow the selection of an enclosed sequence of statements based on the
value of a condition or expression at the head of the statement.
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The basic iterative mechanism in the language is the loop statement. A [oop Stat.e'mer'rt specifies
that a sequence of statements is to be executed repeatedly until an iteration specification is com-
pleted or an exit statement is encountered.

Certain statements are only applicable to tasks. An initiate statement specifies that one or more
tasks may begin execution concurrently with the initiating task. An entry call, which appears asa
normal subprogram call, specifies that a task is ready for a rendezvous with another task contain-
ing the declaration of the entry. An accept statement within the other task specifies the actions (if
any) to be executed when the corresponding entry is called. After the rendezvous is completed,
both the calling task and the task containing the entry may continue their execution in parallel. A
select statement allows a selective wait for one of several alternative rendezvous.

Execution of a program unit may lead to exceptional situations in which normal program execution
cannot continue. For example, an arithmetic computation may exceed the maximum allowed value
of a number, or an attempt may be made to access the value of an uninitialized variable. To deal
with these situations, the statements of a program unit can be textually followed by exception
handlers describing the actions to be taken when the exceptional situation arises.

Data Types

Every object in the language has a type, which defines its logical properties and the operations that
can be performed on objects of the type. There are four basic classes of types: scalar types, com-
posite types, access types, and private types.

The scalar types INTEGER, BOOLEAN, and CHARACTER are predefined. Integer types provide a
means of performing exact numerical computation. Approximate computation can be performed
using floating point types (with a relative bound on the error) or using fixed point types (with an
absolute bound on the error). Enumeration types provide a means for users to define problem
dependent types with discrete values. Character sets can be defined as enumeration types.

Composite types allow definitions of structured objects with related components. The composite
types in the language provide for arrays and records. An array is an object with indexed compo-
nents of the same type. A record is an object with named components of possibly different types.
Alternative record structures can be defined by having a variant part within a record type.

Access types allow the construction of complex data structures that are created dynamically. Both
the elements in the structure and their relation to other elements can be altered during program
execution.

Private types can be defined in a package module that hides irrelevant structural details. Only the
logically necessary properties are made visible to a user.

The concept of a type is refined with the concept of a subtype, whereby a user can constrain the
set of allowed values in a type. Subtypes can be used to define subranges of scalar types, arrays
with a limited set of index values, and records with a particular variant.

Other Facilities

Representation specifications can be used to specify the mapping between data types and features
of an underlying machine. For example, the user can specify that an array is to be represented in
packed form, that objects of a given type must be represented with a specified number of bits, or
that the components of a record are to be represented in a specified storage layout.



Finally the language includes facilities for separate compilation, generic (that is, parameterized)
program units, and both user level and machine level input-output.

1.3 Sources

A continual difficulty in language design is that one must both identify the capabilities required by
the application domain and design language features that provide these capabilities.

The difficulty existed in this design, although to a much lesser degree than usual because of the
Steelman requirements. These requirements often simplified the design process by permitting us

to concentrate on the design of a given system satisfying a well defined set of capabilities, rather
than on the definition of the capabilities themselves.

Another significant simplification of our design work resulted from earlier experience acquired by
several successful Pascal derivatives developed with similar goals. These are the languages Euclid,
Lis, Mesa, Modula, and Sue. Many of the key ideas and syntactic forms developed in these
languages have a counterpart in the Ada language. We may say that whereas these previous
designs could be considered as genuine research efforts, the Ada language is the result of a project

in language design engineering, in an attempt to develop a product that represents the current
state of the art.

Several existing languages such as Algol 68 and Simula and also recent research languages such

as Alphard and Clu, influenced this language in several respects, although to a lesser degree than
the Pascal family.

Finally, the evaluation reports on the initial formulation of the Green language, the other language
proposals, and the general reviews had a significant effect on the language.

1.4 Syntax Notation
The context-free syntax of the language is described using a simple variant of Backus-Naur Form.
In particular,

(a)

Lower case words, some containing embedded underscores, denote syntactic categories, for
example

adding_operator

(b) Boldface words denote reserved words, for example
array
(c) Square brackets enclose optional items, for example

end loop [identifier];



(d)

(e)

Braces enclose a repeated item. The item may appear zero or more times. Thus an identifier
list is defined by

identifier_list ::= identifier {, identifier}
Any syntactic category prefixed by an italicized word and an underscore is equivalent to the
unprefixed corresponding category name. The prefix is intended to convey some semantic
information. For example

type_name task_name

are both equivalent to the category

name

In addition, the syntax rules describing structured constructs are presented in a form that corres-
ponds to the preferred paragraphing. For example, an if statement is defined as

if_statement =

if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

lelse
sequence_of_statements])
end if;






2. Lexical Elements

This chapter defines the lexical elements of the language.

2.1 Character Set

All language constructs may be represented with a basic character set, which is subdivided as fol-
lows:

(a) Upper case letters
ABCDEFGHIJKLMNOPQRSTUVWXYZ

(b) Digits
01234567889

(c) Special characters
"HE&()x+, - <=>_]|

(d) The space character

An extended character set, for example one including the following additional ASCII characters,
may be used in programs:

(e) Lower case letters
abcdefghijklmnopqgrstuvwxyz

(f) Other special characters

1$%?2@\]" {1}~
Every program may be converted into an equivalent program using only the basic character set. A
lower case letter is equivalent to the corresponding upper case letter, except within character str-
ings; rules for conversion of strings into the basic character set appear in section 2.5.

In addition, the following replacements are always allowed for characters that may not be
available:

® the vertical bar character | is equivalent to the exclamation mark ! as a delimiter between
choices (e.g. see 3.6.2). Note that on some terminals, the vertical bar appears as a broken ver-
tical bar.

® the double quote character ” is equivalent to a % character as a string bracket

® the sharp character # is equivalent to the colon : in a based number
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2.2 Lexical Units and Spacing Conventions

Thg lexical units of a program are identifiers (including reserved words), numbers, strings, and
delimiters. A delimiter is either one of the following special characters in the basic character set

& ()x+,-./::<=>]
or one of the following compound symbols

=> Lxk = ==!/= >= <= << >>

Spaces may be inserted freely with no effect on meaning between lexical units. At least one space
must separate adjacent identifiers or numbers. Besides terminating a comment, the end of each

line is equivalent to a space. Thus each lexical unit must fit on one line.

2.3 Identifiers

Identifiers are used as names. Isolated underscore characters may be included and all characters

are significant, including underscores.

identifier =
letter {(underscore] letter_or_digit}

letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter
Note that identifiers differing only in the use of corresponding upper and lower case letters are

considered as the same.

Examples:
get_symbol Ethelyn

COUNT X
STORE_NEXT_ITEM

SNOBOL_4 X1 page_count
2.4 Numbers

There are two classes of numbers: integers for exact computation, and real numbers for approx-
imate computation. Their explicit representation is given here.

integer_number | approximate_number

number :=
integer_number ::= integer | based_integer
integer = digit {[underscore] digit}
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based_integer := o
base # extended_digit {lunderscore| extended_digit}

base ::= integer
extended_digit ::= digit | letter
approximate_number :=
integer.integer |E exponent]
| integer E exponent
exponent := |+] integer | - integer

Isolated underscore characters may be inserted between adjacent digits or extended digits of a
number, but are not significant. Spaces may not appear within numbers.

Based integers can be represented with any base from 2 to 16. For bases above ten, digits may
include the letters A through F with the conventional meaning 10 through 15.

Examples:
12 [¢] 123_456 -- integers
2#1011_0101 16#FFFF -- based integers, values 181 and 65535
12.0 0.0 0.456 10_000.1 -- approximate numbers

1E6 1.0E-6 3.14e+3 - approximate numbers with exponent

2.5 Character Strings

A character string is a sequence of zero or more characters prefixed and terminated by the string
bracket character (the double quote “ or its replacement the %’ character).

character_string ::= " {character} ”

In order that arbitrary strings of characters may be represented, any included string bracket
character must be written twice. The length of a string is the length of the sequence represented.
Strings of length one are also used for literals of character types (see 3.5.1). Strings longer than
one line must be represented using catenation.

Examples:

- an empty string
"k “A” -- three one-character literals x A ”

“characters such as $, { and | may appear in strings”

“FIRST PART OF A STRING THAT “ &
“CONTINUES ON THE NEXT LINE”
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A character string may contain characters not in the basic character set. A string containing such
characters can be converted to a string written with the basic character set by using identifiers
denoting these characters in catenated strings. Such identifiers are defined in the predefined
environment. Thus the string "ABSCD" could be written as “AB” & DOLLAR & “CD". Similarly, the
string "ABcd” with lower case letters could be written as “AB” & LC_C & LC_D.

2.6 Comments

A comment starts with a double hyphen and is terminated by the end of the line. It may only
appear following a lexical unit or at the beginning or end of a program unit. Comments have no
effect on the meaning of a program; their sole purpose is the enlightenment of the human reader.

Examples:

the last sentence above echoes the Algol 68 report
end; -- processing of LINE is complete

- a stand alone comment
-- and its continuation

2.7 Pragmas

Pragmas are used to convey information to the compiler. A pragma begins with the reserved word

pragma followed by the name of the pragma. A pragma can have arguments, which can be iden-
tifiers, strings, or numbers.

pragma =
pragma identifier [(argument {, argument})];

argument := identifier | character_string | number

Pragmas may appear before a program unit, and wherever a declaration or a statement may
appear. The extent of the effect of a pragma depends on the pragma.

A pragma may be language defined or implementation defined. All language defined pragmas are
described in Appendix B.

Examples of pragmas:

pragma LIST(OFF); -- suppress listing
pragma OPTIMIZE(TIME); -- optimization specification
pragma INCLUDE("COMMON_TEXT"); -- include text file
pragma DEBUG(ON); -- set debugging mode on



2.8 Reserved Words

The identifiers listed below are called reserved words and are reserved for special significance in
the language. As such, these identifiers may not be declared by the programmer. For readability of
this manual, the reserved words appear in lower case boldface.

abort declare generic of select
accept delay goto or separate
access delta others subtype
all digits out
and do if
array in package task
assert initiate packing then
at is pragma type
else private
elsif procedure
end loop use
begin entry raise
body exception mod range
exit record when
renames while
new restricted
case for not return
constant function null reverse xor
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3. Declarations and Types

This chapter describes the types in the language and the rules for declaring constants and
variables.

3.1 Declarations

A declaration associates an identifier with a declared entity. Each identifier must be declared
before it is used, with the exception of labels. There are several kinds of declarations.

declaration ::=
object_declaration type_declaration

| subprogram_declaration module_declaration
| entry_declaration exception_declaration
| renaming_declaration

|

subtype_declaration | private_type_declaration
|
|

The process by which a declaration achieves its effect is called the e/aboration of the declaration.
Any expression appearing in a declaration is evaluated when the declaration is elaborated unless
otherwise stated.

Object, type, and subtype declarations are described here. The remaining declarations are
described in later chapters.

3.2 Object Declarations

An object is a variable or a constant. An object declaration introduces one or more named objects
of a given type. These objects can only have values of this type.

object_declaration ::=
identifier_list : |constant] type [:= expression];

identifier_list ::= identifier {, identifier}
An object declaration may include an expression which specifies the initial value of the declared

objects. This expression is evaluated and its value is assigned to each of the declared objects, as
part of the elaboration of the object declaration.

An object is a constant if its declaration includes the reserved word constant. The value of a cons-
tant cannot be modified. If a constant object has components, they cannot be modified.
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It is possible to defer the initialization of a constant record component (see 3.7.1) and of a cons-
tant of a private type declared in the visible part of a module (see 7.4).

Examples of variable declarations:

ITEM_1, ITEM_2 : INTEGER;
SORT_COMPLETED : BOOLEAN := FALSE;
OPTION_TABLE : armay (1 .. N) of OPTION;

Examples of constant declarations:

LIMIT : constant INTEGER := 10_000;
LOW_LIMIT : constant INTEGER := LIMIT/10;
TOLERANCE : constant FLOAT = SQRT(X);
LENGTH : constant INTEGER; -- deferred initialization;

Notes:

The expression initializing a constant may (but need not) be a static expression (see 4.8). In the

above examples, LIMIT and LOW_LIMIT are initialized with static expressions, but TOLERANCE is
not.

3.3 Type and Subtype Declarations

A type characterizes a set of values and a set of operations applicable to those values. The values
are denoted by literals or aggregates of the type, or can be obtained as the results of operations.
The operations and the properties of the values are said to be attributes of the type. Any sub-
program with a parameter or result of the type is an attribute of the type.

There exist several classes of types. Scalar types are types whose values have no components;
they comprise types defined by enumeration of their values, integer types, and real types. Array
and record types are composite; their values consist of several component values. An access type
is a type whose values provide access to other objects. The attributes resulting from the definition
of these classes of types are predefined attributes (see 4.1.3). Finally, there are private types
where the set of possible values is clearly defined, but not known to the users of such types.
Hence, a private type is only known by the set of operations applicable to its values (see 7.4).

The set of possible values of a type can be restricted without changing the set of applicable opera-
tions. Such a restriction is called a constraint. A value is said to belong to a subtype of a given type

if it obeys such a constraint. Naturally, subtypes may not be found for user defined private types
since nothing is known a priori about the set of possible values.

type ::= type_definition | type_mark [constraint|

type_definition =
enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition
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type_mark := type_name | subtype_name
constraint =
range_constraint | accuracy_constraint
| index_constraint | discriminant_constraint

type_declaration ::=
type identifier lis type_definition|;

subtype_declaration ::=
subtype identifier is type_mark [constraint];

Every type definition introduces a distinct type. A type declaration associates a name with a type.
A subtype declaration introduces a name as an abbreviation for a type name with some possible
constraint. Each constraint is evaluated when the declaration in which it appears is elaborated.

An incomplete type declaration of the form

type T;

is used for the declaration of mutually dependent access types (see 3.8); the complete type
declaration must follow in the same declarative part.

Examples of type declarations:
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type COL_NUM is range 1 .. 72;
type TABLE is array (1 .. 10) of INTEGER;
Examples of subtype declarations:
subtype RAINBOW is COLOR range RED .. BLUE;
subtype SMALL_INT is INTEGER range -10 .. 10;
subtype ZONE is COL_NUM range 1 .. 6;
Notes:

Two type definitions always introduce two distinct types, even if they are textually identical. For
example, the enumeration type definitions given in the declarations of A and B below define dis-
tinct types, although the set of values of one of them is a copy of the set of values of the other.

A : (ON, OFF);
B : (ON, OFF);

On the other hand, C and D in the following declaration are of the same type, since only one type
definition is given.

C, D : (WHITE, GREY, BLACK);
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3.4

Derived Type Definitions

A derived type definition introduces a new type deriving its characteristics from those of an
existing type.

derived_type_definition ::= new type_mark |constraint]

With a type declaration of the form:

the

type NEW_TYPE is new OLD_TYPE;

new type derives all its characteristics from those of the old type:

The new type belongs to the same class of types as the old type (for example, the new type is
a record type if the old type is) and the same attributes are predefined.

The set of values of the new type is a copy of the set of values of the old type. The constraints
associated with the old type apply to objects of the new type.

The notation for literals or aggregates of the new type is the same as for the old. Such Iitfarals
and aggregates are said to be overloaded. The notation used to denote components of objects
of the new type is the same as for the old.

For each visible subprogram attribute of the old type, a subprogram attribute of the new type
is derived in which occurrences of the name of the old type are in effect replaced by the name

of the new type. Such subprograms are said to be overloaded. Assignment is available for the
new type if it is for the old.

Any explicit representation specification (see 13) given for the old type also applies to the new
type.

The effect of such a type declaration is thus to create a new type distinct from the old type, b.Ut
equivalent in effect to what would be obtained by duplicating the old type definition and all its

applicable operations. Explicit conversions are allowed between the old type and the new type (see
4.6.2).

A type declaration of the form:

type NEW_TYPE is new OLD_TYPE constraint;

is equivalent to the succession of declarations:

type new._type is new OLD_TYPE;
subtype NEW_TYPE is new._type constraint;

where new._type is an identifier distinct from those of the program. Hence, the values and opera-

tions of the old type are inherited by the new type, but objects of the new type must satisfy the
added constraint.
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3.5 Scalar Types

Scalar types comprise discrete types and real types. Discrete types are the enumeration types and
integer types; they may be used for indexing and iteration over loops. Numeric types are the
integer and real types. All scalar types are ordered. A range constraint specifies a subset of values
of the type or subtype.

range_constraint := range range
range := simple_expression .. simple_expression

The range L .. R describes the values from L to R inclusive. An empty range is a range for which L is
greater than R. The type of the simple expressions in a range constraint is the type for which the
range constraint is specified.

Predefined Attributes

For any scalar type or subtype T, the following attributes are predefined (see also 4.1.3 and Appen-
dix A):

TFIRST the minimum value of the type or subtype T
T'LAST the maximum value of the type or subtype T

For every discrete type or subtype T, the subprogram attributes T'SUCC, T'PRED, and T'ORD are
predefined as follows:

T'SUCC(X) the value succeeding the value X in T
T'PRED(X) the value preceding the value X in T
T'ORD(X) the ordinal position of the value X in T. For example TTORD(T'FIRST) = 1

The exception RANGE_ERROR is raised by the function call TSUCC(T'LAST) and similarly by
T'PRED(T'FIRST).

3.5.1 Enumeration Types

An enumeration type definition introduces a set of values by listing the values.

enumeration_type_definition :=
(enumeration_literal {, enumeration_literal})

enumeration_literal ::= identifier | character_literal

An enumerated value is represented by an identifier or a character literal. Hence, a character set
can be defined by an enumeration type. Order relations between enumeration vaues follow the
order of listing, the first being less than the last.

Within a sequence of declarations, an enumeration literal can appear in different enumeration

types. Such enumeration literals are said to be overloaded. When ambiguities arise in the use of
such literals they can be resolved by providing an explicit qualification (see 4.6).
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Examples:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);

type HEXA is ("A", "B", "C", "D", "E", "F");

type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type LIGHT is (RED, AMBER, GREEN); -- RED and GREEN are overloaded
subtype WEEK_DAY is DAY range MON .. FRI;

subtype MAJOR is SUIT range HEARTS .. SPADES;
subtype RAINBOW is COLOR range RED .. BLUE; -- the color RED, not the light

3.5.2 Character Types

A character type is an enumeration type that contains character literals and possibly identifiers.

The predefined type CHARACTER denotes the full ASCII character set of 128 characters (see
Appendix C).

3.5.3 Boolean Type

There is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and

TRUE ordered with the relation FALSE < TRUE. The evaluation of conditions delivers results of this
predefined type.

3.5.4 Integer Types

The predefined type named INTEGER denotes a subset of the integers. Other integer types can be
introduced by integer type definitions or can be derived from the type INTEGER.

integer_type_definition := range_constraint
The range of integer numbers is implicitly limited by the representation adopted by an individual
implementation. An implementation may have predefined types such as SHORT_INTEGER and
LONG_INTEGER, which have respectively shorter and longer ranges than INTEGER.
A type declaration of the form

type T is range L .. R;
where L and R denote integer values, introduces an integer type equivalent to

type T is new integer_type range L .. R;

where the integer..type is implicitly chosen so as to contain the values L through R and is one of
the predefined types such as SHORT_INTEGER, INTEGER, or LONG_INTEGER.
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Examples:

type PAGE_NUM is range 1 .. 2_000;
type LINE_SIZE is new INTEGER range 1 .. MAX_LINE_SIZE;

subtype SMALL_INT is INTEGER range -10 .. 10;
subtype COLUMN_PTR is LINE_SIZE range 1 .. 10;

Notes:

The smallest integer value supported by the implementation is SYSTEM'MIN_INT and the largest
value SYSTEM'MAX_INT.

3.5.5 Real Types

Real types provide approximations to the real numbers, with relative bounds on errors for floating
point types, and with absolute bounds on errors for fixed point types.

real_type_definition ::= accuracy_constraint

accuracy_constraint =
digits simple_expression [range_constraint]
| delta simple_expression [range_constraint]

For floating point types the error bound is specified as a relative precision by giving the minimum
number of decimal digits for the mantissa.

A given implementation can have predefined floating point types, such as SHORT_FLOAT, FLOAT,
and LONG_FLOAT, which correspond to the hardware supplied floating point types. Real type
definitions of the forms

digits P
digits P range L .. R

where P is a static integer expression (see 4.8) specifying a number of decimal digits, and where L
and R are floating point values, are equivalent to the type definitions

new floating..point_type digits P
new floating._point._type digits P range L .. R

where floating..point_type is implicitly chosen as an appropriate predefined floating point type.
The implemented precision must be at least that of the precision specified in the corresponding
definition. If a range is provided, it must be covered by the chosen predefined type.

For fixed point types, the error bound is specified as an absolute value, called the de/ta of the fixed
point type. The implemented error bound must be at least as fine as the specified delta. In a fixed
point type definition, the range constraint cannot be omitted, since this determines the representa-
tion to be used for values of the type; the expressions specifying the range and the delta must be
static expressions.
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In a subtype or object declaration, an accuracy constraint can be applied to a previously declared
real type. For a fixed point type, the delta of the constraint cannot be smaller than the delta of the
type. For a floating point type, the number of digits specified in the constraint cannot be larger than
that of the type. In all cases, the delta or the digits must be given by static expressions.

Examples:

type COEFFICIENT is digits 10 range -1.0 .. 1.0;

type VOLT is delta 0.125 range 0.0 .. 255.0;
type FRAC is delta 0.00001 range 0.0 .. 1.0;

type MASS is new FLOAT digits 7 range 0.0 .. 1E30;

subtype S_VOLT is VOLT delta 0.5; -- same range as VOLT
subtype COEFF is COEFFICIENT digits 8;

Predefined Attributes

For a floating point type or subtype T, the following attributes are predefined:
TDIGITS the specified number of digits (it is of type INTEGER)

T'SMALL the smallest positive value expressible with the representation and precision of

type T

T LARGE the largest positive value expressible with the representation and precision of type

T
For a fixed point type or subtype T, the following attribute is predefined:
T DELTA the value of the specified delta

For any real type T the following attribute is predefined:

T'BITS the minimum number of bits needed for the representation of the mantissa of T

3.6 Array Types

An array object is a set of components of the same component type. A component of an array is
designated using one or more index values belonging to specified discrete types.

array_type_definition =
array (index {, index}) of type_mark |constraint]

index := discrete_range | type_mark
discrete_range = [type_mark range] range
index_constraint ::= (discrete_range |, discrete_range})
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An array object is characterized by the number of indices, the type of each index, the lower and
upper bound for each index, and the type and possible constraints of the components. In an array
type definition, each index can be specified either by a discrete range or by a type mark. These two
forms of index specifications have different consequences:

(1) Index specified by a discrete range

For all objects of the array type, the discrete range determines both the permitted type for the
index values and the lower and upper bound for the index values.

(2) Index specified by a type mark

For all objects of the array type, the type mark only determines the permitted type for the
index values. The actual values of the lower and upper bound of the index considered can be
different for different objects of the array type.
The bounds must be given for each array separately in its object declaration by an index con-
straint, or can be obtained from the initial value. For an array formal parameter, the bounds
are obtained from the actual parameter.
For a multi-dimensional array, if one index position is specified by a discrete range, all index posi-
tions must be specified by discrete ranges. Similarly, an index constraint must provide ranges for
all index positions. For accessing components, an n-dimensional array is equivalent to a one-
dimensional array of (n-1)-dimensional subarrays.

If the bounds of a discrete range are integer numbers, these are assumed to be of the predefined
type INTEGER if their type is not otherwise known from the context.

Predefined Attributes

For an array object A (or for an array type A with specified bounds), the following attributes are
predefined (/ is an integer value):

A'FIRST the lower bound of the first index

A'LAST the upper bound of the first index

A'LENGTH the number of components of the first index
(zero when no components)

A'FIRST(/) the lower bound of the /-th index

A’LAST(/) the upper bound of the /-th index

A'LENGTH(7 the number of components of the /-th index

Examples of array types with specified bounds:

type TABLE is array (1 .. 10) of INTEGER;
type SCHEDULE is array (DAY'FIRST .. DAY'LAST) of BOOLEAN;
type LINE is array (1 .. MAX_LINE_SIZE) of CHARACTER;

Examples of array types with unspecified bounds:

type MATRIX is array (INTEGER, INTEGER) of REAL;
type BIT_VECTOR is array (INTEGER) of BOOLEAN:

Examples of array declarations:

GRID : array (1 .. 80, 1 .. 100) of BOOLEAN;
MiX : array (COLOR range RED .. GREEN) of BOOLEAN;
MY_TABLE : TABLE; -- all arrays of type TABLE have the same length
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BOARD : MATRIX (1 .. 8, 1 . 8);
RECTANGLE : MATRIX (1 .. 20, 1 .. 30);

- MY_TABLE'FIRST = 1, BOARD'LAST(1) = 8, RECTANGLE'LAST(2) = 30

3.6.1 Index Ranges of Arrays

The range of each index of an array must be known when the declaration of the array is elabo'ratEd
(or when allocated in the case of access types). The expressions defining the range of an index
need not be static, but can depend on computed results. Such arrays are called dynamic arrays. In

records, dynamic arrays may only appear when the dynamic bounds are discriminants of the
record type.

Examples:

SQUARE : MATRIX (1 .. N, 1 .. N); -- N need not be static
type VAR_LINE is access
record
LENGTH : constant INTEGER;
IMAGE : STRING(1 .. LENGTH);
end record;

-- value given on initialization

3.6.2 Aggregates

An aggregate denotes an array or record value constructed from component values.

aggregate =
(component_association {, component_association})

component_association =
Ichoice {| choice] => ] expression

choice ::= simple_expression | discrete_range | others

The expressions define the values to be associated with components. They can be given by posi-
tion (in index order for array components, in textual order for record components) or by naming the
chosen components (with index values for array components, with the corresponding identifiers for

record components). An aggregate defining the value of an object must provide values for all com-
ponents of the object.

For named components, the expressions can be given in any order, but if both notations are used
in one aggregate, the positional component associations must be given first.

A choice given as a discrete range stands for all index values in the range. The choice others stands
for all components not specified by previous choices and can only appear last. Choices with dis-
crete values are also used in variant parts of records and in case statements. Each choice may only

appear once in an aggregate (variant part or case statement) and, except for the choice others, its
value must be determinable statically.



When an aggregate used as an initial value is expected to provide the bounds of an array object,
the choice others cannot be used. For an array whose index is only specified by a type mark T, the
lower bound is assumed to be equal to T'FIRST if the initialization is given by a positional
aggregate.

An aggregate for an n-dimensional array is written as a one-dimensional aggregate of components
that are (n-1)-dimensional array values.

Examples:
A : TABLE := (7,9,5,1,3,2,4,8,6,0); - A) =7, A(10) = 0
B : TABLE := (5,4,8,1, others => 20); - B (1) =5, B(10) = 20
C :TABLE = (2| 4| 10 => 1, others => 0); -- C(1) = 0, C(10) = 1

NULL_MATRIX : constant MATRIX = (1 .. 10 => (1 .. 10 => 0.0));
-- NULL_MATRIX'FIRST(1) = 1, NULL_MATRIXLAST(2) = 10

ENGLISH_SCHOOL_DAYS : constant SCHEDULE := (MON .. FRI => TRUE, others => FALSE);
FRENCH_SCHOOL_DAYS : constant SCHEDULE := (WED | SUN => FALSE, others => TRUE);

3.6.3 Strings

The predefined type STRING denotes one-dimensional arrays of the predefined type CHARACTER,
indexed by values of the predefined subtype NATURAL:

subtype NATURAL is INTEGER range 1 .. INTEGER LAST;
type STRING is array (NATURAL) of CHARACTER;

Character strings (see 2.5) are a special form of aggregate applicable to the type STRING and
other one-dimensional arrays of characters.

Catenation is a predefined operator over one-dimensional arrays, and is represented as &. For str-
ings, it corresponds to the following function:

function “&” (X, Y : STRING) return STRING is
S : STRING(1 .. X’LENGTH + Y'LENGTH);
begin
S(1 .. XLENGTH) = X;
S(X'LENGTH + 1 .. S'LAST) = V;
return S;
end;

Examples:
BLANKS : STRING(1 .. 120) (1 . 120 => * *);

MESSAGE : constant STRING := "HOW MANY CHARACTERS?":
-- MESSAGE'FIRST = 1, MESSAGELAST = number of characters

)

SAY_TWICE : constant STRING := MESSAGE & MESSAGE & CR & LF;
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3.7 Record Types

A record object is a structure with named components. A record type definition can include a
variant part denoting alternative record structures.

record_type_definition :=
record
component_list
end record

component_list 1=
{object_declaration} [variant_part] | null;

variant_part :=
case discriminant of
{when choice || choice} =>
component_list}
end case;

discriminant := constant_component_name

The components of a record are defined by object declarations. Components can be of different
types. The value of an expression provided as a component initialization is evaluated when the

record type definition is elaborated. This value is used to initialize the corresponding component
for every record declared of this type.

Recursion in record type definitions is not allowed unless an intermediate access type is used (see
3.8).

Examples:
type DATE is
record
DAY : INTEGER range 1 .. 31;
MONTH : MONTH_NAME;
YEAR : INTEGER range O .. 2000;
end record; v

type COMPLEX is

record
RE : FLOAT := 0.0;
IM : FLOAT := 0.0;
end record;

-- both components of every complex record are initialized to zero

3.7.1 Constant Record Components and Discriminants

A constant component of a record which is not given an explicit value in the type definition is a

deferred constant. Such a deferred constant can only be assigned by means of a complete record
assignment.



A record component can be a dynamic array only if the bounds that are not static are deferred con-
stant components of. the record type. A deferred constant component used in this way or in a
variant part is called a discriminant of the record type.

The only permissible dependencies between record components are the dependencies of an array
bound and of a variant on a discriminant.

Example:

type BUFFER is

record
LENGTH : constant INTEGER range 1 .. MAX_LENGTH; -- the discriminant
POS : INTEGER range O .. MAX_LENGTH := O;
IMAGE : array (1 .. LENGTH) of CHARACTER;

end record;

3.7.2 Variant Parts

A record type with a variant part specifies alternative record components. Each variant defines the
components for the corresponding value of the discriminant. A variant can have an empty compo-
nent list, which must be specified by null.

Example:

type PERIPHERAL is

record
STATUS : (OPEN, CLOSED);
UNIT : constant (PRINTER, DISK, DRUM); -- the discriminant
case UNIT of

when PRINTER => A
LINE_LCOUNT : INTEGER range 1 .. PAGE_SIZE;
when others =>
CYLINDER : CYLINDER_INDEX;
TRACK : TRACK_NUMBER;
end case;
end record;

3.7.3 Record Aggregates and Discriminant Constraints

An aggregate is used to provide values for all the components of a record. In an aggregate for a
record variant, the discriminant value must be a static expression and must appear before the
values for the corresponding components of the variant part.

discriminant_constraint ::= aggregate
A discriminant constraint is used to constrain discriminants of a record to specific values; it is

expressed as an aggregate specifying values for discriminants only. Discriminant constraints may
be used to define subtypes of record types with variants.
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Examples of record aggregates:

(4, JULY, 1776)
(DAY => 4, MONTH => JULY, YEAR => 1776)
(STATUS => CLOSED, UNIT => DISK, CYLINDER => 9, TRACK => 1)

Examples of record variable declarations with constraints:
WRITER : PERIPHERAL(PRINTER);
CARD : BUFFER(LENGTH => 80);

Example of record subtype:

subtype DISK_DEVICE is PERIPHERAL(UNIT => DISK);

3.8 Access Types

Objects declared in a program are accessible by their name. They exist during the lifetime of the
declarative part to which they are local. In contrast, objects may also be created dynamically by
the execution of allocators (see 4.7). Since they do not occur in an explicit object declaration, they

cannot be designated by their name. Instead, access to such an object is achieved by an access
value returned by an allocator.

access_type_definition ::= access type

An access type definition characterizes a set of access values which may be used to designate
objects of the type mentioned after the reserved word access. This type cannot be another access
type. The dynamically created objects designated by the values of an access type form a collection
implicitly associated with the type. An access value obtained from an allocator can be assigned to
several access variables. Hence a given dynamically created object may be designated by more
than one variable or constant of the access type. The access value null belongs to every access
type and designates no object at all. It may be used to initialize access variables.

An object of an access type that is introduced as a constant cannot have its value changed, nor can
the value of the designated object be changed. Such an access object can only be used in an
expression or as an in parameter; it cannot be assigned to an access variable (otherwise the
designated object could be modified using the variable).

Constraints specified for an access type apply to the type of the designated objects. Qualification
of an expression of an access type applies to the designated object.

Although the dynamically created objects may not be of an access type, there is no restriction on
their components. Thus, components of the object designated by the values of an access type may
be values of the same or of another access type. This permits recursive and mutually dependent

access types (whose declaration requires a prior incomplete type declaration for one or more
types).



Examples:
type TEXT is access BUFFER;
type LIST_ITEM is access
record
VALUE : INTEGER;
SuUCC : LIST_ITEM;
PRED : LIST_ITEM;
end record;
HEAD : LIST_ITEM := null;
Example of mutually dependent access types:

type CAR; -- a prior incomplete type declaration

type PERSON is access

record

NAME : STRING(1 .. 20);

AGE : INTEGER range O .. 130;

SPOUSE : PERSON;

VEHICLE : CAR; -- valid because CAR declared above
end record;

type CAR is access -- the complete type declaration

record

NUMBER : INTEGER;
OWNER : PERSON;
end record;

MY_CAR, YOUR_CAR, NEXT_CAR : CAR;
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4.1

4. Names, Variables, and Expressions

Names

Naries denote declared entities such as variables, constants, types, and program units.

name =
identifier | indexed_component
| selected_component | predefined_attribute

indexed_component ::= name(expression {, expression})
selected_component ::= name . identifier
predefined_attribute ::= name ' identifier

The simplest form for the name of an entity is the identifier given in its declaration.

Examples of simple names:

INDEX -- the name of a scalar variable
GRID -- the name of an array variable
FLOAT -- the name of a type

SQRT -- the name of a function
OVERFLOW -- the name of an exception

4.1.1 Indexed Components

An indexed component can denote either

(a)

(b)

A component of an array:

The name identifies the array, (or an access object whose value designates the array, see 3.8)
and the expressions give the indices for the component. If the array has more dimensions than
the given number of expressions, the array component is a subarray of the named array.

A task in a family of tasks:

The name identifies the task family and the expression (only one can be given) specifies the
index of the individual task.
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(c) An entry in a family of entries:

The name identifies the entry family and the expression (only one can be given) specifies the
index of the individual entry.

If evaluation of one of the expressions gives an index value that is outside the range specified for
the index, the exception INDEX_ERROR is raised.

Examples of indexed components:

GRID(1, J+1) -- an array component
GRID(2) -- a subarray of GRID
PRINTER(!) -- a task in the task family PRINTER

4.1.2 Selected Components

A selected component can denote either

(a) A component of a record:

The name identifies the record (or an access object whose value designates the record) and
the identifier specifies the record component.

(b) An entity declared in the visible part of a module:
The name identifies the module and the identifier specifies the declared entity.
(c) An entity declared in an enclosing unit:
The name identifies the enclosing unit and the identifier specifies the declared entity.

(d) A user-defined attribute of a type:

The name identifies the type and the identifier specifies a user-defined subprogram attribute
of the type (see 3.3).

For variant records, a component identifier can denote a component in a variant part. In such a
case, the selected component must belong to the variant prescribed by the discriminant of the
record, otherwise the exception DISCRIMINANT_ERROR is raised.

Examples of selected components:

APPOINTMENT.DAY -- a record component

NEXT.SUCC.VALUE -- a record component
KEY_TABLE(SYMBOL).LENGTH -- a record component

DEVICE.READ -- an entry of the task DEVICE
PRINTER(I).WRITE -- an entry of the task PRINTER(l)
TABLE_MANAGER.INSERT -- a procedure in the package TABLE_MANAGER

!

MAIN.ITEM_COUNT a variable declared in the procedure MAIN
STACK.MAX_SIZE -- an attribute of the type STACK
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Notes:

For a record structure with nested record structures, the name of each level must be given to name
a nested component.

4.1.3 Predefined Attributes

For user-defined attributes, as explained above, the notation of selected components is used; the
named entity is a type, and the attribute identifier is a subprogram provided by the user. For
predefined attributes, the apostrophe notation is used; the named entity need not be a type and
the attribute identifier is predefined in the language. A predefined attribute identifier is always
prefixed by an apostrophe, hence these identifiers are not reserved. Specific predefined attributes
are described with the corresponding language constructs.

Appendix A gives a list of all the language predefined attributes. Additional predefined attributes
may exist for an implementation.

Examples of predefined attributes:

COLOR'FIRST -- minimum value of the enumeration type COLOR
FLOAT'DIGITS -- precision of the real type FLOAT
GRID’LAST(2) -- upper bound of the second dimension of GRID
PRINTER(I)’ACTIVE  -- TRUE if the task PRINTER(l) is active
DATE'SIZE -- number of bits for records of type DATE
CARD'ADDRESS -- address of the record variable CARD

4.2 Literals

A literal denotes an explicit value of a given type.

literal =
number | enumeration_literal | character_string | null

A number or an enumeration literal denotes a value of the corresponding scalar type. The access
value null designates no object at all. Literals for approximate numbers are rounded to the preci-
sion required by the context in which they are used.

Examples:
3.14159_26536 -- an approximate number
1345 -- an integer number
CLUBS -- an enumeration literal
"A” -- a character literal, also a character string
“SOME TEXT” -- a character string
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4.3 Variables

A variable is an object of an arbitrary type whose value can be changed. A variable can be a scalar,

an array, a record, or an access object. Alternatively, it can be a component of another objectora
slice of an array.

variable = name [(discrete_range)] | name.all

When a name is followed by a discrete range, the name must be the name of an array (or subarray)
or of an access object whose value designates an array. The range must denote a contiguous
sequence of index values for the first dimension of the array (or subarray). Such a variable is called
an array slice. Its type is that of the array, with the constraint given by the discrete range. For

names of access objects with the qualifier all, the variable denotes the entire object designated by
the access value.

Examples:
X -- a scalar variable
GRID . -- an array variable
GRID(l, J) -- a component of the array variable GRID
GRID(1 .. 10) -- a slice of the array GRID
GRID(2)(1 .. 10) -- a slice of the subarray GRID(2)
TODAY.MONTH -- a record component
NEXT_CAR.OWNER -- a component of the record designated by NEXT_CAR
NEXT_CAR.all -

the entire record value designated by NEXT_CAR

4.4 Expressions

An expression is a formula that defines the computation of a value.

expression =
relation {and relation}
| relation lor relation}
| relation {xor relation}

relation ::=
simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not] in type_mark [constraint]

simple_expression ::= [unary_operator] term {adding_operator term}
term ::= factor {multiplying_operator factor}

factor = primary [%% primary]

primary =

literal | aggregate | variable | allocator
| subprogram_call | qualified_expression | (expression)
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Primaries include constants and predefined attributes, which are covered by the syntactic category
“variable”. An expression of a given type is also regarded as a one-component aggregate for a cor-
responding array or record type. The type of an expression depends on the type of its constituents,

as described below.
Examples of primaries:

4.0 -
(1. 10 =>0) =
VOLUME -
DATE'SIZE —
SINE(X) -
REAL(IxJ) -
(LINE_COUNT + 10) =

Examples of expressions:

VOLUME
Bx%2
LINE_COUNT mod PAGE_SIZE

-4.0
not DESTROYED
Bxx2 - 4.0xAxC

PASSWORD(1 ..
I not in 1 . 10

5) = "JAMES”

INDEX = 0 or ITEM_HIT
(COLD and SUNNY) or WARM

4.5 Operators and Expression Evaluation

number
aggregate array value
value of a variable
predefined attribute
function subprogram call
qualified expression
parenthesized expression

-- primary
-- factor
-- term

-- simple expression
-- simple expression
-- simple expression

-- relation
-- relation

-- expression
-- expression

The operators in the language are grouped into six classes, given in the following order of increas-

ing precedence:
logical_operator =
relational_operator =
adding_operator =
unary_operator =
multiplying_operator =

exponentiating_operator =

and | or | xor

+

+

*

* %

[/=1<1l<=1>1]>=
- | &
| - | not

| / | mod
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EOT a sequen_ce of operators of the same precedence level, evaluation proceeds in textual orclier
rom left t0 right, or in any order giving the same result. The primaries of an expression are aiso
evaluated in textual order. All primaries are evaluated and all operations are performed.

The operands, result types, and the meaning of the predefined operators are given below. Note
that some operations may result in exception conditions for some values of the operands (see
chapter 11). Real expressions are not necessarily calculated with exactly the specified accuracy
(precision or delta), but the accuracy used will be at least as good as that specified.

Examples of precedence:

not SUNNY or WARM -- same as (not SUNNY) or WARM
X > 40 and Y > 0.0 — same as (X > 4.0) and (Y > 0.0)

-4 0xAxx2 -- same as -(4.0 x (Axx2))
Yxx(-3) -- parentheses are necessary
A/ B =xC -

same as (A/B)xC

4.5.1 Logical Operators

Logical operators are applicable to boolean values and to one dimensional arrays of boolean values

having the same number of components. The operations on arrays are performed on a component
by component basis.

Operator Operation Operand Type Result Type
and conjunction BOOLEAN BOOLEAN
boolean array type same array type
or inclusive disjunction BOOLEAN BOOLEAN
boolean array type same array type
xor exclusive disjunction BOOLEAN BOOLEAN
boolean array type same array type

4.5.2 Relational and Membership Operators

The relational operators have operands of the same type and return boolean values. Note that

equality and inequality are defined for any two objects of the same type (unless the type is a
restricted type, see 7.4).
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Operator

= /=

([l

< <
> >

Equality for the discrete types is equality of the values. For a floating (or fixed) point type T, if two
values differ by less than T'SMALL (or T'DELTA), then the result delivered by a relational operator
is implementation defined. Equality for array and record types is equality of the components, as
given by the predefined operators. Hence, this operation is unchanged by any redefinition of
equality on the component types involved. Two access values (see 3.8) are equal if they designate

Operation

equality and
inequality

test for
ordering

Operand Type Result Type
any type BOOLEAN
any scalar BOOLEAN
type

the same dynamically allocated object.

The inequality operator gives the complementary result to the equality operator.

The membership operators in and not in test for membership of a value of any type within a cor-
responding range, subtype, or constraint. These operators return a boolean value and have the

same precedence as the relational operators.

Examples:
X/=Y
MY_CAR

MY_CAR
MY_CAR.all

[

| not in 1

-- with real X and Y, is

TODAY in WEEK_DAY

TODAY in DAY range MON ..

0.1 = FRAC(0.2)

4.5.3 Adding Operators

null -- true
YOUR_CAR -- true
= YOUR_CAR.all -- true
. 10

FRI

implementation defined

if MY_CAR has been set to null
if sharing one car
if the two cars are identical

-- range check

-- subtype check

-- same subtype check

-- qualification necessary to define the type

The adding operators + and - return a result of the same type as the operands.

Operator

+

Operation
addition
subtraction

catenation

Operand Type Result Type
numeric type same numeric type
numeric type same numeric type
one dimensional same array type
array type

For real types, the accuracy of the resuit is the accuracy of the operand type.
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The adding operator & (catenation) is applied to two operands of an array type which fras BN
declared to be one dimensional and whose index is specified by a type mark. The result is an affa);
of the same type. (Note that an expression of the component type is regarded as a one.con‘\ponen
array of this type). For strings, this operation results in conventional string catenation.

For all numeric types, the exception RANGE_ERROR is raised if the result value is outside the

range of the result type. The exception OVERFLOW is raised if the result value is beyond the
implemented limits.

Examples:

Z + 0.1 -- addition is that of the type of Z, which must be real
"A" & "BCD” -- catenation of a character with a string

4.5.4 Unary Operators

Unary operators are applied to a single operand and return a result of the same type.

Operator Operation Operand Type Result Type
+ identity numeric type same numeric type
- negation numeric type same numeric type
not logical negation BOOLEAN BOOLEAN

boolean array type same array type

The operator not can also be applied to arrays of boolean values on a component by component
basis, just as for logical operators.

The exceptions RANGE_ERROR and OVERFLOW can be raised by the negation operation, just as
for the subtraction operation.

4.5.5 Multiplying Operators

The operators = and / for integer and floating point values and the operator mod for integer values
return a result of the same type as the operands.

Operator Operation Operand Type Result Type
# multiplication integer same integer type
floating same floating type
/ integer division “integer same integer type
floating division floating same floating type
mod modulus integer same integer type



Integer division and modulus are defined by the relation

A = (A/B)xB + (A mod B)

where (A mod B) has the sign of A and an absolute value less than the absolute value of B. Integer
division satisfies the identity

(-A)/B = -(A/B) = A/(-B)

For fixed point values, the following multiplication and division operations are provided. The types
of the left and right operands are denoted by L and R.

Operator Operation Operand Type Result Type
L R

* multiplication fixed integer same as L
integer fixed same as R
fixed fixed universal..fixed

i division fixed integer  same as L
fixed fixed universal..fixed

Integer multiplication of fixed point values is equivalent to repeated addition and hence is an
accurate operation. Division of a fixed point value by an integer does not involve a change in type
but is approximate.

Fixed point multiplication may yield a value of an arbitrary accuracy (denoted by universal..fixed in
the table). The result must be qualified (see 4.6) to ensure that the accuracy of the computation is
explicitly controlled. The same considerations apply to division of a fixed point value by another fix-
ed point value.

All  multiplying operations can raise the exceptions RANGE_ERROR, OVERFLOW, or
UNDERFLOW. The operations / and mod give the exception DIVIDE_ERROR when the right
operand is zero.

Examples:
| : INTEGER = 1;
J : INTEGER := 2;
K : INTEGER := 3;
X : MY_FLOAT digits 6 := 1.0;
Y : MY_FLOAT digits 6 := 2.0;
F : FRAC delta 0.0001 := 0.1;
G : FRAC delta 0.0001 := 0.1



Expression

1xJ
K/J
K mod J

XN
F/2

3xF
FxG
FRAC(FxG)

MY_FLOAT(J)xY

Value

—_

0.5
0.05

0.3
0.01
0.01
4.0

4.5.6 Exponentiating Operator

Operator

*%

Exponentiation of an operand by a positive exponent is equivalent to repeated multiplication (as
indicated by the exponent) of the operand by itself. For a floating operand, the exponent can b'e
negative, in which case the value is the reciprocal of the value with the positive exponent. This
operation can raise the OVERFLOW, DIVIDE_ERROR, or RANGE_ERROR exception.

4.6 Qualified Expressions

A qualified expression is used to state the type of an expression explicitly, to constrain an expres-
sion to a given subtype, or, if neither case applies, to convert an expression to another type.

qualified_expression ::

Operation

exponentiation

Operand -

o

integer
floating

Result Type

same
same
same

same
same

same

as
as
as

as
as

as

| and J, i.e. INTEGER
K and J, i.e. INTEGER
K and J, i.e. INTEGER

X and Y, i.e. MY_FLOAT
F, i.e. FRAC

F, i.e. FRAC

universal_fixed, qualification needed
given by qualification, i.e. FRAC
MY_FLOAT, qualification of J
converts its value to FLOAT

Type
R

Result Type

positive integer same as L
integer

type_mark(expression) | type_mark aggregate

4.6.1 Explicit Type or Subtype Specification

The same literal may appear in several types; it is then said to be overloaded. In these cases and

whenever the type of a literal or aggregate is not known from the context, a qualified expression
must be used to state the type explicitly.

same as L



In particular, an overloaded literal must be qualified in a subprogram call to an overloaded sub-
program that cannot be identified on the basis of remaining parameter or result types, in a
relational expression where both operands are overloaded literals, or in an array or loop parameter
range where both bounds are overloaded enumeration literals.

Explicit type specification is also used to specify the result type of fixed point multiplication and
division, to specify which one of a set of overloaded parameterless functions is meant, or to con-
strain a value to a given subtype.

Examples:

type MASKING_CODE is (FIX, DEC, EXP, SIGNIF);

type INSTR_CODE is (FIX, CLA, DEC, TNZ, SUB);
PRINT (MASKING_CODE(DEC)); -- DEC is of type MASKING_CODE
PRINT (INSTR_CODE(DEC)); -- DEC is of type INSTR_CODE

| in INSTR_CODE(FIX) .. INSTR_CODE(DEC)
| in INSTR_CODE range FIX .. DEC

qualification needed
qualification given by the context

4.6.2 Type Conversions

For numeric expressions, a qualified expression may specify a numeric type that is different from
the type of the expression. In this case, the value of the expression is converted to the named type.
With conversions involving real types, the converted value is within the accuracy of the specified
type.

Examples of numeric type conversion:

REAL(2x1) -- value is converted to floating point
INTEGER(1.6) -- value is 2
INTEGER(-0.4) -- value is O

Explicit conversion is allowed between objects of derived types. The conversion may result in a
change of representation, as described in chapter 13. Explicit conversion is also allowed between
array types if the index types for each dimension are the same or derived from each other and if the
component types are the same or derived from each other. Conversion involving an access type
relates to the type of the accessed objects.

Example of conversion between derived types:
type A_FORM is new B_FORM;

X : A_FORM;
Y : B_FORM;

X = A_FORM(Y);
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4.7 Allocators

: . . : ; s value that
An allocator specifies the dynamic creation of an object and the generation of an acces
designates the object.

allocator ::= new qualified_expression

: ich is qualified
The object created by the allocator is initialized with the value of the expression, which is @
by the name of the access type.

Examples:
ELEMENT := new LIST_ITEM(VALUE => 0, SUCC => null, PRED => null);
DOUBLE := new PERSON(ME.all);

4.8 Static Expressions

A static expression is one whose value does not depend on any dynamically computed values of
variables. Whenever the semantics require static expressions for the definition of some const.ruct,
these expressions are evaluated at compilation time and they must contain only the following:

(a) literals

(b) aggregates whose components are static expressions
(c) constants initialized by static expressions

(d) predefined operators, functions, and attributes

(e) qualified static expressions

(f) indexed and selected components of constants
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5. Statements

Statements cause actions to be performed when executed. A statement may be simple or com-
pound. A simple statement contains no other statement. A compound statement may contain sim-
ple statements and other compound statements.

sequence_of_statements ::= [statement}

statement =
simple_statement | compound_statement
| <<identifier>> statement

simple_statement :=
assignment_statement
exit_statement

subprogram_call_statement
return_statement

|
I [
| goto_statement | assert_statement
| initiate_statement | delay_statement
| raise_statement | abort_statement
| code_statement | null;

compound_statement =
if_statement | case_statement
| loop_statement | accept_statement
| select_statement | block

A statement may be labeled, with an identifier enclosed by double angle brackets, e.g.
<<HERE>>. Labels are used in exit and goto statements. Within the sequence of statements of a
subprogram or module body, different labels must have different identifiers.

Execution of a null statement has no other effect. Blocks are described in the next chapter. Initiate,
delay, abort, accept, and select statements are described in chapter 9 (Tasks). Raise statements
are described in chapter 11 (Exceptions). Code statements are described in section 13.8 (Machine
Code Insertions). The remaining statements are described here.

The statements in a sequence of statements are executed in succession unless an exception is
raised or unless an exit, return, or goto statement is executed.

5.1 Assignment Statements
An assignment statement replaces the current value of a variable with a new value specified by an
expression.

assignment_statement = variable := expression;
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The vari_able a‘nd the expression must be of the same type and the value of the expression must be
compatible with any range, index, or discriminant constraint applicable to the variable. If ﬁje con-
straints are not checked during compilation, an execution time check is performed and raises an

exce?tion if it fails (the check may be omitted if the corresponding exception is suppressed, see
11.6).

Examples:
KEY_VALUE := MAX_VALUE - 1;:
SHADE = BLUE;

Examples of constraints:

I, J : INTEGER range 1 .. 10;

K : INTEGER range 1 .. 20;

| = J; -- identical ranges

K =.J; -- compatible ranges

J = K; -- can only be checked during execution

-- and may raise the RANGE_ERROR exception

5.1.1 Array and Slice Assignments

For an assignment to an array or to an array slice variable, the expression must denote a value with
the same number of components. For slice assignments where the slice value refers to the same

array as the slice variable, overlapping of index ranges is forbidden and raises the exception
OVERLAP_ERROR.

Examples:

A : STRING(O .. 30);
B : STRING(1 .. 31);

A := B; -- same number of elements
A(1 .. 10) := A(11 .. 20); -- non overlapping ranges
A(1 .. 5) = "JAMES"; -- same number of elements

5.1.2 Record Assignments

For an assignment to a record variable declared with a specified discriminant value, the assigned
record value must have the prescribed discriminant value. The discriminant of a record denoted by
an access variable cannot be altered, not even by a complete record assignment.
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Examples:
DISK_1, DISK_2 : PERIPHERAL(UNIT => DISK);

(STATUS => OPEN, UNIT => DISK, CYLINDER => 1, TRACK => 1);
DISK_1;

DISK_1
DISK_2 :

5.2 Subprogram Calls

A subprogram call invokes execution of a subprogram body. The call specifies the association of
any actual parameters with formal parameters of the subprogram. An actual parameter is either a
variable or the value of an expression.

subprogram_call_statement ::= subprogram_call;

subprogram_call :=
subprogram_name [(parameter_association {, parameter_association})]

parameter_association =
|formal_parameter :=| actual_parameter
| [formal_parameter =:] actual_parameter

| [formal_parameter :=:] actual_parameter
formal_parameter := identifier
actual_parameter = expression

Actual parameters may be passed in positional order (positional parameters) or by explicitly nam-
ing the corresponding formal parameters (named parameters). For positional parameters, the
actual parameter corresponds to the formal parameter with the same position in the formal
parameter list. For named parameters, the corresponding formal parameter is explicitly given in the
call. Named parameters may be given in any order.

Positional parameters and named parameters may be used in the same call provided that
positional parameters occur first at their normal position, i.e. once a named parameter is used, the
rest of the call must use only named parameters.

Examples:

RIGHT_SHIFT;
TABLE_MANAGER.INSERT(E);

SEARCH_STRING(STRING, CURRENT_POSITION, NEW_POSITION);
PRINT_HEADER(PAGES := 128, HEADER := TITLE, CENTER := TRUE);

REORDER_KEYS(NUM_OF_ITEMS, KEY_ARRAY :=: RESULT_TABLE);
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5.2.1 Actual Parameter Associations

There are three forms for specifying actual parameters

(a) Input parameter association

|formal_parameter :=] actual_parameter

The corresponding formal parameter must have the mode in. Its value is provided by W
actual parameter. '

(b) Output parameter association

|formal_parameter =:] actual_parameter

The corresponding formal parameter must have the mode out. Its value is assigned to the
actual parameter as a result of the execution of the subprogram.

(c) Input-output parameter association

[formal_parameter :=:] actual_parameter

The corresponding formal parameter must have the mode in out. Within the subprogram, the
formal parameter permits access and assignment to the corresponding actual parameter.

An expression used as an in parameter is evaluated before the call. An expression used as an out or

in out actual parameter must be a variable or a qualified variable. The identity of a variable out or in

out actual parameter which is a selected component or an indexed component is established
before the call.

5.2.2 Omission of Actual Parameters

An in parameter may be omitted from the actual parameters if the subprogram declaration

specifies a default value for the corresponding formal parameter. In such cases, any remaining
actual parameters must be named.

Example of procedure with default values:

procedure ACTIVATE( PROCESS : in PROCESS_NAME;

AFTER : in PROCESS_NAME := NO_PROCESS;
WAIT : in TIME = 0.0;
PRIOR : in BOOLEAN := FALSE);
Examples of its call.
ACTIVATE(X);
ACTIVATE(X, AFTER = Y);
ACTIVATE(X, WAIT := 5.0«SECONDS, PRIOR := TRUE);



5.2.3 Restrictions on Subprogram Calls

The type and constraint of each actual parameter must be consistent with those of the cor-
responding formal parameter, as for assignment. To prevent aliasing (i.e. multiple access to the
same variable), a variable which is used as an actual out or in out parameter may not be used as
another parameter of the same call. For this rule, any variable that is not local to the subprogram
body is considered as an implicit in parameter if its value is read, and is considered as an in out
parameter if it is directly or indirectly updated as a result of the call.

5.3 Return Statements

A return statement terminates execution of a subprogram.
return_statement := return [expression];

A return statement can only appear in the sequence of statements of a subprogram. A return state-
ment must not appear in an accept statement. For functions or value returning procedures, a return
statement must include an expression whose value is the result of the subprogram.

Examples:

return;
return KEY_VALUE(LAST_INDEX);

5.4 If Statements

An if statement effects the choice of a sequence of statements based on the truth value of one or
more conditions. The expressions appearing in conditions must be of the predefined type
BOOLEAN.

if_statement :=

if condition then
sequence_of_statements

| elsif condition then
sequence_of_statements}

| else
sequence_of_statements)
end if;

condition =

expression |and then expression}
| expression {or else expression}
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Execution of an if stat

5 ement results in evaluation of the conditions, one after the other (treating
final else as elsif TR

UE then), until one evaluates to TRUE; then the corresponding sequence of

statements i_s executed. If none of the conditions evaluates to TRUE, none of the sequences o
statements is executed.

Examples:
if MONTH = DECEMBER and DAY = 31 then
MONTH := JANUARY;
DAY = 1
YEAR = YEAR + 1;
end if;

if INDENT then
CHECK_LEFT_MARGIN;
LEFT_SHIFT;

elsif UNDENT then
RIGHT_SHIFT;

else
CARRIAGE_RETURN;
CONTINUE_SCAN;

end if;

if MY_CAR.OWNER.VEHICLE /= MY_CAR then
FAIL ("INCORRECT RECORD");
end if;

5.4.1 Short Circuit Conditions

A condition may appear as a sequence of boolean expressions separated by and then. In such a
case, evaluation of the constituent expressions proceeds in textual order until one evaluates to
FALSE, in which case the value of the condition is FALSE; the condition is true only if all expres-
sions evaluate to TRUE. Similarly, for expressions separated by or else, evaluation stops as soon as
an expression evaluates to TRUE, in which case the value of the condition is TRUE; the condition is
false only if all expressions evaluate to FALSE.

Examples:

if MY_CAR.OWNER /= null and then MY_CAR.OWNER.AGE < 18 then
MINOR := TRUE;

end if;

if | =0 orelse A(l) = HIT_VALUE then
return;

end if;
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5.5 Case Statements

A case statement selects and executes one of several alternative sequences of statements. The
selection is based on the value of an expression, of a discrete type, given at the head of the case

statement.

case_statement =
case expression of
{when choice {| choice] => sequence_of_statements}

end case;

Each alternative is preceded by a list of choices specifying the values for which the alternative is
executed. Choices given in case statements follow the same rules as choices given in component
associations for array aggregates (see 3.6.2). Thus, each possible value of the type or subtype of
the expression must be given for one and only one alternative; the choice others can be given as
the choice for the last alternative to cover all values not given in previous choices. Note that it is
always possible to use a qualified expression to limit the number of choices that need be given

explicitly.
Examples:

case SENSOR of
when ELEVATION => RECORD_ELEVATION (SENSOR_VALUE);
when AZIMUTH => RECORD_AZIMUTH (SENSOR_VALUE);
when DISTANCE => RECORD_DISTANCE (SENSOR_VALUE);
when others => null;

end case;

case TODAY of
when MON => COMPUTE_INITIAL_BALANCE;
when FRI => COMPUTE_CLOSING_BALANCE;
when TUE .. THU => GENERATE_REPORT(TODAY);
when SAT .. SUN => null;

end case;

case BIN_NUMBER((l mod 4) + 1) of
when 1 => UPDATE_BIN(1);
when 2 => UPDATE_BIN(2);
when 3 | 4 =>
EMPTY_BIN(1);
EMPTY_BIN(2);
end case;

5.6 Loop Statements

A loop statement specifies that a sequence of statements in a basic loop is to be executed
repeatedly zero or more times. Execution is terminated either when the iteration specification of
the loop is exhausted or when an exit statement within the basic loop is executed.



loop_statement := |[iteration_specification] basic_loop

basic_loop =
loop
sequence_of_statements
end loop [identifier];

iteration_specification :=

for loop_parameter in [reverse] discrete_range
| while condition

loop_parameter := identifier

In a loop statement with a while clause, the condition is evaluated and tested before each execu-
tion of the basic loop. If the while condition is TRUE the loop is executed, if FALSE the loop state-
ment is terminated.

In a loop statement with a for clause, the discrete range is evaluated only once, before execution of
the loop statement. The loop parameter is implicitly declared as a local variable whose type is that
of the elements in the discrete range. On successive loop iterations, the loop parameter is succes-
sively assigned values from the specified range. The values are assigned in increasing order unless
the reserved word reverse is present, in which case the values are assigned in decreasing order.

If the range of a for loop is empty, the basic loop is not executed. Within the basic loop, the loop
parameter acts as a constant. Hence the loop parameter may not be changed by an assignment
statement, nor may it be given as an out or in out parameter of a subprogram call.

If a loop is a labeled statement, the label identifier must be repeated at the end of the loop after the
reserved words end loop.

Examples:

while BID(I).PRICE < CUT_OFF.PRICE loop
RECORD_BID(BID(I).PRICE);
=1+ 1;

end loop;

while NEXT /= HEAD loop

SUM = SUM + NEXT.VALUE;
NEXT := NEXT.SUCC;
end loop;

for | in BUFFER'FIRST .. BUFFER'LAST loop -- valid even with empty range

if BUFFER(l) /= " “ then
PUT(BUFFER(I));
end if;
end loop;
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5.7 Exit Statements

An exit statement causes explicit termination of an enclosing loop.

exit_statement ::= exit [identifier] [when condition];

The loop exited is the innermost loop, unless the exit statement identifies the label of an enclosing
loop, in which case the named loop is exited. The exit statement may contain a condition, in which
case termination occurs only if its value is TRUE. An exit statement may only appear within a loop.
An exit statement cannot transfer control out of a subprogram, module, accept statement, or
exception handler.

Example:

for | in 1 .. MAX_NUM_ITEMS loop
GET_NEW_ITEM(NEW_ITEM);
MERGE_ITEM(NEW_ITEM, STORAGE_FILE);
exit when NEW_ITEM = TERMINAL_ITEM;
end loop;

<<MAIN_CYCLE>>
loop
-- initial statements
exit MAIN_CYCLE when FOUND;
-- final statements
end loop MAIN_CYCLE;

5.8 Goto Statements

The execution of a goto statement results in an explicit transfer of control to another statement.

goto_statement ::= goto identifier;

The statement to which control is transferred must be labeled with the same identifier. The
designated statement and the goto statement must both be within the same subprogram, module,
or accept statement.

A goto statement cannot transfer control from outside into a compound statement, block, sub-
program, module, accept statement, or exception handler. It may transfer control from one of the
sequences of statements of an if statement or a case statement to another.

A goto statement cannot transfer control out of a subprogram, module, accept statement, or
exception handler.
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Example:

<<COMPARE>>
if A(l) < ELEMENT then
if LEFT(l) /= O then
| = LEFT(l);
goto COMPARE;
end if;

-- some statements
end if;

5.9 Assert Statement

int in the
An assert statement states that a condition must hold whenever control reaches that poin
program.

assert_statement := assert condition;

The execution of an assert statement causes the evaluation of the conditi

on, and the exception
ASSERT_ERROR is raised if the condition is false.

: s
Execution of assert statements may be omitted when the exception ASSERT_ERROR is suppreé
sed by a pragma (see 11.6).
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6. Declarative Parts, Subprograms, and Blocks

A declarative part contains declarations and related information that apply over a region of
program text.

A subprogram is an executable program unit that is invoked by a subprogram call. Its definition can
be given in two parts: a subprogram declaration defining its calling convention, and a subprogram
body defining its execution.

A block allows one to make declarations local to the sequence of statements where they are used,
without introducing a procedure. A block may be viewed as an anonymous procedure implicitly
called at the place of its definition.

6.1 Declarative Parts

Blocks, subprograms, and modules may contain declarative parts.

declarative_part ::=
|luse_clause] {declaration} {representation_specification} {body}

body := |visibility_restriction] unit_body | body_stub
unit_body ::= subprogram_body | module_specification | module_body

The successive constituents of a declarative part are elaborated in the order in which they appear
in the program text. Expressions appearing in declarations or representation specifications (see 13)
are evaluated during this elaboration. A subprogram must not be called within such an expression
if the subprogram body appears later in the declarative part. In particular, these rules apply to for-
mal parts of subprogram specifications and to constraints of objects, types, and subtypes.

The body of a subprogram or module declared in the declarative part of a block or subprogram
must be provided in the same declarative part. The body of a subprogram or module declared in a
module specification must be provided in the corresponding module body. If the body of such a
unit is a separately compiled subunit (see 10.2) it must be represented by a body stub at the place
where it would otherwise appear.

A declarative part can also contain a use clause (see 8.4).
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6.2 Subprogram Declarations

A subprogram declaration specifies the designator of a subprogram, its nature (function or sub-
program), its formal parameters (if any), and the type of any returned value.

subprogram_declaration =
subprogram_specification;
| subprogram_nature designator is generic_instantiation;

subprogram_specification ::= |generic_clause]
subprogram_nature designator |formal_part] |return type_mark |constraint]]

subprogram_nature := function | procedure
designator = identifier | character_string
formal_part ::= (parameter_declaration {; parameter_declaration})

parameter_declaration ::=
identifier_list : mode type_mark |constraint] [:= expression]

mode := lin] | out | in out

A designator that is a character string is used in function declarations for overloading operators of
the language. Such a string must denote one of the existing operator symbols (see 4.5).

A subprogram specification including a generic clause specifies a generic subprogram; an instance
of such a generic subprogram is declared with a subprogram declaration including a generic
instantiation (see 12).

A parameter declaration or constraint on the result cannot contain an identifier declared in another
parameter declaration of the same formal part. '

Examples of subprogram declarations:
procedure TRAVERSE_TREE;
procedure RIGHT_INDENT(MARGIN : out LINE_POSITION);
procedure INCREMENT(X : in out INTEGER);
procedure RANDOM return REAL range -1.0 .. 1.0;
function COMMON_PRIME (M, N : INTEGER) return INTEGER;
function DOT_PRODUCT (X, Y : VECTOR) return REAL;
function “x” (X, Y : MATRIX) return MATRIX;

Notes:

All subprograms can be called recursively and are reentrant.
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6.3 Formal Parameters

The formal parameters of a subprogram are considered local to the subprogram. A parameter has
one of three modes:

in The parameter acts as a local constant whose value is provided by the
corresponding actual parameter.

out The parameter acts as a local variable whose value is assigned to the corres-
ponding actual parameter as a result of the execution of the subprogram.

in out The parameter acts as a local variable and permits access and assignment to
the corresponding actual parameter.

If no mode is explicitly given, the mode in is assumed. The components of in parameters that are
arrays, records, or objects denoted by access values must not be changed by the subprogram.

For in parameters, the parameter declaration may also include a specification of a default expres-
sion, whose value is implicitly assigned to the parameter if no explicit value is given in the call. This
expression is evaluated when the subprogram specification is elaborated.

For all modes, access to the actual parameters can be provided either throughout the execution of
the subprogram body or by copying the corresponding actual parameter before the call (in
parameters), after the call (out parameters) or both (in out parameters). The effect of a subprogram
that is abnormally terminated by the occurrence of an exception is undefined; its actual in out and
out parameters may or may not have been updated.

In the absence of aliasing (see 5.2.3) the effect of a subprogram call is the same whether or not
copying is used for parameter passing, unless the subprogram execution is abnormally terminated.
A program that relies on some assumption regarding the actual mechanism used for parameter
passing is therefore erroneous.

Examples of in parameters with default values:

procedure PRINT_HEADER(PAGES : in INTEGER;
HEADER : in LINE := BLANK_LINE;
CENTER : in BOOLEAN := TRUE);

procedure ACTIVATE( PhOCESS : in PROCESS_NAME;

AFTER : in PROCESS_NAME := NO_PROCESS;
WAIT : in REAL := 0.0;
PRIOR : in BOOLEAN := FALSE);
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6.4 Subprogram Bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body =

subprogram_specification is
declarative_part

begin
sequence_of_statements

| exception
|exception_handler}]

end |designator];

The subprogram specification provided in a subprogram body must be identical to the specification
given in the corresponding subprogram declaration, if both are given. A subprogram declaration
must be given if the subprogram is defined in the visible part of a module, or if it is called by other
subprogram or module bodies that appear before its own body. Otherwise, it can be omitted and
the specification appearing in the body acts as a subprogram declaration. The elaboration of a sub-

program body consists of the elaboration of its specification unless the latter elaboration has
already been done.

Upon each call to a subprogram, the association between actual and formal parameters iS
established (see 5.2), the declarative part of the body is elaborated, and the statements of the body
are executed. Upon completion of the body, assignment to out and in out actual parameters IS
completed, if necessary (see 6.3), and then return is made to the caller. A subprogram body may
contain exception handlers to service exceptions occurring during its execution (see 11).

The optional designator at the end of the subprogram body must repeat the designator of the sub-
program specification.

Example of subprogram body:

procedure PUSH(E : in ELEMENT_TYPE; S : in out STACK) is
begin
if S.INDEX = S.SIZE then
raise STACK_OVERFLOW;
else
S.INDEX := S.INDEX + 1;
S.SPACE(S.INDEX) = E;
end if;
end PUSH;

Notes:

A subprogram body may be expanded in line at each call if its declarative part includes the
declarative pragma:

pragma INLINE;

The meaning of a subprogram is not changed by the pragma INLINE, which is merely a recommen-
dation to the compiler. Thus, an inline subprogram could be recursive or separately compiled.



6.5 Function Subprograms

A function is a subprogram that computes a value. A function can only have in parameters and
must contain a return clause specifying the type of its returned value. The statement list in the
function body must include one or more return statements specifying the returned value. An
attempt to leave a function otherwise than by a return statement (i.e. by reaching the final end)
causes a NO_VALUE_ERROR exception to be raised.

Side effects, e.g. assignments to non-local variables, are not allowed within functions, whether
directly, or indirectly through other subprogram calls. Hence, if function calls occur in expressions,
they can be rearranged in any order consistent with the properties of the operators.

If a parameter belongs to an access type, the parameter must be viewed as providing access to the
complete collection of dynamically allocated objects. For functions, this collection is considered as
an implicit in parameter. As a consequence, within the function body there can be no alteration to
any object designated by such a parameter or designated by a local variable of the access type.

Similarly, allocators cannot appear in a function body.

Value returning procedures obey rules similar to those of functions: a value returning procedure
can only have in parameters, its declaration must contain a return clause, and its body may only be
left by a return statement. However, assignments to global variables are permitted within value
returning procedures. Calls of such procedures are only valid at points of the program where the
corresponding variables are not within the scope of their declaration. The order of evaluation of
these calls is strictly that given in the text of the program. Calls to value returning procedures are
only allowed in expressions appearing in assignment statements, initializations, and procedure cal-
Is.

Examples:

function DOT_PRODUCT(X, Y : VECTOR) return REAL is
SUM : REAL := 0.0;

begin
assert X'FIRST = Y'FIRST;
assert X'LAST = Y'LAST;

for | in X'FIRST .. X'LAST loop
SUM = SUM + Xl(I)xY(I);
end loop;
return SUM;
end DOT_PRODUCT;

package UNIQUE_NUMBER_GENERATOR is
procedure GENERATOR return INTEGER; -- value returning procedure
end;

package body UNIQUE_NUMBER_GENERATOR is

COUNT : INTEGER = O; -- COUNT is not visible where GENERATOR is called
procedure GENERATOR return INTEGER is
begin

COUNT := COUNT + 1; -- side effect on COUNT

return COUNT;
end GENERATOR;
end UNIQUE_NUMBER_GENERATOR;
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6.6 Overloading of Subprograms

The same subprogram designator can be given in several otherwise different subprogram
specifications; it is then said to be overloaded. The declaration of an overloaded subprogram does
not hide a previous subprogram declaration unless the order, names, modes, and types ‘Of e
parameters, and the result type, if any, are identical in both declarations (a default expression for
an in parameter is ignored here). Such redefinition is, of course, illegal within the same declarative
part. Overloaded definitions may, but need not, occur in the same declarative part.

A call to an overloaded subprogram is ambiguous (and therefore illegal) if the type, mode, a."d
name information derived from the actual parameter associations and the type information
required for the result are not sufficient to identify exactly one overloaded specification.
Ambiguities may be resolved by the use of a qualified expression, or by the naming of parameters.

Examples of overloaded subprograms:

procedure PUT(X : INTEGER);
procedure PUT(X : STRING);

procedure CHANGE(C : COLOR);
procedure CHANGE(L : LIGHT);
procedure CHANGE(F : LIGHT);

Example of calls:

PUT(28);
PUT("no possible ambiguity here”);

CHANGE(COLOR(RED));
CHANGE(C := RED);
CHANGE(F := RED);

-- CHANGE(RED) would be ambiguous since RED may denote a value of either COLOR or u

X + 1.5 -- the floating or fixed point type of X identifies the relevant “+”

6.6.1 Overloading of Operators

A function named by a character string is used to define an additional meaning for an operator. The

overloading of operators is identical to overloading of other subprograms, except that the character
string must denote one of the operators in the language.

Overloading is permitted for both unary and binary operators. A unary operator can only be
overloaded as a unary and a binary as a binary. Overloading does not change the precedence of an
operator. An overloading of a relational operator must have the result type BOOLEAN. The

operator /= must not be overloaded explicitly, since every overloading of the operator = results in
an implicit overloading of /=.
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Examples:

function "x” (X, Y : MATRIX) return MATRIX;
function “«“ (X, Y : VECTOR) return VECTOR;

Notes:

Good usage of operator overloading should preserve their mathematical properties.

6.7 Blocks

A block introduces a sequence of statements, optionally preceded by a governing declarative part.

block ::=
| declare
declarative_part|
begin
sequence_of_statements
| exception

{exception_handler})
end lidentifier|;

Execution of a block results in the elaboration of its declarative part followed by the execution of
the sequence of statements. A block may also contain exception handlers to service exceptions
occurring in the block (see 11). If a block is labeled, the optional identifier appearing at the end of
the block must repeat the label.

Example of a labeled block:

<<SWAP>>
declare
TEMP : INTEGER;
begin
TEMP = V; V = U; U := TEMP;
end SWAP;






7. Modules

A program can be composed of program units of three kinds. These are subprograms and two
forms of modules, package modules and task modules. This chapter describes the common
properties of package and task modules and the few specific properties of package modules. The
specific properties of task modules are described in Chapter 9.

Modules allow the specification of groups of logically related entities. In their simplest form
modules can represent pools of common data and type declarations. In addition, modules can be
used to describe groups of related subprograms and encapsulated data types, whose inner work-
ings are concealed and protected from their users.

7.1 Module Structure

A module is generally provided in two parts: a module specification and a module body with the
same identifier. The simplest forms of modules, those representing pools of data and types, do not
require a module body.

module_declaration ::=
|visibility_restriction] module_specification
| module_nature identifier |(discrete_range)| is generic_instantiation;

module_specification ::=
| generic_clause|
module_nature identifier |(discrete_range)| lis
declarative_part
| private
declarative_part|
end |identifier];

module_nature := package | task

module_body ::=

module_nature body identifier is
declarative_part

| begin
sequence_of_statements)

| exception
|exception_handler})

end lidentifier];

A module specification contains a declarative part called the visible part and an optional
declarative part called the private part. Elaboration of a module declaration results in the elabora-
tion of these declarative parts and therefore in the allocation of the variables of the module
specification and the assignment of any initial values.
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A module specification with a generic clause defines a generic module. Instances of generic
modules can be obtained by module declarations including a generic instantiation (see 12).

A module declaration may include a discrete range after the identifier. This only applies to task
modules and the identifier then denotes a family of tasks.

The elaboration of a task body has no other effect. The elaboration of its declarative part and the
execution of its sequence of statements is caused by the execution of an initiate statement (see
9.3). The elaboration of a package body causes the elaboration of its declarative part and the

execution of the sequence of statements, if any. These statements can be used to achieve further
initializations.

Module bodies and the visible parts of packages may contain further module declarations. The
body of any unit declared in a module specification must appear in the corresponding module
body.

7.2 Module Specifications

The first declarative part of a module specification is called its visible part. The entities declared in
the visible part can be made visible to other program units by means of a use clause (see 8.4) or
selected components (see 4.1.2). A module consisting of only a module specification (i.e., without

a module body) can be used to represent a group of common constants or variables, or a common
pool of data and types.

Example of a group of common variables:

package PLOTTING_DATA is
PEN_UP : BOOLEAN;

CONVERSION_FACTOR,
X_OFFSET, Y_OFFSET,
X_MIN, X_MAX,
Y_MIN, Y_MAX : REAL;

X_VALUE, Y_VALUE : array (1 .. 500) of REAL;
end PLOTTING_DATA;

Example of common pool of data and types:

package ‘WORK_DATA is
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type DURATION is delta 0.01 range 0.0 .. 24.0;
type TIME_TABLE is array (MON .. SUN) of DURATION;

WORK_HOURS : TIME_TABLE;
NORMAL_HOURS : constant TIME_TABLE :=

(MON .. THU => 8.25, FRI => 7.0, SAT | SUN => 0.0);
end WORK_DATA;

The visible part contains all the information that another program unit is able to know about the
module.
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7.3 Module Bodies

The visible part of a module may contain the specification of subprograms or the specification of
other modules. In such cases, the bodies of the specified units must appear within the declarative
part of the module body. This declarative part can also include local declarations and local program
units needed to implement the visible items.

In contrast to the entities declared in the visible part, the entities declared in the module body are
not accessible outside the module. As a consequence, a module with a module body can be used
for the construction of a group of related subprograms (a package in the usual sense), where the
logical operations accessible to the user are clearly isolated from the internal entities.

Example of a package:

package RATIONAL_NUMBERS is
type RATIONAL is

record
NUMERATOR : INTEGER;
DENOMINATOR : INTEGER range 1 .. INTEGER'LAST;
end record;
function "=" (XY : RATIONAL) return BOOLEAN;
function "+” (XY : RATIONAL) return RATIONAL;
function "x” (X)Y : RATIONAL) return RATIONAL;
-- Note: “=" hides predefined equality for RATIONAL operands
end;

package body RATIONAL_NUMBERS is

procedure SAME_DENOMINATOR (XY : in out RATIONAL) is
begin

-- reduces X and Y to the same denominator
end;

function "=" (XY : RATIONAL) return BOOLEAN is
UV : RATIONAL;

begin
U= X

V:i=Y;
SAME_DENOMINATOR (U,V);
return U.NUMERATOR = V.NUMERATOR;

end "=";
function "+” (XY : RATIONAL) return RATIONAL is .. end "+";
function “x” (XY : RATIONAL) return RATIONAL is .. ond "x";

end RATIONAL_NUMBERS;
Notes:

A variable declared in a module specification or body retains its value between calls to sub-
programs declared in the visible part. Such a variable is said to be own to the module.
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7.4 Private Type Declarations

The structural details of some declared types may be irrelevant to their logical use outside a
module. This may be accomplished by providing a private type declaration.

private_type_declaration :=
|restricted] type identifier is private;

A private type declaration can only appear in the visible part of a module. The full declaration of the

private type must appear in the private part of the module specification. Such types are called
private types.

For a private type (not designated as restricted), the only information available to other program
units is that given in the visible part of the defining module. Hence, the name of the type and. the
operations specified in this visible part are available. In addition, assignment and the predefined

comparison for equality or inequality are available (unless a redefinition of equality hides the
predefined equality and, as a consequence, also redefines inequality).

These are the only externally available operations on objects of a private type. External units can
declare objects of the private type and apply available operations to the objects. In contrast, exter-
nal units cannot access the structural details of objects of private types directly.

A constant value of a private type can be declared in the visible part as a deferred constant. Its
actual value must be specified in the private part by redeclaring the constant in full.

Assignment and the predefined comparison for equality or inequality are not available for private
type declarations containing the reserved word restricted. Thus if a type is restricted, the only
operations available on objects of the type are those defined by the subprograms declared in the
visible part. A user can of course define subprograms calling the visible operations.

Example:

In the next example a private type KEY is defined which only has the operations of assignment,

comparison for equality or inequality, comparison for “<”, and an operation to create a value of
type KEY.

package KEY_MANAGER is
type KEY is private;
NULL_KEY : constant KEY;
procedure GET_KEY (K : out KEY);
function "<” (X, Y : KEY) return BOOLEAN;
private
type KEY is new INTEGER range O .. INTEGER'LAST;

NULL_KEY : constant KEY := O;
end;



package body KEY_MANAGER is
LAST_KEY : KEY := O;
procedure GET_KEY(K : out KEY) is
begin
LAST_KEY := LAST_KEY + 1;
K := LAST_KEY;

end GET_KEY;
function “<” (X, Y : KEY) return BOOLEAN is
begin
return INTEGER(X) < INTEGER(Y);
end “<”;

end KEY_MANAGER;

Notes:

The expression X<Y within the body of the function “<” would be a recursive call of “<". Hence,

qualified expressions are necessary in the relation
INTEGER(X) < INTEGER(Y)

Example:

In the example below, an external subprogram making use of I_O_PACKAGE may obtain a file
name by calling OPEN and later use it in calls to READ and WRITE. Thus, outside the module, a file
name obtained from OPEN acts as a kind of password. Its internal properties (e.g., containing a
numeric value) are not known and no other operations (such as addition or comparison of internal

names) can be performed on a file name.

package |I_O_PACKAGE is
restricted type FILE_NAME is private;

procedure OPEN (F : in out FILE_NAME);

procedure READ (ITEM : out INTEGER; F : in FILE_NAME);
procedure WRITE (ITEM : in INTEGER; F : in FILE_NAME);
private
type FILE_NAME is
record
INTERNAL_NAME : INTEGER := O;
end record;
end I_O_PACKAGE;
package body I_O_PACKAGE is
LIMIT : constant INTEGER := 200;
type FILE_DESCRIPTOR is record end record;

DIRECTORY : array (1 .. LIMIT) of FILE_DESCRIPTOR;

procedure OPEN (F : in out FILE_NAME) is

procedure READ (ITEM : out INTEGER; F

procedure WRITE (ITEM : in INTEGER; F
begin

end |I_O_PACKAGE;

end;

. in FILE_NAME) is
. in FILE_NAME) is

end;
end;
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¢ internd
structure of the type. They also imp|epurpose. They prevent a user from making use of the |l
operations over the type are those -

7.5 An lllustrative Table Management Package

The following example illustrate
" . . es
wihthy & simpis interkie 1 tis us::.e use of package modules in providing high level procedur
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are retrieved according to tzet' oy sre posted. Each posted item has an order number. The items
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t ; package is quite simple. There is a type called [TEM designating
table items, a procedure INSERT for posting items, and a proceduret‘;{pETRIEVE for obtaining the

item with the lowest order number. There is a special i i i
: NDEr: pecial item NULL_ITEM that is returned when the
table is empty, and an exception TABLE_FULL that may be raised by INSERT.

A sketch of a module implementing such a package is given below. Only the visible part of the
package is exposed to the user.

package TABLE_MANAGER is

type ITEM is
record
ORDER_NUM : INTEGER;
ITEM_CODE : INTEGER;
ITEM_TYPE : CHARACTER;
QUANTITY : INTEGER;
end record;

NULL_ITEM : constant ITEM :=
(ORDER_NUM | ITEM_CODE | QUANTITY => O, ITEM_TYPE => " ");

procedure INSERT (NEW_ITEM : in ITEM);
procedure RETRlEVE(HRST_ITEM : out ITEM);

TABLE_FULL : exception; -- may be raised by INSERT
end;

The details of implementing such packages can be quite complex, in this case involving a two way
linked table of internal items. A local housekeeping procgdure EXCHANGE is used to move an
internal item between the busy and the free lists. The initial table linkages are established by the
initialization part. The package body need not be shown to the users of the package.
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package body TABLE_MANAGER is
SIZE : constant INTEGER := 2000;
subtype INDEX is INTEGER range O .. SIZE;

type INTERNAL_ITEM is

record
CONTENT : ITEM;
succC : INDEX;
PRED : INDEX;
end record;

TABLE : array (INDEX'FIRST .. INDEX'LAST) of INTERNAL_ITEM;
FIRST_BUSY_ITEM : INDEX 0;
FIRST_FREE_ITEM : INDEX 1z

function FREE_LIST_EMPTY return BOOLEAN is ... end;
function BUSY_LIST_EMPTY return BOOLEAN is .. end;
procedure EXCHANGE (FROM : in INDEX; TO : in INDEX) is ... end;

procedure INSERT (NEW_ITEM : in ITEM) is
begin
if FREE_LIST_EMPTY then
raise TABLE_FULL;
end if;
— remaining code for INSERT
end INSERT;

procedure RETRIEVE (FIRST_ITEM : out ITEM) is .. end;
begin

-- initialization of the table linkages
end TABLE_MANAGER;
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8. Visibility Rules

This chapter describes the rules defining the scope of declarations and the rules defining which
identifiers are visible at various points in the text of the program. These rules are stafed here as
applying to identifiers. They apply equally to character strings used as function designators or
enumeration literals.

A declaration associates an identifier with a program entity, such as a variable_, a type, a sgb—
program, a formal parameter, a record component, etc. The region of text over which a declaration

has an effect is called the scope of a declaration.

The same identifier can be introduced by different declarations in the text of a program and thys be
associated with alternative entities. Hence the scopes of several declarations with the same iden-

tifier can overlap.

Overlapping scopes for declarations with the same identifier can occur because of overloading of
subprograms or of enumeration literals (see 6.6 and 3.5.1). Overlapping scopes can a.lso occur
because of nesting. In particular, subprograms, modules, and blocks can be nested within each
other; similarly these units can contain nested record type definitions or nested loop statements.

At a given point of text, the declaration of an entity with a certain identifier is said to be visible if
this entity is an acceptable meaning for an occurrence of the identifier.

For overloaded identifiers, there can be severa/ meanings acceptable at a given point, and the
ambiguity must be resolved by the rules of overloading (see 4.6 and 6.6). For other identifiers (the
usual case and the case considered in this chapter) there can be at most one acceptable meaning.
By convention, an identifier is said to be visible if its declaration is visible. The visibility rules are
the rules defining which identifiers are visible at various points of the text.

8.1 Scope of Declarations

Entities can be introduced by declarations in various ways. An entity can be declared in a
declarative part of a block, subprogram, or module. An enumeration literal is declared by its occur-
rence in an enumeration type definition, a loop parameter by its occurrence in an iteration
specification. Finally, entities can be declared as record components or as formal parameters of
subprograms, entries, and generic clauses.

The scopes of these various forms of declarations and the scope of labels are defined as follows:
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® The scope of a declaration given in the declarative part of a block, subprogram body, Of
module body extends from (and includes) the declaration up to the end of the corresponding
block, subprogram, or module.

® The scope of a declaration given in the visible or private part of a module extends from (and
includes) the declaration to the end of the module specification. It also extends over the cOr-
responding module body.

® The scope of a declaration given in the visible part of a module also extends to the end of the
scope of the module declaration itself.

® The scope of an enumeration literal is the scope of the enumeration type declaration (or
definition) itself.

® The scope of a record component extends from the component declaration to the end of the
scope of the record type declaration (or definition) itself.

® The scope of an (unnamed) enumeration or record type definition, itself given within a record
type definition, extends to the end of the scope of the enclosing definition (or declaration).

® The scope of a formal parameter of a subprogram, entry, or generic clause extends from the
parameter declaration to the end of the scope of the declaration of the subprogram, entry, or
generic unit itself.

® The scope of a loop parameter extends to the end of the corresponding loop.

® The scope of a label extends from the first occurrence of a label to the end of the innermost
enclosing compound statement, subprogram, or module. The first occurrence of a label can be
either the label itself or its.use in a goto statement.

8.2 Visibility of Identifiers

As defined in the previous section, the scope of a declaration always extends at least until the end
of the language construct enclosing the declaration (either a block, a subprogram, an accept state-
ment, a module, a record type definition, or a loop statement). In addition, the scope extends out-
side the enclosing construct for record components, formal parameters, and items declared in a
module visible part.

The declaration of an identifier is visible at a given point of text if this point is within the construct
enclosing its declaration, but not within an inner construct containing another declaration with the
same identifier. An entity that is visible in this manner is directly visible, that is, it can be named
simply by its identifier.

An entity declared in an enclosing construct is said to be hidden within an inner construct contain-
ing another declaration with the same identifier. A subprogram declaration hides another sub-
program only if their specifications are equivalent with respect to the rules of subprogram
overloading (see 6.6). An enumeration literal overloads but does not hide another enumeration
literal. Redeclaration (as opposed to overloading) is not allowed within the same declaration list or
component list.
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The name of an-entity declared immediately within a subprogram or module can always be writtep
as .a selected component within this unit, whether it is visible or hidden. The name of the unit
(which must be visible) is then used as a prefix. Thus, component selection has the effect of open-
ing the visibility for the occurrence of the identifier after the dot.

Outside its construct enclosing its declaration, but within its scope a record component, a formal
Pparameter, or an item of a module visible part can be made visible as follows:

® Arecord component is made visible by a selected component whose prefix names a record of
the corresponding type. It is also visible as a choice in an aggregate of the type.

® A formal parameter of a subprogram, entry, or generic clause is visible within named
parameter associations of corresponding subprogram calls, entry calls, or generic instantia-

tions.

® An entity declared within a module visible part is made visible by a selected component
whose prefix names the module. It may also be made directly visible via a use clause (see
8.4).

Example:

procedure P is

A : BOOLEAN;
. B : BOOLEAN;
procedure Q is
C : BOOLEAN;
B : BOOLEAN; -- an inner redeclaration of B
begin
B = As -- means Q.B := P.A;
C := PB; -- means Q.C := P.B;
end;
begin
A = B; -- means P.A = P.B;

end;
Restrictions on redeclarations:

An identifier used (as opposed to being declared) in one declaration in a declaration (or compo-
nent) list may not be redeclared in subsequent declarations of the same list. Thus the following list
of declarations is illegal:

2xN; -- using N from outer scope
10; -- .illegal redeclaration of N

M : constant INTEGER
N : constant INTEGER

[}

A variable or constant of an enumeration type cannot hide an enumeration value of the type. The
same restriction applies to a parameterless function returning a result of an enumeration type.

Note on redeclaration:

An-inner declaration of an object of a given type hides an outer declaration of a parameterless
function with the same identifier and type, and vice versa.
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B.3 Restricted Program Units

By means of a visibility restriction, a program unit may restrict the visibility it otherwise has of ou
er units.

visibility_restriction ::= restricted [visibility_list]
visibility_list = (unit_name {, unit_name})

In all cases, the predefined identifiers are visible within the restricted program unit. If no Vls'b‘h(;
list is given, no other identifiers are visible. If there is a visibility list, the first name can (byt nee‘t
not) be the name of a unit enclosing the restricted unit. Entities declared within the enclosing u.g'e
(if given) are visible as usual. Other names, if given, must be the names of modules that are outsi

the given enclosing unit or the restricted unit itself. These module names are also visible, and thus
can be used in selected components and use clauses.

The outer modules could be library modules. A module body, whether restricted or not, a"{"a\'z
sees the visible part and the private part, if any, of its own module specification. Within a restricte

program unit, a visibility restriction may be locally superseded by another visibility restriction given
for an inner unit.

Example:

procedure MAIN is
U : BOOLEAN;

package A is
LA : BOOLEAN;
end;

package B is
LB : BOOLEAN;
end;

restricted(A)
procedure OUTSIDE is
V : BOOLEAN;

restricted(OUTSIDE, INPUT_OUTPUT)
procedure DISPLAY(W : BOOLEAN) is
begin
-- OUTSIDE, V, W, DISPLAY, and INPUT_OUTPUT are visible names.
-- The identifiers of the visible part of the library module INPUT_OUTPUT
-- can be denoted by selected components, or directly if a use clause is given

-~ for the module. The identifiers B, LB, A, LA, U, MAIN are not visible.
end DISPLAY;

begin
-- A, OUTSIDE, V and DISPLAY are visible names
-- The name A.LA is legal
-- The name LA can be made directly visible by a use clause for A

-- The identifiers B, LB, U, MAIN are not visible
end OUTSIDE;

begin
-- U, A, B, OUTSIDE are visible names
-- The names A.LA and B.LB are legal

-- The name LA and LB can be made directly visible by a use clause for A and B
end MAIN;
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Notes:

If the visibility list includes the name of an enclosing unit, the names of modules local to this unit
are already visible and hence must not be included in the visibility list.

8.4 Use Clauses

If the name of a module is visible at a given point of text, the identifiers declared within the visible
part of the module can be denoted by selected components. In addition, these identifiers can be
made directly visible by means of a use clause at the start of a declarative part.

use_clause ::= use module_name {, module_name};
The names appearing in the use clause must be visible module names.

In order to define the set of identifiers that are made visible by use clauses at a given point of the
text, consider the set of module names appearing in the use clauses of the current and all enclos-
ing units, up to the innermost enclosing restricted unit.

An identifier is made visible by a use clause if it is defined in the visible part of one and only one of
these modules and if it is not visible otherwise.

Several overloaded identifiers (subprograms or enumeration literals) can be made visible by use
clauses as long as none of them constitutes a redefinition of an otherwise visible identifier or of an
identifier of another module in the set.

Thus an identifier made visible by a use clause can never hide another identifier although it may
overload it. If an identifier appears in several used modules or is otherwise visible, the entity cor-
responding to its definition in one of the modules must still be denoted as a selected component.
Renaming and subtype declarations may help avoiding excessive use of selected components.

Example 1:

procedure R is
use TRAFFIC, WATER_COLORS;
-- subtypes used to resolve the conflicting type name COLOR
subtype T_COLOR is TRAFFIC.COLOR;
subtype W_COLOR is WATER_COLORS.COLOR;

SIGNAL : T_COLOR;
PAINT : W_COLOR;

begin

SIGNAL := GREEN; -- that of TRAFFIC

PAINT := GREEN; -- that of WATER_COLORS
end“ R;
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Example 2:

package D is
T, U, V : BOOLEAN;
end D;

procedure P is

package E is
B, W, V : INTEGER;
end E;

procedure Q is
T, X : REAL;
begin

declare
use C, E;
begin
-— . name T means Q.T, not D.T
-- ti.. name U means D.U
-- the name B means E.B
-- the name W means EW
- the name X means Q.X
-- the name V is illegal : must be written either D.V or E.V
end;
end Q;
begin

end P;

8.5 Renaming

A renaming declaration associates a local name with an entity.

renaming_declaration =
identifier : type_mark renames name;
| identifier : exception renames name;
| subprogram_nature designator renames |name.|designator;
| module_nature identifier renames name;

The identity of the item following the reserved word renames is established when the renaming
declaration is elaborated. The newly declared identifier (or designator) takes on the same proper-
ties (such as constancy, parameter types, and constraints, etc.) as the renamed entity.



A label cannot be renamed. An entry can only be renamed as a procedure. A subtype can
effectively be used for renaming types as in

subtype ST is S.T;

Renaming may be used to resolve name conflicts (see example in section 8.4), to achieve partial
evaluation and to act as a shorthand.

Examples:

procedure TMR renames TABLE_MANAGER.RETRIEVE;
procedure SORT renames QUICKSORTZ;
task LC renames LINK_CONTROLLER(6);

declare
L : PERSON renames LEFTMOST_PERSON;
R : PERSON renames TO_BE_PROCESSED(NEXT);

begin
LAGE := LAGE + 1;
R.AAGE := RAGE + 1;
end;

FULL : exception renames TABLE_MANAGER.TABLE_FULL;
Notes:

Renaming does not hide the old name.

8.6 Predefined Environment

All predefined identifiers, for example built-in types, operators, and so forth, are assumed to be
defined in the predefined module STANDARD given in Appendix C. Other installation defined
modules may be included in the default environment by the pragma

pragma ENVIRONMENT (module..name {, module..name});

All identifiers declared in the visible part of the modules of the default environment are assumed
declared at the outermost level of a program. Visibility restrictions do not affect the visibility of
these predefined identifiers. /
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9. Tasks

Tasks are modules that may operate in parallel. Parallel tasks may be implemented on multicom-
puters, multiprocessors, or with interleaved execution on a single processor.

9.1 Task Declarations and Task Bodies

A task declaration is a module declaration whose module nature is the reserved word task. A.task
consists of two parts: the task specification and the task body. The specification can specify either
a single task or a family of similar tasks whose individual members are denoted by an index from a
discrete range. The task specification (like a package specification) comprises a visible part and an
optional private part.

The visible part of a task specification consists of declarations specifying the interface be'tween the
task and other external units. Entry declarations are allowed in the visible part: an entry is used for
communication between tasks in mutual exclusion. Declarations of variables and modules are not

allowed in the visible part.

A task body specifies the execution of a task. The body can contain accept and select statements.
It can also contain local entry declarations.

Examples of task declarations:

task PRODUCER_CONSUMER is
entry READ (V : out ELEM);
entry WRITE(E : in ELEM);

end PRODUCER_CONSUMER;

task MULTIPLEXER is
type PRINTER is private;
entry OPEN (P : out PRINTER);
entry CLOSE(P : in  PRINTER);
entry WRITE(P : in  PRINTER; E : in ELEM);
entry STOP_MULTIPLEXER;
private
type PRINTER is new INTEGER range 1 .. 100;
end MULTIPLEXER;

task LINK_CONTROLLER(INTEGER range 1 .. 200) is
entry SEND(P : in out PACKET);
entry ACKNOWLEDGE;

end LINK_CONTROLLER;
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task TRACK_MANAGER is

type TRACK is new INTEGER range 1..200;

entry START(U : in USER; T : in TRACK);

entry TRANSFER(TRACK'FIRST .. TRACK'LAST) (I : in ITEM);
end TRACK_MANAGER;

generic task KEYBOARD is
entry READ (C : out CHARACTER);
entry WRITE(C : in CHARACTER);
end KEYBOARD;

task MY_KEYBOARD is new KEYBOARD;
task USER; -- a task with no visible part

Example of task declaration and body:

task PROTECTED_ARRAY is
-- INDEX and ELEM are global types

entry READ (I : in INDEX; V : out ELEM);
entry WRITE(l : in INDEX; E : in ELEM);
end;

task body PROTECTED_ARRAY is
TABLE : array(INDEX'FIRST .. INDEX'LAST) of ELEM := (INDEX'FIRST .. INDEX'LAST => Ok
begin
loop
select
accept READ (I : in INDEX; V : out ELEM) do
V := TABLE(l);
end READ;
or
accept WRITE(l : in INDEX; E : in ELEM) do
TABLE(l) := E;
end WRITE;
end select;
end loop;
end PROTECTED_ARRAY;

9.2 Task Hierarchy

Tasks may be declared local to other task bodies, packages, subprograms, and blocks but not in
the visible part of another task.

The elaboration of a task declaration creates one new potentially active thread of control (or, in the
case of a family, one for each member of the family). This thread of control only becomes active
when an initiate statement referring to the task is executed. Each thread of control has a parent,
which is the thread of control which elaborated the corresponding task declaration (and is not
necessarily the thread of control that executed the initiate statement). A thread of control can only
exist if its parent thread of control is active.



Each elaboration of a task declaration can only create one thread (i.e. a task cannot t?e multiply
active) and so the thread of control emanating from the elaboration of that task declaration may be
referred to as the task without ambiguity. However, if a task is declared in a procedure, egch_ call
of that procedure creates a new thread of control. Normal scope rules prevent any ambiguity.

A procedure or entry in the visible part of a task can only be called if the task is active. If the task is
not active, the TASKING_ERROR exception is raised in the task issuing the call.

Procedures and entries in the visible part of a family of tasks apply to each member of the family
and are denoted by using the member name. Thus, outside the task body of F, the procedure P of

the I-th member of the family F is denoted by

F(I).p

Types, constants, and exceptions apply to the family as a whole and are'deno_ted by just using the
family name. Thus, the type T declared in the visible part of the family F is denoted by

FT

Within the task body, if selected components are used to denote items local to the task body, they
must only mention the family name.

Notes:

® The main program is implicitly considered to be a task and therefore every thread of control is
associated with a task.

® A subprogram can be used reentrantly by several threads of control.

® The implementation of task creation, although described in dynamic terms, can either be
dynamic (storage for a task is allocated when the task is initiated) or static (storage for a task
is allocated when the task declaration is elaborated). This is particularly relevant to task
families which can be viewed in a similar manner to an access type; the index range gives an
upper limit on the number of active tasks in the family. It is possible to influence the
implementation of a given task declaration by providing an appropriate pragma in its declara-
tion:

pragma CREATION(STATIC);
pragma CREATION(DYNAMIC);

9.3 Task Initiation

The execution of a task body is initiated by an initiate statement.

initiate_statement ::=
initiate task_designator {, task_designator};

task_designator ::= task_name [(discrete_range)]
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Execution of an initiate statement allows the execution of the designated tasks to begin in parallel
with other currently active tasks. Tasks of a task family are individually initiated by following the
family name by an appropriate index or collectively initiated by following the family name by a dis-
crete range denoting all or part of the family.

On completion of an initiate statement the designated tasks are active. Initiation of a terminated
task is possible and results in a new execution of the task. However, an attempt to initiate-a task

that is already active raises an INITIATE_ERROR exception in the task performing the initiate
statement.

Examples:

initiate MULTIPLEXER, LINK_CONTROLLER(J), MY_KEYBOARD;
initiate LINK_CONTROLLER (3 .. N);

Notes:

If an initiate statement refers to more than one task, the tasks are made active simultaneously.

A task can (but need not) be initiated by its parent (the task elaborating its task declaration). For
example, if several tasks are declared in the body of a parent task, one of them could be initiated by
the parent task, or by another of the declared tasks, or by an outside task calling a visible
procedure of the parent task. It is a consequence of the rules of the language that, in any case, a:
task cannot be initiated unless its parent task is active.

The parent of a task need not be the task lexically enclosing its declaration. For example, a task T
could be declared in a procedure specified in the visible part of another task. The parent of the task
T is then the task that calls the procedure and this, of course, need not be the enclosing task.

9.4 Normal Termination of Tasks

Normal termination of a task occurs when it reaches the end of its task body and when all locally
declared tasks (if any) have terminated their execution. More generally, any subprogram, module,
or block containing local task declarations cannot be left until all local tasks have terminated their
execution.

9.5 Entry Declarations and Accept Statements

An entry declaration is similar to a subprogram declaration. For other tasks, the entry appears as a
subprogram and it is called with the same syntax as subprogram calls. An entry declaration can
also specify a family of identical entries, each denoted by an index from a discrete range. In this
case every call must be subscripted by an index.

An entry can be declared either in a task specification or in the outermost declarative part of a task
body, but not in any other declarative part; it is said to be owned by the corresponding task.
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entry_declaration ::=
entry identifier |(discrete_range)] [formal_part];

accept_statement ::=
accept entry_name [formal part] |do
sequence_of_statements
end lidentifier||;

An accept statement specifies the actions to be performed, if any, when the corresponding entry is
called. There may be several accept statements corresponding to one entry.

Execution of an entry call, however, may be delayed until the task qvv;yi::ng the entry reaches an
accept statement for the corresponding entry. There are two possibilities:

(@) If a calling task issues an entry call before a corresponding accept statement is reached by the
task owning the entry, the execution of the calling task is suspended.

(b) If a task reaches an accept statement prior to any call of that entry, the execution of the task is
suspended until such a call occurs.

When an entry has been called and a corresponding accept statement is reached, the sequence gf
Statements, if any, of the accept statement is executed by the called task in mutual exclusion. This
interaction is called a rendezvous. Thereafter, the calling task and the task owning the entry can
continue their execution in parallel.

If several tasks call the same entry before a corresponding accept statement is reached, the calls
are queued; there is only one queue associated with each entry. Each executlor} of an accept
Statement removes one call from the queue. The calls are processed in order of arrival. Each task

can only be on one queue.

Entries may be overloaded both with each other and with procedures with the same identifier. An
entry may be renamed as a procedure.

Restrictions on accept statements:

® A task can execute accept statements only for its own entries. Hence, an accept statement
cannot appear in the statements of a procedure declared in the visible part of the task, nor can
it appear in any procedure called directly or indirectly by such an externally visible procedure
or by an internal task. An accept statement can, of course, occur in a subprogram called only
by the task owning the entry.

® Initiation of a task may not be performed directly or indirectly by the sequence of statements
of an accept statement.

Examples of entry declarations:

entry READ(V : out ELEM); .
entry TRANSFER(TRACK'FIRST .. TRACK'LAST)I : in ITEM);
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Examples of entry calls:
READ(X);
KA.READ(Y);
LINK_CONTROLLER(3).ACKNOWLEDGE;
TRANSFER(TRACK_A)J);
Examples of accept statements:
accept READ(V : out ELEM) do
V = LOCAL_ELEM;
end READ;
accept TRANSFER(T)(I : in ITEM) do
end TRANSFER;

Notes:

An accept statement may contain other accept statements (possibly for the same entry) directly or
indirectly. A task may call its own entries but it will, of course, deadlock. In contrast, a procedure
declared in the visible part of a task can call local entries of the task, without risk of automatic
deadlock when the procedure is called by other tasks.

9.6 Delay Statements

A delay statement suspends the task which executes it for at least the given time interval. This
interval is expressed in the basic time unit of the clock. Time values may be expressed in terms of
the predefined constant SECONDS, which gives the number of basic time units in one second.
The type of the time interval is the predefined floating point type TIME.

delay_statement := delay simple_expression;
Example:

delay 3.0 x SECONDS;

A delay statement can occur wherever a statement is permitted.

9.7 Select Statement

A select statement allows a selective wait on one or more alternatives. The selection may depend
on conditions associated with each alternative of the select statement.



select_statement ::=
select
[when condition =>]
select_alternative
{ or [when condition =>]
select_alternative}
| else
sequence_of_statements]
end select;

select_alternative ::=
accept_statement [sequence_of_statements]
| delay_statement [sequence_of_statements]

A select alternative is said to be open if there is no preceding when clause or if the corresponding
condition is true. It is said to be closed otherwise.

Execution of a select statement proceeds as follows:
(a) All conditions are first evaluated in textual order to determine which alternatives are open.

(b) An open alternative starting with an accept statement may be sele_cted if a corre:pond'kn)g
rendezvous is possible (i.e. when a corresponding entry call has been issued by anotl er task).
When such an alternative is selected, the corresponding accept statement and possible sub-
sequent statements are executed.

(c) An open alternative starting with a delay statement will be selected if no other alternative hai
been selected before the specified time interval has elapsed. Any subsequent statements o
the alternative are then executed.

(d) If no alternative can be immediately selected, and there is an else part, the else part is
executed. If there is no else part, the task waits until an open alternative can be selected.

(e) If all alternatives are closed and there is an else part, the else part is executed. If there is no
else part, the exception SELECT_ERROR is raised.

In general, several entries of a task may have been called before a select statement is encquntered.
As a result, several alternative rendezvous are possible. Similarly, several open alternatlve_s may
start with an accept statement for the same entry. In such cases one of these alternat!ves is
selected at random. If several open alternatives start with a delay statement, only the one with the
shortest time interval is considered.

A select statement cannot contain both an else part and alternatives starting with delay state-
ments. A select statement must contain at least one alternative commencing with an accept
statement and so its position is consequently constrained in the same manner as the accept state-
ment (see 9.5).
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Example:

task READER_WRITER is
procedure READ (V : out ELEM);

entry WRITE(E : in ELEM);
end;

task body READER_WRITER is
RESOURCE : ELEM;
READERS : INTEGER := O;

entry START;
entry STOP;

procedure READ(V : out ELEM) is

-- READ is a procedure, not an entry, hence concurrent calls of READ are possible
-- READ synchronizes such calls with the entry calls START and STOP

begin
START; V = RESOURCE; STOP;

end;

begin
accept WRITE(E : in ELEM) do
RESOURCE := E;
end;

loop
select
accept START;
READERS := READERS + 1;
or
accept STOP;
READERS := READERS - 1;
or when READERS = 0 =>
accept WRITE(E : in ELEM) do
RESOURCE := E;
end WRITE;
end select;
end loop;
end READER_WRITER;

9.8 Task Priorities
Each task has an associated priority, which is an integer value of the implementation defined sub-
type PRIORITY, defined as:

subtype PRIORITY is INTEGER range
SYSTEM'MIN_PRIORITY .. SYSTEM'MAX_PRIORITY;



A lower value indicates a lower degree of urgency. The main program of a system is started with
an implementation defined intermediate priority. Whenever a task is initiated, it takes the priority
of its initiator at that time. A task can set its own priority to some value P by a call of the
predefined procedure SET_PRIORITY thus:

SET_PRIORITY(P);
Notes:
There may be several tasks that are ready to be executed by the system processors. In choosing
the processes to be executed, processes with the highest priority are treated first. Proce§ses of the
same priority level are treated on a first in, first out basis. The language does not. specify when a
scheduling decision is made. For example, a round-robin time sliced strategy is acceptable.

Priorities should only be used to indicate degrees of urgency. They should not be used for task syn-
chronization.

9.9 Task and Entry Attributes

A task T has the following predefined attributes:

T'ACTIVE -- equal to TRUE if the task is active, FALSE otherwise
T'PRIORITY  -- the current priority of the task T
T'CLOCK -- the cumulative processing time of the task T

The real time system clock can be accessed with the attribute SYSTEM'CLOCK. The cumulative
processing time of a task is initialized to zero when the task is initiated. The attributes T'CLOCK

and SYSTEM'CLOCK are of type TIME.

When a task of a family F needs to reference its own index, for example to pass it to another task, it
may use the attribute F'INDEX for that purpose. This attribute cannot be used in the visible part of

the family.

For an entry E, the attribute EECOUNT gives the number of calls to the entry that have not yet been
serviced. This attribute can only be used in the body of the task owning the entry.

9.10 Abort Statements

Abnormal termination of a task is caused by an abort statement.
abort_statement := abort task_designator {,task_designator};
An abort statement causes the unconditional asynchronous termination of the tasks mentioned in

the list of task designators. If a task is not active (i.e. not yet initiated or already terminated), there
is no effect. Abnormal termination of a task causes the abnormal termination of all tasks of which

it is the direct or indirect parent.
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On completion of the abort statement the designated tasks are no longer active. |f designa!te_d
task is waiting on an entry queue then it is merely removed from the queue. Howevgr, if it Is
already engaged in a rendezvous, the other task receives a TASKING_ERROR exception.

Example:

abort TRACK_MANAGER, LINK_CONTROLLER(1 .. 10);

Notes:

An abort statement should only be used in extremely severe situations requiring unconditional ter-
mination. In less extreme cases (where the task to be terminated can be given the possibility of
executing some cleanup actions before termination), the exception FAILURE could be raised for
the task (see 11.5). A task may abort any task including itself and its parent.

9.11 Signals and Semaphores

Two generic tasks, named SIGNAL and SEMAPHORE, are predefined in the language. Their
semantics correspond to the following declarations:

generic task SIGNAL is
entry SEND;
entry WAIT;

end SIGNAL;

task body SIGNAL is
RECEIVED : BOOLEAN := FALSE;
begin
loop
select
accept SEND;
RECEIVED := TRUE;
or when RECEIVED =>
accept WAIT;
RECEIVED := FALSE;
end select;
end loop;
end SIGNAL;
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generic task SEMAPHORE is
entry P;
entry V; y

end SEMAPHORE:

task body SEMAPHORE is
begin
loop
accept P;
accept V;
end loop;
end SEMAPHORE;

Example of use of a semaphore:
task SEMA is new SEMAPHORE;
initiate SEMA;

SEMA.P;
-- mutual exclusion
SEMA.V;

Although the task declarations above are given in the language, for_the sake of sgmantic descrip-
tion, their being predefined authorizes an implementation to recognize them and |mQIement them
by making an optimal use of the facilities provided by the machine or the underlying system.

9.12 Example of Tasking

The following example defines a buffering task to smooth variations between the speed of output
of a producing task and the speed of input of some consuming task. For instance, the producing
task may contain the statements

loop
- produce the next character CHAR
BUFFER.WRITE(CHAR);
exit when CHAR = END_OF_TRANSMISSION;
end loop;

and the consuming task may contain the statements

loop
BUFFER.READ(CHAR);
-- consume the character CHAR
exit when CHAR = END_OF_TRANSMISSION;

end loop;
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The buffering task contains an internal pool of characters processed in a round-robin fashion. The
pool has two indices, an IN_INDEX denoting the space for the next input character and an
OUT_INDEX denoting the space for the next output character.

task BUFFER is

entry READ (C : out CHARACTER);
entry WRITE(C : in CHARACTER);
end;

task body BUFFER is
POOL_SIZE : constant INTEGER := 100;

POOL : array(1 .. POOL_SIZE) of CHARACTER;
COUNT : INTEGER range O .. POOL_SIZE := O ;
IN_INDEX, OUT_INDEX : INTEGER range 1 .. POOL_SIZE = 1;
begin
loop
select

when COUNT < POOL_SIZE =>
accept WRITE(C : in CHARACTER) do
POOL(IN_INDEX) = C;
end;
IN_INDEX IN_INDEX mod POOL_SIZE + 1;
COUNT = COUNT + 1;
or when COUNT > 0 =>
accept READ(C : out CHARACTER) do
C := POOL(OUT_INDEX);
end;
OUT_INDEX
COUNT
end select;
end loop;
end BUFFER;

OUT_INDEX mod POOL_SIZE + 1;
COUNT - 1;



10. Program Structure and Compilation Issues
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can be separately compiled as a subunit.

10.1 Compilation Units
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Succession of compilation units. One compilation can cor:s;?brgry.
tion units of a program are said to belong to a progra

compilation ::= {compilation_unit}

compilation_unit ::= i
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Example 1:

ilati i le, consider the fol-
A compilation unit can be split into a number of compilation units. For example
lowing program.
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Example 1a: Single compilation unit:
procedure PROCESSOR is

package D is
LIMIT : constant INTEGER := 1000;
TABLE : array (1 .. LIMIT) of INTEGER;

procedure RESTART;
end D;

package body D is
procedure RESTART is
begin
for | in 1 .. LIMIT loop
TABLE(l) = 1;
end loop;
end;
begin
RESTART;
end D;

procedure Q(X : INTEGER) is
use D;
begin
TABLE(X) = TABLE(X) + 1;
end Q;
begin
B.RESTART; -- reinitializes TABLE
end PROCESSOR;

The following three compilation units define a program with an equivalent effect (the broken lines

between compilation units are here to remind the reader that these units need not be contiguous
texts).

Example 1b: Several compilation units:

package D is
LIMIT : constant INTEGER := 1000;
TABLE : array (1 .. LIMIT) of INTEGER;
procedure RESTART;

end D;
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package body D is
procedure RESTART is
begin
for [ in 1 .. LIMIT loop
TABLE(l) := |;
end loop;
end;
begin
RESTART;
end D;

restricted(D)
procedure PROCESSOR is
procedure Q(X : INTEGER) is
use D;
begin

TABLE(X) := TABLE(X) + 1:

en(; ' Q;
begin

D.RESTART: - reinitializes TABLE
end PROCESSOR:

Note that in the latter version, the package D is (implicitly} a fu!ly re§t_ricted progr.amI unil; ;-Igz:i,c;:
has no visibility of outer identifiers other than the predefined identifiers. In g?mcupa&'OCESSOR
depend on any identifier declared in PROCESSOR and hence can be extracted from .

The procedure PROCESSOR is also a restricted unit, but must name D in its visibility list in order to
contain a legal use clause for D.

These three compilation units can be submitted in one or more comr.JiIatior)s. For exar_Tl'nptI'e, it is
possible to submit the package specification and the package body in a single compilation.

Example 2: A complete program

ing i i | roots of a quadratic equation.
The following is an example of a complete program to pnnt‘the real roc
The packagei MATH_LIB and TEXT_IO (as the package D in the previous examplc_e) may be used
by different main programs. These packages are assumed to be already present in the program
library.
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restricted(MATH_LIB, TEXT_IO)
procedure QUADRATIC_EQUATION is
use TEXT_IO;
A, B, C, D : FLOAT;
begin
GET(A); GET(B); GET(C);
D = Bxx2 - 4.0xAxC;
if D < 0.0 then
PUT("IMAGINARY ROOTS");

else
declare
use MATH_LIB; -- note: SQRT is defined in MATH_LIB
begin
PUT("REAL ROOTS : ),
PUT((B - SQRT(D))/(2.0xA));
PUT((B + SQRT(D))/(2.0xA));
PUT(NEWLINE);
end;
end if;

end QUADRATIC_EQUATION;

Notes:

A module that is a compilation unit (such as D or MATH_LIB) can depend on other separately
compiled modules.

A visibility restriction need only mention the modules that are actually used within a compilation
unit. It need not (and should not) mention other modules on which the modules of the visibility list
depend, unless these other modules are directly used in the compilation unit. For example, the
implementation of the package INPUT_OUTPUT may need the operations provided by a more

basic package. The latter should not appear in the visibility list of QUADRATIC_EQUATION, since
these operations are not directly called within its body.

A compilation unit can be a generic program unit.

10.2 Subunits of Compilation Units

The body of a subprogram or module declared in the outermost declarative part of another com-
pilation unit (or subunit) can be separately compiled and is then said to be a subunit. Within the
subprogram or module where a subunit is declared, its body is represented by a body stub at the

place where the body would otherwise appear. This method of splitting a program permits
hierarchical program development.

body_stub ::=
subprogram_specification is separate;
| module_nature body identifier is separate;

A subunit is said to be enc/osed by the compilation unit where its stub is given. Transitively, a sub-
unit of a subunit of a unit is also said to be enclosed by the unit.
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The body of a subunit must have a visibility restriction, itgelf followed by the ;?Zir\;ii/;’:%g
separate (see 10.1). The first name appearing in the visibility list must be the ”a.mT p—
compilation unit. The name of a subunit is local to its immediately gnclosnng unit. Inc Z
several subunits of the same name can exist within a program library.

Example 3a:
The procedure TOP is first written as a compilation unit without subunits.

Procedure TOP s
type REAL is digits 10;
R, &5 REAL;

Package D is
Pl : constant REAL:= 3.14159_26536;
function F (X: REAL) return REAL;
procedure G (Y, Z: REAL):

end D;

package body D is
-~ some local declarations of D followed by
function F(X : REAL) return REAL is
begin
-- sequence of statements of F
end F;

restricted(TOP, INPUT_OUTPUT)
procedure G(Y, Z : REAL) is
begin

-- sequence of statements of G

end G;
end D;

procedure Q(U : in out REAL) is
use D;

begin
U = F(U);

en&” Q;
begin -- TOP

Q(R):
D.G(R, S):

end TOP:
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Example 3b:

Thefpackage body D and the body of the subprogram Q can be made into separate subunits of TOP
as follows:

procedure TOP is

type REAL is digits 10;
R, S : REAL;

package D is
Pl : constant REAL := 3.14159_26536;
function F (X : REAL) return REAL;
procedure G (Y, Z : REAL);

end D;

package body D is separate; — stub of D

procedure Q(U : in out REAL) is separate; -- stub of Q
begin -- TOP .

'd(m;

D.G(R, S);

em.!n TOP;

restricted(TOP)
separate procedure Q(U : in out REAL) is

use D;
begin
U= F(U);

enc; ] Q;

restricted (TOP)
separate package body D is
-- some local declarations of D followed by

function F(X : REAL) return REAL is

begin
-- sequence of statements of F
end F;
procedure G(Y, Z : REAL) is separate; -- stub of G
end D;
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restricted(TOP, INPUT_OUTPUT)
separate procedure G(Y, Z : REAL) is
begin

-- sequence of statements of G
end G;

In the above example, Q and D are subunits of TOP (TOP encloses Q and D?; Gisa sgbunit of D (D
encloses G and similarly TOP encloses G). The visibility list of G must mention TOP since G acces-
ses the type REAL (mentioning D instead of TOP would not be enough).

Note that the visibility lists in the split version are established in such a manner that fhe same iden-
tifiers are visible at all program points as in the initial version. For example, the variables R and S
declared in TOP, the constant Pl declared in the visible part of D and the other entities ‘declared in
the package body D are all visible within the sequence of statements of the subunit G.

10.3 Order of Compilation

The visibility rules that apply to compilation units (whether subunits or not) are the usual rules that
apply to all restricted program units.

The rules defining the order in which units can be compiled are direct consequences of the visibility
rules. A unit must be compiled after all compilation units whose names appear in its visibility list or
in the visibility list of any textually nested subprogram or module. A module body must be com-
piled after the corresponding module specification. The subunits of a unit must be compiled after
the unit.

Consistent with the partial ordering defined above, the compilation units of a program can be com-
piled in any order.

In the previous examples:

(a) The package body D must be compiled after the corresponding package specification (exam-
ple 1b).

(b) The specification of the package D must be compiled before the procedure PROCESSOR. On
the other hand, the procedure PROCESSOR can be compiled either before or after the
package body D.

(c) The procedure QUADRATIC_EQUATION (example 2) must be compiled after the library
modules MATH_LIB and INPUT_OUTPUT that appear in its visibility list. Similarly (example
3a) the procedure TOP must be compiled after the library module INPUT_OUTPUT that
appears in the visibility list of the nested procedure G. On the other hand, in example 3b
INPUT_OUTPUT could be compiled after TOP.

(d) The subunits Q and D (example 3b) must be compiled after the compilation unit TOP. Similar-
ly the subunit G must be compiled after the enclosing unit D. Note also that the library module

INPUT_OUTPUT must be compiled before G.
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Similar rules apply f ilati
subunits and o’t)t?e\ul' c%rn:;?ﬁg:?o?,"?f,'ﬁt“s' Any change in a given compilation unit can only affect its
S mentioning the unit in their visibility lists. Hence the poten-

tially affected units need to be recompi
ally L iled. An i i 3
pilation costs if it can deduce that sor?we of t e g neslon WA Difalli I (AT i dacts

by the change. he potentially affected units are not actually affected

:\;Otceh::’gtetsh?nsgb;ggilzfgoL(ximtdcan always be recompiled without affecting the unit itself. Similar-

s . Shia vdaTii park of tyheomnczjt ?ffect other (non-nested) units, since these. units only have

carerlla it i odule. Henct_a .to minimize recompilations, it is advantageous to
. e module body and the module specification (the visible part) in different compilations.

10.4 Program Library

C_om_pllers must preserve the same degree of type safety for a program consisting of several com-
pll-atlon ufnts and §u'bun'|ts, as fo_r a program submitted as a single compilation unit. Consequently
a library file containing information on the compilation units of the program library must be main-

.tained by the compiler. This information may include symbol tables and other information pertain-
ing to the order of previous compilations.

A ngrmal submission to the compiler consists of the compilation unit(s) and the library file. The lat-
ter is used for checks and is updated as a consequence of the current compilation.

There should be compiler commands for creating the program library of a given program or of a
given family of programs. These commands may permit the reuse of units of other program
libraries. Finally, there should be commands for interrogating the status of the units of a program
library. The form of these commands is not specified by the language definition.

10.5 Elaboration of Compilation Units

Before the execution of a main program, all library modules that are not subunits and that are used
by the main program are elaborated. These modules are units mentioned in the visibility lists of the
main program and of its subunits, and transitively in the visibility lists of these library modules
themselves.

The elaboration of these modules is performed consistently with the partial ordering defined by the
visibility lists (see 10.3).
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10.6 Program Optimization

. i ic expression is
A static expression can be evaluated by the compiler. In consequ:a_nﬁeér:fs:s ?;attflli eleuation of
required and the actual expression involves a variable, or if an excep Ioiler may be:able Yo sptimizs
the expression, then the program is in error. On the other hand, a cotr:t?c v gt e Wi i
a program by evaluating expressions which are not required to b? s g b ok 1 Fele T BRea-
exception, then the code in that path in the BrdIaN BaH OH Feplane r{wer of a potential error.
tion. Under such circumstances, the compiler may warn the program

; ts may be performed
Optimization of the elaboration of declarations and t!’\e execution of st?:ﬁengdy th:.len sxpisralons
by compilers. If a subprogram is compiled by an.in?hng SUbstltLt:’tloz o .
within the body may be capable of further optimization as above.

ted, in which case the
A compiler may find that some statements or subprograms Ca"f‘t‘r"t.nbzuixhezzde would generate an
corresponding code can be omitted. If non-static expressions wi Iffect of conditional compilation
exception, then the program is not in error. These rules permit the e

within the language.
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11. Exceptions

This chapter defines the facilities for dealing with errors or other exceptlor.\al snuatlonslthat arrals;s
during program execution. An exception is an event that causes suspension of norma ?rogome
execution. Bringing an exception to attention is called raising the exception. To exetc'u ke
actions, in response to the occurrence of an exception, is called handling the exception.

The units whose execution can be prematurely terminated by an exception are bllocks, :u;)(;
Programs, and modules. Exceptions are introduced by exception declarations. Excer-ﬂ"i‘t';\ls C: o
raised explicitly by raise statements, or they can be propagated by. subprograms, <|>° S, b
language defined operations that raise the exceptions. When an exception occurs, control can
Passed to a user-provided exception handler.

1.1 éxception vDeclarations

An exception declaration defines one or several exceptions whose names can appear in raise state-
ments and in exception handlers within the scope of the declaration.

excepfion_declaration := identifier_list : exception;
The identity of the exception introduced by an exception dec‘:laration is est§blished fzt'cfolr_npé’latl_c::
time (exceptions can be viewed as constants of some predefined enumeration type initialized wi

static expressions). Hence an exception declaration introduces only one exception even if it is
declared in a recursive procedure.

Examples of user-defined exception declarations:

SINGULAR : exception;
END_OF_FILE : exception;

STACK_OVERFLOW, STACK_UNDERFLOW : exception;



The following exceptions are predefined in the language:

ACCESS_ERROR

ASSERT_ERROR

DISCRIMINANT_ERROR

DIVIDE_ERROR

FAILURE

INDEX_ERROR

INITIATE_ERROR

NO_VALUE_ERROR

OVERFLOW

OVERLAP_ERROR

RANGE_ERROR

SELECT_ERROR

STORAGE_OVERFLOW

TASKING_ERROR

UNDERFLOW

When an access variable has the value null and an attempt
is made to read or to update the designated dynamic
object (see 3.8).

When violating an assertion (see 5.9).

When attempting to access a component of a variant part
not prescribed by the record’s discriminant (see 4.1.2).

When dividing a number by zero (see 4.5.5, 4.5.6).

For general use within procedures and tasks. This is the
only exception that can be raised by a task for another task
(see 11.3, 11.5).

When an index value is outside the range specified for the
array (see 4.1.1).

When attempting to initiate a task that is already active
(see 9.3).

When accessing the value of an uninitialized variable or
returning from a function without a value (see 6.5).

When an arithmetic operation fails by attempting to
produce a value which is too large to be handled by the
implementation (see 4.5).

When attempting to assign overlapping slices (see 5.1.1).

When exceeding the declared range of a variable or type
(see 4.5).

When all alternatives of a select statement without else
part are closed (see 9.7).

When the dynamic storage allocated to a task is exceeded,
or during the execution of an allocator, if the available

space for the collection of dynamic objects is exhausted
(see 13.2).

When exceptions arise during intertask communication
(see 9.2, 11.4).

When a floating point operation fails by attempting to
produce a value which is too small to be handled by the
implementation (see 4.5.5).



11.2 Exception Handlers

The processing of one or more exceptions is specified by an exception handler. A handler maz
appear at the end of a unit which must be a block, subprogram body, or module body. The wor
unit will have this meaning in this section.

exception_handler ::=
when exception_choice {| exception_choice} =>
sequence_of_statements

exception_choice ::= exception_name | others

Each handler handles the named exceptions when they are raised in the given unit..An al.ternat.ive
containing the choice others applies to all exceptions not listed in other alternatives, including
exceptions whose names are not visible within the current unit.

When an exception is raised within a unit, either during elaboration of its local declarations, or dur-
ing the execution of its sequence of statements, the execution of the corresponding handler
replaces the execution of the remainder of the unit: the actions following the point v‘vhere the
exception is raised are skipped, and the execution of the handler terminates the execution 9f th_e
unit. If no handler is provided for the exception, the unit is terminated and the exception is
propagated according to the rules stated in section 11.3.1.

Since a handler acts as a substitute for the corresponding unit, the handler has, in general, the
same capabilities as the unit it replaces. For example, a handler within a function has access to its
parameters and may issue a return statement on behalf of the function. However, since an excep-
tion may be raised during the elaboration of the declarations local to the unit considered, it cannot
be assumed within a handler that all declarations have been elaborated.

Example:

begin
-- sequence of statements
exception
when SINGULAR | OVERFLOW =>
PUT(" MATRIX IS SINGULAR “);
when others =>
PUT(" FATAL ERROR “);
raise FAILURE;
end;



11.3 Raise Statements

An exception can be explicitly raised by a raise statement.
raise_statement = raise |exception_name];

A raise statement raises the named exception. A task can raise the predefined exception FAILURE
in another task (say T) by giving T.FAILURE as exception name. A raise statement of the form

raise;

can only appear in a handler. It reraises the same exception which caused transfer to the handler.
Examples:

raise;

raise SINGULAR;

raise MULTIPLEXER.FAILURE;

raise LINK_CONTROLLER(5).FAILURE;

raise OVERFLOW; -- explicitly raising a predefined exception

11.3.1 Dynamic Association of Handlers with Exceptions

When an exception is raised, normal program execution is suspended and one of the following
events takes place.

(a) If a block does not contain a local handler for the exception, execution of the block is ter-
minated and the same exception is reraised in the enclosing sequence of statements. Similar-
ly, if a subprogram does not contain a local handler, its execution is terminated and the excep-
tion is reraised at the point of call of the subprogram. In both cases the exception is said to be
propagated. The predefined exceptions are exceptions that can be propagated by the
language defined constructs.

(b) If a task does not contain a local handler for the exception the task is terminated but the
exception is not propagated.

(c) If a local handler has been provided, execution of the handler replaces execution of the
remainder of the current unit. A further exception raised in the sequence of statements of the
handler causes termination of the current unit, and the exception is propagated if the current
unit is a block or subprogram as in case (a).



Example:

procedure P is
ERROR : exception;
procedure R;

procedure Q is

begin
R;
-- exception possibility(2)
exception
when ERROR => -- handler E2
end Q;
procedure R is
begin
-- exception possibility(3)
end R;
begin
-- exception possibility(1)
Q;
excc;ption
when ERROR => -- handler E1
en('i" P

The following cases can arise:

(1) If the exception ERROR is raised in the statement list of the outer procedure P, the handler E1
provided within P is used to complete the execution of P.

(2) If the exception ERROR is raised in the statement list of Q, the handler E2 provided within Q is
used to complete the execution of Q. Control will be returned to the point of call of Q upon
completion of the handler.

(3) If the exception ERROR is raised in the body of R, called by Q, the execution of R is ter-
minated and the same exception is raised in the body of Q. The handler E2 is then used to
complete the execution of Q, as in case (2).

The third case results in a dynamic binding, since the exception raised in R results in passing con-
trol to a local handler in Q that is not visible from R. Note also that if a handler were provided
within R for the choice others, case 3 would cause execution of this alternative, rather than direct
termination of R.

Lastly, if ERROR had been declared inside R, rather than in P, the handlers E1 and E2 could not
provide an explicit handler for ERROR since this identifier would not be visible within the bodies of
P and Q. In case 3, the exception could however be handled in Q by providing a handler for the
choice others.






12. Generic Program Units

Subprograms and modules can be generic. Generic programs units may be thought of as (possibly
parameterized) models of program units; as such they cannot be used directly. For example, a
generic subprogram cannot be called. Instances (i.e. copies) of the model are obtained by generic
instantiation. These are ordinary subprograms and modules that can be used directly.

A subprogram or module can be designated as generic by the inclusion of a generic clause in its
specification. A generic clause can include the definition of generic parameters. An instance of a
generic unit with appropriate actual parameters for the generic formal parameters, is obtained as
the result of a subprogram or module declaration with a generic instantiation.

12.1 Generic Clauses

A generic clause given with a subprogram or module specification specifies that the unit is generic
and defines any generic parameters.

generic_clause ::=
generic |(generic_parameter {; generic_parameter}))

generic_parameter ::=
parameter_declaration
| subprogram_specification lis [name.]designator|
| lrestricted| type identifier

The usual forms of parameter declarations available for subprogram specifications can also appear
In generic clauses.

Within an instantiated unit, an in or in out parameter provides access to the value of the actual
parameter, an out or /n out parameter permits assignment to the variable given as actual
parameter, as usual. In addition, generic parameters can denote types and subprograms.

A type given as a generic parameter is considered as a private type within the body of the generic
unit. Hence, if any operation (apart from assignment and comparison for equality or inequality) on
objects of this type is to be used in the generic body, the operation must also be provided as an
additional generic parameter. Neither assignment nor the predefined comparison for equality or
inequality is available if the generic type parameter is specified as restricted.

On the other hand, a generic parameter of a generic clause cannot refer to a previous generic
parameter of the same clause unless this previous generic parameter denotes a type. Both the
specification and the body of a generic subprogram or module can refer to generic parameters.

Expressions appearing in a generic clause are evaluated during the elaboration of the clause unless
they refer to a type that is a generic parameter (for example, an expression that is an attribute of a
type); such expressions are evaluated during elaboration of generic instantiations.



The specification of a generic parameter that is a subprogram may provide a designator to be used
by default upon instantiation. An actual parameter is optional in this case; in the absence of an
actual parameter the designator supplied in the generic clause is used. Such a default designator
can be any subprogram matching the corresponding subprogram specification; it can be an

attribute of a type that is a generic parameter. Note that the designator can be prefixed by the
name of a type of which it is an attribute.

A non-local name in the body of a generic unit is identified during the elaboration of the generic
body. A generic unit can be separately compiled.

Examples of generic clauses:

generic -- parameterless
generic(SIZE : INTEGER; type ELEM)
generic(LENGTH : INTEGER := 200) -- default value

generic(type T;
function “x“(X,Y: T) return T)
generic(type T;
function "x”(X,)Y: T) return T is T."x" -- default operator

Examples of generic subprograms:

generic(type ELEM)

procedure EXCHANGE(U, V: in out ELEM) is
T : ELEM;

begin
T=U U :=V;V=T

end EXCHANGE;

generic(type T;
function “x"(U, V: T) return T is T."x")
function SQUARING(X: T) return T is
pragma INLINE;
begin
return X x X;
end SQUARING;

Example of generic module:

generic task SEMAPHORE is
entry P;
entry V;

end;

task body SEMAPHORE is
begin
loop
accept P;
accept V;
end loop;
end;
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Notes:

X jed. In the case of an
An explicit formal parameter for the equality operation may be s;t;[;p;::e of a restricted type,
unrestricted type it will override the built-in comparison operation. In
itallows and provides the comparison operation.

12.2 Generic Instantiation

: i ration of a subprogram
An instance of a generic program unit is obtained as the result of the elabo
Or module declaration defined in terms of a generic instantiation.

generic_instantiation ::= . iation})]
New name |(generic_association {, generic_association

generic_association :'=
parameter_association
| Iformal_parameter is] |name.]designator
| formal_parameter is] type_mark

s : : ions on subprogram
The forms of declarations with generic instantiations are given in the sectio
declarations (6.2) and modules (7.1):

subprogram..nature designator is generic._instantiation; tanitistion:
module .nature identifier |(discrete..range)| is generic_insta :

: respondin
Actual parameters must be supplied for each generic fgrmgl para_rr)e‘:: ;‘or:,riscs;rtir:men?r;:dl;crm ag
generic clause specifies a default. Parameters can be given in pos:'toh corresponding generic for-
for subprogram calls (see 5.2). Each actual parameter must matc et match an unrestricted for-
ma) Parameter. A type matches a type; a restricted actual type doesfr;otype that is a formal generic
mal type. For subprogram parameters all occurrences of the namZO i oot erlusmles-igion. il
parameter are replaced by the corresponding actual parameter. d - ? e, and constraint and with
formal subprogram having parameters with the same order, modeée?'apul; values being ignored).
the same result type and constraint (the parameter names an

i i ic instan-
An actual parameter of a generic association is evaluated_dunng glaborat;z;\‘%fl:‘ti\:hgrz:iri;s ig
tiation. If a formal generic parameter is used in the generic body ina conion i B
evalugtion, the corresponding actual paramefer mLfst be a st:tlc expression. g
applies to default expressions given for optional in parameters.

. i it i ich all
The elaboration of a generic instantiation creates an instance of the generlﬁegn;:‘ I:‘h:’g:neric
generic parameters are replaced as defined above by the parameters supp

' <yl ftion Is
associations. The specification of a module or subprog!'am pbtalnecri\ by ?:rrr]:;(l:r Irr;;tlaagzi’;::s.
derived from the specification of the corresponding generic unit after the pa

Recursive instantiation of generic units is not allowed.
Examples of declarations with generic instantiations:

i is INTEGER);
rocedure SWAP is new EXCHANGE(ELEM is , .
:rocedure SWAP is new EXCHANGE(CHARACTER); -- SWAP is overloaded
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function SQUARE is new SQUARING(INTEGER): - B -
function SQUARE is new SQUARING(MATRlX,MATRl)LpRSDUOéT')NTEGER used by defau

task SEMA is new SEMAPHORE;
Examples of the use of instantiated units:

SWAP(X, Y);
| := SQUARE(8);
SEMA.P;

12.3 Example of a Generic Package

The following example provides a possible formulation of stacks formulated as a generic package.
The size of each stack and the type of the stack elements are provided as generic parameters.

generic(SIZE: INTEGER; type ELEM)
package STACK is
procedure PUSH (E: in ELEM);
procedure POP (E: out ELEM);
OVERFLOW, UNDERFLOW : exception;
end STACK;

package body STACK is

SPACE : array (1 .. SIZE) of ELEM;
INDEX : INTEGER range O .. SIZE := O;

procedure PUSH(E: in ELEM) is
begin
if INDEX = SIZE then
raise OVERFLOW;

end if;

INDEX := INDEX + 1;

SPACE(INDEX) := E;
end PUSH;

procedure POP(E: out ELEM) is
begin

if INDEX = O then

raise UNDERFLOW;

end if;

E := SPACE(INDEX);

INDEX := INDEX - 1;
end POP;

end STACK;
Instances of this generic module can be obtdined as follows:

package STACK_INT is new STACK(SIZE := 200, ELEM is INTEGER);
package STACK_BOOL is new STACK(100, BOOLEAN);
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d as follows:
Thereafter, the procedures of the instantiated packages can be calle

STACK_INT.PUSH(I);

STACK_BOOL.PUSH(TRUE);
lows (package body

d as fol
Alternatively, a generic formulation of the type STACK can be formulate

omitted):

generic(SIZE : INTEGER; type ELEM)
package ON_STACKS is
type STACK is private; .
procedure PUSH (S: in out STACK; E: in ELEM):
procedure POP (S: in out STACK; E: out ELEM);
OVERFLOW, UNDERFLOW : exception;
private
type STACK is
record
SPACE : array(1 .. SIZE) of ELEM;
INDEX : INTEGER range O .. SIZE = 0:
end record;
end;
eafter stacks of the cor-
In order to use such a package, an instantiation must be created and ther
responding type can be declared as:

INTEGER);
package STACK_INT is new ON_STACKS(SIZE := 100, ELEM i

: i ows:
An example of the use of the instantiated package is as foll

declare
use STACK_INT;
S : STACK;
begin
PUSH(S, 20);

end;
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13. Representation Specifications and Implementation Dependent Features

of the

. o tures
Representation specifications specify the mapping between data types and fea or less

upderlying machine that executes programs. Representation specifications canhbe r:r?lrye provide
dl!'ect_: In some cases, they completely specify the mapping, in other cases they
Criteria for choosing a mapping.

. can be
Mapplngs acceptable to an implementation do not alter the net effect of a programr.eT:)'D::tYside o
Provided to give a more efficient representation or to interface with features that a

domain of the language (for example, peripheral hardware).

representation_specification =
packing_specification | length_specification :
| record_type_representation | enumeration_type_representation
| address_specification

Representation specifications must appear immediately after the list .Of decla‘&athf::s::t:_
declarative part, and can only apply to items declared in the same declarative part. repf T
tion specification given for a type applies to all objects of the type. In the absence of exp
specifications, representations are determined by the compiler. ./

) R i res-
All representation specifications must be determinable at compilation time. In pf:'cm:;'iﬁe:;ion
sions appearing in such specifications must be static expressions. Depending on 't: P '
such expressions represent either a number of bits or a number of storage units.

For record and enumeration types derived from other similar types, a represen'tation Spfc'ﬁ‘;a(ts'z:
is legal only if the derived type does not derive user defined subprograms from its parent typ

3.4). In addition, implementations may limit representation specifications to those that can be
simply handled by the underlying hardware.

13.1 Packing Specifications P
A packing specification indicates that storage minimization should be the main criterion for
selecting the representation of a record or array type.

packing_specification ::= for type_name use packing; : o
This means that gaps between the storage places allocated to consecutive components should be
minimized. However, it does not affect the mapping of each component on storage. This mapping

c¢an only be influenced by a representation specification for the component type.

The predefined type STRING is packed.
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Examples:

for MATRIX use packing;
for FILE_DESCRIPTOR use packing;

13.2 Length Specifications

A length specification controls the amount of storage associated with a named entity.

length_specification ::= for name use static_expression;

The name must be one of the following:

(a)

(b)

(c)

Name of a type that is not an access type:

The value of the expression specifies the maximum number of bits to be allocated to objects
of the type. This number must be at least equal to the minimum needed for the representation

of objects of the type. This form of length specification can be used to achieve a biased
representation.

Name of an access type:

The value of the expression is the number of bits to be reserved for the collection, i.e. the
space for all objects of that access type.

Note that dynamic objects allocated in a collection need not occupy the same storage if they
are records with variants or dynamic arrays. Note also that the allocator itself may require
some space. Hence, the length specification does not always give precise control over the
maximum number of allocated objects.

Name of a task:
The value of the expression is the number of bits to be reserved for an activation of the task.

The method of allocation is not defined (for example, a stack, a general storage allocator, or
fixed storage could be used).

The exception STORAGE_OVERFLOW is raised if a task or access type exceeds the reserved
space.

Examples:

-- assumed declarations:

type BIASED is new INTEGER range 10_000 .. 10_255;

type. SHORT is delta 0.01 range -100.0 .. 100.0;

BYTE : constant INTEGER := 8;

PAGE : constant INTEGER := 1000 x SYSTEM'STORAGE_UNIT;
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-- length specifications:
for COLOR use 1xBYTE;
for ELEMENT use INTEGER'SIZE: .
for BIASED  use 1xBYTE: -~ biased representation
for PRINTER use 4xPAGE:
for CAR use 2000«CAR'SIZE; — space for approximately 2000 cars
for SHORT use 15;
Notes:

: St
In the last example, 15 bits is actually the minimum number of necessary b:ts fo;tSE’}t-lig:':",esengc:Ot
sign, 7 bits above the point, and 7 below the point are needed. An imp en;ee .
provide the ability to reserve just the minimum, because of the masking co L

13.3 Enumeration Type Representations

An enumeration type representation specifies the internal codes for the literals of an enumeration
type.

enumeration_type_representation := for type_name use aggregate;
The aggregate used to specify this mapping is an array aggregate of type

array (type_name) of INTEGER

All enumeration literals must be provided with distinct integer c9des, and the aggfegate muzt b_e a
static expression. The integer codes specified for the enumeration tyqe must satisfy .the olr_ eru:g
relation of the type. The aggregate must be named when the enumeration type has a single literal.

Example:
type MIX_CODE is (ADD, SUB, MUL, LDA, STA, ST2);

for MIX_CODE use .
(ADD => 1, SUB => 2, MUL => 3, LDA => 8, STA => 24, STZ => 33);

Notes:

i i i for enumeration types with a
The predefined attributes SUCC, PRED, and ORD are defined even or €
non-contiguous representation. In this case, the functions are less efficiently |[nplemented due to
the need to avoid the omitted values. Similar considerations apply when such types are used for

indexing.
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13.4 Record Type Representations

A rggord type representation specifies the storage representation of records, that is, the order,
position, and size of record components.

record_type_representation ::=

for type_name use i

record [alignment_clause;]
{component_name location;}

end record;
location :i= at static_expression range range
alignment_clause := at mod static_expression

The position of a component is specified as a location relative to the start of the record; the at

clause defines the address of a storage unit and the range defines the bit positions of the compo-
nent relative to the storage unit.

The first storage unit of a record is numbered 0. The first bit of a storage unit is numbered 0. The
ordering of bits in a storage unit is machine dependent and may extend to adjacent storage units.

For a specific machine, the size in bits of a storage unit is given by the configuration dependent
constant SYSTEM'STORAGE_UNIT.

Locations may be specified for some or for all components of a record. If no location is specified for
a component, freedom is left to the compiler to define the location of the component. Locations
within a record variant must not overlap, but the storage for distinct variants may overlap. Each

location must allow for enough storage space to accommodate every allowable value of the com-
ponent.

An alignment clause forces each record of the given type to be allocated at a start address which is
a multiple of the value of the expression (i.e. the address modulo the expression must be zero). An
implementation may place restrictions on the allowable alignments. Components may overlap
storage boundaries, but an implementation may place restrictions on how components may

overlap storage boundaries.
Examples:

WORD : constant INTEGER := 4; -- storage unit is byte, 4 bytes per word

type STATE is (A, M, W, P);
type MODE is (FIX, DEC, EXP, SIGNIF);

type PROGRAM_STATUS_WORD is

record
SYSTEM_MASK : array(0 .. 7) of BOOLEAN;
PROTECTION_KEY : INTEGER range O .. 3;
MACHINE_STATE : array(STATE'FIRST .. STATE'LAST) of BOOLEAN;
INTERRUPT_CAUSE : INTERRUPTION_CODE;
ILC : INTEGER range O .. 3;
cc : INTEGER range O .. 3;
PROGRAM_MASK : array(MODE'FIRST .. MODE'LAST) of BOOLEAN;
INST_ADDRESS : ADDRESS;
end record;
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for PROGRAM_STATUS_WORD use

record at mod 8:
SYSTEM_MASK
PROTECTION_KEY
MACHINE_STATE
INTERRUPT_CAUSE
ILC
cc
PROGRAM_MASK
INST_ADDRESS

end record;

13.5 Address Specifications

at
at
at
at
at
at
at
at

An address specification defines

program unit.

address_specification

0+xWORD
0+xWORD
0+*WORD
0«WORD
1*WORD
1*WORD
1*WORD
1*WORD

range O ..
range 10 ..
range 12 ..
range 16 ..
range O .

range

range

WNW-=

2
range 4 ..
8

75

11: -- bits 8, 9 unused
15;

31

¥ -- second word

1

the location of an object in storage or the start address of a

= for name use at static_expression;

Th?: at clause specifies an absolute address expressed in storage units in an implementation
defined address space. The name must be one of the following:

(a) Name of a variable: in this case, the address is the address of the variable.

(b) Name of a subprogram or module: the address is that of the machine code associated with
the subprogram or module.

(c) Name of an entry: The address is that of a hardware interrupt to which the entry is linked. The
conventions defining the mapping between the integer value of the expression and the inter-

rupt are implementation dependent.

13.5.1 Interrupts

An interrupt acts as an entry call. An accept statement for such an entry results in suspension of
_the task until the interrupt occurs. If control information is supplied by the interrupt, then this must
appear as an in parameter of the entry. Multiple interrupts are queued on the corresponding entry.
There may be an implementation defined limit for the number of allowed pending interrupts on a

given entry.

Example of interrupt specification:

task CARD_READER_INTERRUPT is

entry ATTENTION;
end;
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task body CARD_READER_INTERRUPT is
entry DONE;
for DONE use at 4;
begin
loop
accept ATTENTION;
select
accept DONE;
CARD_READER.EMPTY;
or
delay 2xSEC;
CARD_READER.FINISH;
end select;
end loop;
end CARD_READER_INTERRUPT;

13.6 Change of Representations

Only one representation can be defined for a given type. In consequence if an alternative represen-
tation is desired, it is necessary to declare a second type derived from the first and to specify a dif-
ferent representation for the second type.

Example:

- PACKED_DESCRIPTOR and DESCRIPTOR are two different types
-- with identical characteristics, apart from their representation

type DESCRIPTOR is
record
-- components of a descriptor
end;

type PACKED_DESCRIPTOR is new DESCRIPTOR;
for PACKED_DESCRIPTOR use packing;

Change of representations can now be accomplished by assignment with explicit type conversions.
Thus:

D : DESCRIPTOR;
P : PACKED_DESCRIPTOR;

PACKED_DESCRIPTOR(D); -- pack
DESCRIPTOR(P); -- unpack

W

13.7 Configuration and Machine Dependent Constants

The characteristics of the configuration can be specified by supplying appropriate pragmas:

pragma SYSTEM(name); -- to establish the name of the object machine
pragma STORAGE_UNIT(number); -- to establish the number of bits per storage unit
pragma MEMORY_SIZE(number); -- to establish the available number of storage units
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The values of configuration dependent constants are denoted by pfedefined ?jmib":t:esb :;';2::
predefined name SYSTEM. Similarly, compiler options may be interrogated wi
attributes of the predefined name OPTION.

SYSTEM'NAME -- the name of the object machine .
SYSTEM'STORAGE_UNIT - the number of bits per storage um.t .
SYSTEM'MEMORY_SIZE -- the number of available storage units in memory
OPTION'SPACE -- true if space is the optimiza.tion gritqrion
OPTION'TIME -- true if time is the optimization criterion

Other implementation dependent characteristics of specific program EDlaLel, Ay -ﬂ:e
characteristics established by representation specifications, can be determined using :ppmp;:.a e
attributes. An implementation may provide additional predefined attributes specufnc 1ota mat m?
considered. The list of the predefined attributes that are defined by the language is given in appen
dix A.

Examples:
INTEGER'SIZE — number of bits actually used for implementing INTEGER
TABLE'ADDRESS -- the address of TABLE in storage units
X.COMPONENT'POSITION -- position of COMPONENT in storage units
X.COMPONENT'FIRST_BIT -- first bit of bit range
X.COMPONENT'LAST_BIT -- last bit of bit range

13.8 Machine Code Insertions

A machine code insertion may be achieved by a call to an inline procedure whose body contains
only code statements.

code_statement := qualified_expression;

Each machine instruction appears as a record aggregate of a record ty;?e defjning the cor-
responding instruction. Declarations of such record types will generally be available in a predefined
package for each machine. A procedure that contains a code statement must contain only code

statements.

An implementation may provide machine dependent pragmas specifying register and calling con-
ventions,

Example:

M: MASK:;

procedure SET_MASK is
use INSTRUCTION_360;
pragma INLINE;
begin
SI_FORMAT(CODE => SSM, B => M'BASE, D => M'DISP);
— M'BASE and M'DISP are implementation specific predefined attributes

end;
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13.9 Interface to Other Languages

A subprogram written in another language can be called from a Green program provided that all
communication is achieved via parameters and result. A procedure skeleton must be provided for
such foreign subprograms. This skeleton must include a subprogram specification in the usual
form, thus enabling other subprograms to call it. The sequence of statements of this skeleton must
reduce to a pragma specifying the foreign language.

For example, the Fortran subprogram

SUBROUTINE GAUSSI(A X,N)
DIMENSION A(10,10), X(10)

END
can be represented by the following skeleton

type MATRIX is array (INTEGER, INTEGER) of REAL;
type VECTOR is array (INTEGER) of REAL;

procedure GAUSS(A : in out MATRIX; X : in out VECTOR; N : INTEGER) is
begin

pragma INTERFACE(FORTRAN);
end;

The pragma specifies the calling convention to be used, and informs the compiler that an object
module will be provided for the corresponding subprogram.

This capability need not be provided by all compilers; an implementation may place restrictions on
the allowable forms and places of parameters and calls.

13.10 Unsafe Type Conversion

Unsafe type conversions can be achieved by program units having access to the predefined library

module UNSAFE_PROGRAMMING by instantiating the generic function UNSAFE_CONVER-
SION.

package UNSAFE_PROGRAMMING is

generic (type S ; type T)
function UNSAFE_CONVERSION (X : S) return T;

end UNSAFE_PROGRAMMING;

It is a consequence of the visibility rules that such program units must include
UNSAFE_PROGRAMMING in their visibility list.
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14. Input-Output

This chapter describes the input-output facilities defined in the language. L ool g
Package INPUT_OUTPUT defines a set of input-output primitives applicable Y il peanisieing 006-
Mments of a single type. Additional primitives for text input-output are supplied in the standard frote
kage TEXT_|Q. These facilities are described here as well as the conventions to be used for dealing

With low leve| input-output operations.

14.1 General User Level Input-Output

The high level input-output facilities are defined in the language. A suitable package is described
here and is given explicitly in section 14.2; it defines file types and the procedures and functions

Which operate on files.

Files are declared and associated with appropriate sources and destinations (calleq external files)
such as peripheral devices or data sets. Distinct file types are defined to provide eltl_1er rgad-only
access, write-only access or read-and-write access to external files. The corresponding file types

are called IN_FILE, OUT_FILE, and INOUT_FILE.

At this level, external files are named by a character string, which is interpreted by individual imple-
mentations to distinguish peripherals, access rights, physical organization, etc.

The package defining these facilities is generic and is called INPUT_OUTPUT. Any program which
féquires these facilities must instantiate the package for the appropriate element type.

A file can be read or written, and it can be set to a required position; the current position for access
and the number of elements in the file may be obtained.

14.1.1 Files

Afile is associated with an ordered collection of elements, all of the same type. The type of the ele-
ments is specified as a parameter in the package declaration, so that appropriate procedures are
Produced for dealing with elements of that type, as well as the file types. For example:



package INT_IO is new INPUT_OUTPUT(INTEGER);
establishes types and procedures for files of integers, so that
INT_FILE : INT_IO.OUT_FILE;

declares INT_FILE as a write-only file of integers.

Before any file processing can be carried out, the file must be associated with an external file.

When such an association is in effect, the file is said to be open. This operation is performed by one
of the following two procedures:

CREATE establishes a new external file and associates the given file with it. If the given file
is already open, the exception FILE_OPEN_ERROR is raised. If creation is
prohibited for an external file because it already exists or for any other reason, the
exception FILE_NAME_ERROR is raised. (CREATE is not defined for an IN_FILE.)

OPEN associates the given file with an existing external file. If the given file is already

open, the exception FILE_OPEN_ERROR is raised. If no such file exists or this
access is prohibited, the exception FILE_NAME_ERROR is raised.

Any file operation that cannot be completed because of difficulties in the underlying system raises
the exception MALFUNCTION. Any attempt to carry out an operation that is physically impossible
or prohibited raises the exception FILE_USE_ERROR.

Whether a file is currently associated with an external file may be discovered by the following func-
tion:

IS_OPEN returns TRUE if there is an associated file, FALSE otherwise.

All operations described subsequently apply to open files. Any attempt to use them on a file that is
not open raises the FILE_OPEN_ERROR exception.

The name of the external file currently associated with a given file can be discovered by the func-
tion:

NAME returns a string representing the name of the external file currently associated with
the argument.

After processing has been completed on a file, the association may be broken by one of the follow-
ing two procedures:

CLOSE breaks the association between the file and its associated external file. The exter-
nal file continues to exist.

DELETE breaks the association between the file and its associated external file. The exter-
nal file is deleted.

Example 1: Create a New External File on Backing Store

CREATE(FILE :=: INT_FILE, NAME := “>udd>ada>counts”);
-- write the file
CLOSE(INT_FILE);
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Example 2. Read a Paper Tape

declare

package CHAR_IO is new INPUT_OUTPUT(CHARACTER);
PT 3 CHARL_IO.IN_FILE:

begin

CHAR_IO.OPEN(PT, “ttyg”);
~ nput the file from device ttyg
CHAR_IO.CLOSE(PT):

end;

14.1.2 Fijle Processing

An open file has a current size and a current position. The size of a file is the total number of ele-
mgnts currently in it. The current position of the file determines the next element to be rgad or
written. Each element occupies one position, counting from 1. After the last element of a file has
been read or written, the next element position equals the size of the file plus one.

The followin

a file:

READ

WRITE

SIZE

NEXT
SET_NEXT

g subprograms are available for input-output and for handling the size and position of

obtains the next element value from the external file and advances the position by
one. If there is no such element then the exception END_OF_FILE is raisgd. lf the
next element is not of the proper type then the exception INVALID_DATA is raised.
(READ is not defined for an OUT_FILE; for an INOUT_FILE, any previous WRITE

must have been completed.)

gives the next element in the external file the specified value apd advanpes the
position by one, adjusting the size of the file if necessary. (WRITE is not defined for

an IN_FILE.)

returns the number of elements currently in the file.

returns the current position of the file.

moves the file so that the next element read or written will be from the position
specified. If the position value specified does not exist in the current file, a subse-
quent READ will raise an exception (a subsequent WRITE may raise an exception).
SET_NEXT has a default position corresponding to the first element of the file. This
procedure can be used to rewind, backspace, or advance the file.

Examples of file positioning:

SET_NEXT(INT_FILE);

-- rewind (set to position 1)

SET_NEXT(!NT_FILE, NEXT(INT_FILE)-1); -- backspace
SET_NEXT(INT_FILE, SIZE(INT_FILE)+1); -- advance to end of file
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Example of file processing:

-- Accumulate the values in a file and append the total

declare
use INT_IO; .
COUNTS : INOUT_FILE;
VALUE : INTEGER;
TOTAL : INTEGER :=
begin

0;

OPEN(COUNTS, ">udd>ada>counts”);

loop

READ(COUNTS, VALUE);
TOTAL := TOTAL + VALUE;

end loop;
exception
when END_OF_FILE =>

WRITE (COUNTS, TOTAL);

CLOSE (COUNTS);
end;

14.2 Specification of the Package INPUT OUTPUT

The specification of the generic standard package INPUT_OUTPUT is given below

calling conventions for all operations described in section 14.1.

generic (type ELEMENT_TYPE)

package INPUT_OUTPUT is
restricted type IN_FILE is
restricted type OUT_FILE is
restricted type INOUT_FILE is

private;
private;
private;

-~ Global operations for file manipulation

procedure CREATE (FILE : in
procedure CREATE (FILE : in

procedure OPEN  (FILE : in
procedure OPEN  (FILE : in
procedure OPEN  (FILE : in

procedure CLOSE (FILE : in
procedure CLOSE (FILE : in
procedure CLOSE (FILE : in

function IS_OPEN(FILE : in
function IS_OPEN(FILE : in
function IS_OPEN(FILE : in

function NAME (FILE : in
function NAME (FILE : in
function NAME (FILE : in

function SIZE (FILE : in
function SIZE (FILE : in
function SIZE (FILE : in

out OUT_FILE;
out INOUT_FILE;

out IN_FILE;
out OUT_FILE;
out INOUT_FILE;

out IN_FILE);
out OUT_FILE);
out INOUT_FILE);

IN_FILE) return BOOLEAN;

NAME
NAME

NAME
NAME
NAME

1 in STRING);
: in STRING);

. in STRING);
: in STRING);
1 in STRING);

OUT_FILE) return BOOLEAN;
INOUT_FILE) return BOOLEAN;

IN_FILE) return STRING;

OUT_FILE) return STRING;

INOUT_FILE) return STRING;

IN_FILE) return INTEGER;
OUT_FILE) return INTEGER;

INOUT_FILE) return INTEGER;
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-- input and output subprograms

Procedure READ (FILE : in IN_FILE; ITEM : out ELEMEs_'II:_ngE;f
Procedure READ (FILE : in INOUT_FILE; ITEM : out ELEMENT_ ;

Procedure  WRITE  (FILE : in OUT_FILE; ITEM : in ELEME“_’I[__'IFYYFF”E;{
Procedure  WRITE  (FILE : in INOUT_FILE; ITEM : in ELEMENT_ :

function NEXT (FILE : in IN_FILE) return INTEGER; )
function NEXT (FILE : in OUT_FILE) return INTEGER; ]
function NEXT (FILE : in INOUT_FILE) return INTEGER;

1)
1)
1)

Procedure  SET_NEXT(FILE : in IN_FILE;  POS : in 'NTESES
procedure  SET_NEXT(FILE : in OUT_FILE; POS : in INTE ER
procedure SET_NEXT(FILE : in INOUT_FILE; POS : in INTEG

~ exceptions that can be raised

FILE_NAME_ERROR : exception;

FILE_USE_ERROR . exception;

FILE_OPEN_ERROR : exception;

INVALID_DATA : exception;

MALFUNCTION : exception;

END_OF_FILE : exception;
private

- declarations of the file private types
end INPUT_OUTPUT;

14.3 Text Input-Output

Facilities are available for input and output in human re.adab.Ie forrr), wit2 ‘:he cejxterr;ailnfél(;e r::(;)rr;—
sisting of characters. These are provided in a package given in section 1. 2 anh_el:p at o et.
This package defines character file types and the procedures and functions which pu g

values of objects in and out of such files.

The package defining these facilities is called TEXT_IO. It uses the general |NP!JT_(1);J'1I"PUT
Package for files of type CHARACTER, so that all the facilities fiescrlbed in section .1 are
available. In addition to these general facilities, procedures are provided to GET and PUT values of
suitable types carrying out conversions between the internal values and appropriate character str-

ings.

All the GET and PUT procedures have an ITEM parameter w_hose type determines the details of the
action and the appropriate character string in the external file. Note' th_at thg ITEMrE)arahmeter is an
out parameter in GET and an in parameter for PUT. _The general principle is that‘t ec arac;er_;s_':n
the external file are composed and analyzed as lexical elemepts, as descnbe_d in chapter 2. The
conversions are based on the REP and VAL attributes described in Appendix A.

i ithout a file specified. If a file is
For all GET and PUT procedures, there are forms with and wit led. ile
specified, it must be of rihe correct type (IN_FILE for GET, OUT_FILE for P}JT). If no file is _specnfled,
a default'input or output file is used. At the beginning of program execution, the dgfault input and
output files are the so-called standard input and output files, which are associated with two

implementation defined external files.
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14.3.1 Standard Input and Output Files

The particular files used as default for the short forms of GET and PUT can be manipulated by the
following functions and procedures:

function STANDARD_INPUT  return IN_FILE; -- returns initial default in-file.
function STANDARD_OUTPUT return OUT_FILE; -- returns initial default out-file.
procedure SET_INPUT (FILE : in IN_FILE); -- sets the default in-file
procedure SET_OUTPUT (FILE : in OUT_FILE); -- sets the default out-file

14.3.2 Layout

The characters in the file are considered to form a sequence of lines. The characters in each line
are considered to occupy consecutive columns, counting from 1. The lines in each file are counted
from 1. A file may have a particular line length that is explicitly set by the user. If no line length has
been specified, lines can be of any length up to the size of the file. During file processing, a file has
a current line number and a current column number. These determine the starting position avai-
lable for the next GET or PUT operation.

The characters in the file consist of printable (graphic) characters and control characters. Each
printable character or space is associated with one column. The control characters have specific
implications on the line and column numbers:

CR resets the column number to one.
LF increments the line number by one.
BS decrements the column number by one if it is greater than one.

TAB  increments the column number to the next multiple of 8 unless that would take it beyond

the line length or the end of line in an input file, in which case it increments only to the end
of the line.

Other control characters do not affect the column number or line number.

Layout primitives manipulate the line structure of the file specified by the first parameter.

LINE returns the current line number
COL returns the current column number
SET_LINE sets the current line to the value specified by the second parameter.

The current column is set equal to 1.

SET_COL sets the current column to the value specfied by the second parame-
ter. The current line is unaffected.

SET_LINE_LENGTH sets the line length to the value specified by the second parameter.
Subsequently, if a SET_COL operation causes the column number to

exceed the specified line length, the exception INVALID_LAYOUT is
raised.
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In addit
enote

s used to
ce of character:

ion, the predefined string NEWLINE corresponds to the sequen

the end of a |ine in a given implementation.

Examples:

SET_LINE(F, LINE(F)+1 ). -- advances to the next line the current line
SET_COL(F, 20): -- advances (or backs up) to °°'”m? rsvc;r:n

SET_COL(F, COL(F) + 10); -- advances 10 columns fo

SET_LINLLENGTH(F, 132);

PUT(NEWLINE); - starts a new line on standard output

1433 Input-Output of Characters and Strings

; be prin-
o cters, which may ;
The GET and PyT procedures for these types work with md"é‘?,:ael s::zer in accordance with the
table or control characters, and affect the current qz'uThr;a:err;itted sange).
particular characters processed (never going outside

For an ITEM of type CHARACTER

GET

PUT

: is not fixed, this
: ; line length is not fixed,
nput file. If the ine length is fixed,
next character from the i P . If the line leng
.rettn;rnsghe v?::ecg:r:;:;onding to the current position on r:heo:'eeon the current colum.n, or
“ d efcrarac arks are skipped and the next character usct’ eorresponded to an end of line.
g: tr?e fi'?si cr:T:Jh:mn of the next line if the last column read ¢

; i fixed, the
file. If the line length is not -
i th-e Sz gLvenu?fe::gct;rn‘ig; t:f ttPP:Z current line anl'-:j ;hfeglg‘;;e?; (f::;:? r;he
Character is I 81y the fules given in 14.3.2 above. If the Jr;ccording il e B
- e lpeill It T and the current column is also updatg r to become larger than
Srersstel; i a<r:1iyfication would cause the ?0|_umn numt e:’ by 1 and the column
rules: . e S B m|ot r case the line number is mcremenhe file cannot accept the
e Ilu)ne !ength.tl? tr;e(aant :utomatic new line is inserted). If the
number is reset to

i ised.
character, the exception FILE_USE_ERROR is ra

ing i i d that exact number of
When the ITEM ¢ e is a string, the length of the string lsddetttermmed an
e Al 1 i ied out.
ET or PUT oper;"::ions for individual characters is carri

Example 1: variable line length:

PUTIF, "01234567" & NEWLINE & “89012345");

will output

01234567
89012345

; obtained by
If the file is subsequently read, the whole string can be

X : STRING(1 .. 18);
GET(F, X);

i characters).
(assuming NEWLINE is the string CR & LF, i.e., two
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Example 2: fixed line length of 8:
PUT(F, "0123456789012345");
will output

01234567
89012345

A subsequent read of that text, with the same line length, could be performed by
X : STRING(1 .. 16);
GET(F, X);

Note that the double-quote marks enclosing an actual parameter to PUT are not output, but the
string inside is output with any doubled double-quote marks written once, thus matching the rule
for character strings (see 2.5). ’

14.3.4 Input-Output for Other Types

All ITEM types other than CHARACTER or STRING are treated in a uniform way, as lexical units
(see 2.2, 2.3, 2.4). The output is a character string having the syntax described for the appropriate
unit and the input is taken as the longest possible character string having the required syntax. For
input, any leading space, TAB, CR, or LF characters are ignored. A consequence is that no such
units can cross a line boundary, and the line number is not changed by them.

If the character string read is not consistent with the syntax of the required lexical unit, the excep-
tion INVALID_DATA is raised.

The PUT procedures for numeric and enumeration types include an optional WIDTH parameter,
which specifies a minimum number of characters to be generated. If the width given is larger than
the string representation of the value, the value will be preceded (for numeric types) or followed
(for enumeration type) by the appropriate number of spaces. If the field width is smaller than the
string representation of the value, the field width is ignored. In all cases, the string printed is prece-
ded by a space, except at the first column of a line. A default width of O is provided, thus giving the
minimum number of characters.

In each PUT operation, if the line can accommodate all the characters generated, then the charac-
ters are placed on that line from the current column. If the line cannot accommodate all the cha-
racters, then a new line is started and the characters are placed on the new line starting from
column 1.
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1435 Input-Output for Numeric Types

Integers:

GET

PUT

i If the value
i tax of integer.
reads an optional ‘minus or plus sign then according to thg;:nthe oxcoption OVERFLOW
obtained is outside the implemented range of integer num s
is raised.

E V value aSadeCnla nt T n rscor an in ros
i es d no lead' g zero
(b”t a : I i | i ege ] '“/lth iO undie SC! ; | i ,
st i ceding g g ’
I g' c 10' the Vaer Zelo) ang a pre d m |IU|S sign IOI .a negative value t'l S
i i ig J'Usti ied ir the 'leld width and padded w th SpaCBS

Floating point numbers:

GET

PUT

i f approximate nurpbers.
reads an optional plus or minus sign then according tq tf;glsggt?:tc;’e \;’)ap;ue bbbt
The Salue gbtained is rounded to the precision FLOAT'D il ‘OVERFLOW s
side the implemented range for type FLOAT, the excep

i ith one digit before the
mate number wit e
lue as the nearest approxi e nu % i3] b5 Sektnios
gzzgfns;e;oti:f ggr\:p::i:ed number of digits after t:he gfeglergiar:‘ glc: il nplere :Ihe
i ign ar igi he specified number of decir prem i e
;mh ; ls'gn' atnadnctihfrr(::::t(ijtl)?wlatf'.pg‘rtt are :mitted. If the spe::;fied :(;meer ofd
ecimal poin re If the Tl
than tha? authorized by the precision, rounding is pe

Fixed point numbers:

i are
ined, these procedures
Because the representation of a fixed point type cannot be predeterm
contained in a generic package.

GET

PUT

leads an Opt'()llal pl“s or minus sign then .acco.ld. ing to tlle sy“tax of an apploxnllate num-
= ue obtained Is rounde (o] e approp d .
bef lhe val bt i d i d d to the a opriate e'ta

eX[)leSSes th T Ehﬂ r r ma r i tll .||ed nu be (o)
e value a i te numbe Wlth € speci m r .|

S the nearest app O.XI ) I T ;
d.g'ts af ter tt |e|dec'|||all point A de‘ault is pIOVIded to aCCOIHIIIOdi:te t'le de ta |itlleispec =~
.I l b dig;ts is Sma"le than that lleede ’ =
“ed number of r d to 'eplese“t de ta tl.e“ |°u“d ng is per

formed.

1436 Input-Output for Boolean

GET

PUT

d iven i ith no distinction between upper
i ifi i e syntax given in 2.3, wi o
re?ls ) 'demmlzrtti?s:olrf 't?g tig;:tifi; is TRUE or FALSE, then the boolean value is giv
and lower case .

e et
otherwise the exception INVALID_DATA is raise

I I .
ex th TEM va IR(’E or FALSE a“d pu{s these etters in uppel Case.
presses e value as

|
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14.3.7 Input-Output for Enumeration Types

Because each enumeration type has its own set of literals, these procedures are contained in a
generic package. An instantiation must specify the type.

GET reads an identifier (according to the syntax given in 2.3, with no distinction between upper
and lower case letters) or a character literal (according to the syntax of 2.5 for a single
character in double-quotes). If this is one of the enumeration literals of the type, then the
enumeration value is given; otherwise the exception INVALID_DATA is raised.

PUT outputs the ITEM value as an identifier in upper case or as a character literal.

14.4 Specification of the Package TEXT 10

The package TEXT_IO contains the definition of all the text input-output primitives.

package TEXT_IO is
package CHARACTER_IO is new INPUT_OUTPUT(CHARACTER);
type IN_FILE is new CHARACTER_IO.IN_FILE;
type OUT_FILE is new CHARACTER_IO.OUT_FILE;

-- Character Input-Output

procedure GET ( FILE : in IN_FILE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in OUT_FILE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output
procedure GET (FILE : in IN_FILE; ITEM : out STRING);
procedure GET ( ITEM : out STRING);
procedure PUT (FILE : in OUT_FILE; ITEM : in STRING);
procedure PUT (ITEM : in STRING);

-- Integer Input-Output

DEFAULT_WIDTH : constant INTEGER := O;

procedure GET ( FILE :in IN_FILE; ITEM : out INTEGER);
procedure GET ( ITEM : out INTEGER);
procedure PUT ( FILE :in OUT_FILE;

ITEM :in  INTEGER;

WIDTH : in INTEGER := DEFAULT_WIDTH);
procedure PUT ( ITEM :in  INTEGER;

WIDTH : in INTEGER := DEFAULT_WIDTH);

]
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» Floating Point lnput—Output

35233-“0“1""'““ : constant INTEGER := O;
Procedur ~MANTISSA : constant INTEGER := FLOAT'DIGITS - 1;
® GET (FILE  :in IN_FILE: ITEM : out FLOAT);
Procedure GET ( ITEM : out FLOAT):
Procedure PUT ( F)LE :in OUT_FILE;
ITEM  :in FLOAT;

DEFAULT_FLOAT_WIDTH;

WIDTH : in INTEGER
DEFAULT_MANTISSA);

FRACT : in INTEGER
Procedure PUT ( ITEM :in  FLOAT:

WIDTH : in INTEGER

FRACT :in INTEGER

[}

DEFAULT_FLOAT_WIDTH;
DEFAULT_MANTISSA);

{0

~ Fixed Point Input-Output is defined as a generic package

9eneric( type FIXED_TYPE;
function REP(X - FIXED_TYPE) return STRING is FIXED_TYPE'REP;
function VAL(X : STRING) retun FIXED_TYPE is FIXED_TYPE'VAL:
DECIMALS : FIXED_TYPE := FIXED_TYPE'DELTA)

Package FIXED_|Q g

DEFAULT_FIXED_WIDTH : constant INTEGER = O;
REP(DECIMALS - INTEGER(DECIMALS));

DELTA_REP : constant STRING :=
DEFAULT_DECIMALS ~ : constant INTEGER := DELTA_REP'LENGTH - 2;
Procedure GET ( FILE :in IN_FILE; ITEM : out FIXED_TYPE);
Procedure GET ( ITEM : out FIXED_TYPE);
Procedure PUT ( FILE :in OUT_FILE;

ITEM :in FIXED_TYPE;

WIDTH :in INTEGER := DEFAULT_FIXED_WIDTH;
FRACT : in |INTEGER := DEFAULT_DECIMALS);

Procedure PUT ( ITEM . in FIXED_TYPE;
WIDTH : in INTEGER := DEFAULT_FIXED_WIDTH;

FRACT : in INTEGER = DEFAULT_DECIMALS);
end FIXED_|O:

=~ Boolean Input-Output

DEFAULT_ENUM_WIDTH : constant INTEGER := O;

Procedure GET ( FILE :in IN_FILE; ITEM : out BOOLEAN);
Procedure GET ( ITEM : out BOOLEAN);
Procedure PUT ( FILE :in OUT_FILE;

ITEM :in  BOOLEAN;

WIDTH : in INTEGER := DEFAULT_ENUM_WIDTH);

Procedure PUT ( ITEM :in  BOOLEAN;
WIDTH : in INTEGER := DEFAULT_ENUM_WIDTH);
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-~ Generic package for enumeration types

generic(type ENUM_TYPE;
function REP(X : ENUM_TYPE) return STRING is ENUM_TYPE'REP;
function VAL(X : STRING) return ENUM_TYPE is ENUM_TYPE'VAL)
package ENUM_IO is

procedure GET ( FILE :in IN_FILE; ITEM : out ENUM_TYPE);
procedure GET ( ITEM : out ENUM_TYPE);
procedure PUT ( FILE :in OUT_FILE;

ITEM :in ENUM_TYPE;

WIDTH : in INTEGER := DEFAULT_ENUM_WIDTH);
procedure PUT ( ITEM :in ENUM_TYPE;

WIDTH : in INTEGER := DEFAULT_ENUM_WIDTH);
end ENUM_IO;

— Layout primitives

function LINE(FILE : in IN_FILE) return NATURAL;
function LINE(FILE : in OUT_FILE) return NATURAL;

function COL(FILE : in IN_FILE) return NATURAL;
function COL(FILE : in OUT_FILE) return NATURAL;

procedure SET_LINE(FILE : in IN_FILE; TO : in NATURAL);
procedure SET_LINE(FILE : in OUT_FILE; TO : in NATURAL);
procedure SET_COL(FILE : in IN_FILE; TO : in NATURAL);

procedure SET_COL(FILE : in OUT_FILE; TO : in NATURAL);

procedure SET_LINE_LENGTH(FILE : in IN_FILE; N : in NATURAL);
procedure SET_LINE_LENGTH(FILE : in OUT_FILE; N : in NATURAL);

NEWLINE : constant STRING := /mplementation defined;
- Standard input and output file manipulation

function STANDARD_INPUT  return IN_FILE;
function STANDARD_OUTPUT return OUT_FILE;

procedure SET_INPUT (FILE : in IN_FILE);
procedure SET_OUTPUT (FILE : in OUT_FILE);

— Exceptions

FILE_NAME_ERROR : exception;

FILE_USE_ERROR : exception;

FILE_OPEN_ERROR : exception;

INVALID_DATA : exception;

MALFUNCTION : exception;

END_OF_FILE : exception;

INVALID_LAYOUT : exception;
end TEXT_IO;
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145 Example of Text Input-Output

imiti i ialogue with a user
The following example shows the use of the text input-output prlmmvets_ mr:sg':rllsg gt
at aterminal. The user js asked to select a color, and the program outpUt lf?les S
of items of the color available in stock. The default input and outpu

N);
type COLOR is (WHITE, RED, ORANGE, YELLOW, GREEN, BLlig, ?30\9/8)1.73’ 87);
TARGET : array (WHITE .. BROWN) of INTEGER := (20, 17, 43, 10, 28,

Package COLOR_IO is new ENUM_IO(COLOR);

Procedure DIALOGUE is
use COLOR_IO;
CHOICE: COLOR:

procedure READLN is
CH : CHARACTER:
begin
loop
GET(CH);
exit when CH = LF;
end loop;
end;

Procedure ENTER_COLOR return COLOR is
CHOICE : COLOR:
in
loop
begin
PUT("Color selected: “);
GET(CHOICE);
READLN;
return CHOICE;
exception
when INVALID_DATA =>
READLN; .
PUT("Invalid color, try again.”);
end;
end loop;
end;
begin -- body of DIALOGUE
CHOICE := ENTER_COLOR;
PUT(NEWLINE); .
PUT(CHOICE); PUT("items available:");
SET_COL(STANDARD_OUTPUT, 25);
PUT(TARGET(CHOICE), WIDTH := 5);
PUT(";” & NEWLINE);
end DIALOGUE;

Example of an interaction (characters typed by the user are italicized):

Color selected: black ’
Invalid color, try again. Color selected: blue
BLUE items available: 173;
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14.6 Low Level Input-Output

A low level input-output operation is an operation acting on a physical device. Such an operation is
handled by using one of the (overloaded) predefined procedures SEND_CONTROL and RECEIVE_-
CONTROL.

A procedure SENG_CONTROL may be used to send control information to a physical device. A
procedure RECEIVE_CONTROL may be used to monitor the execution of an input-output opera-
tion by requesting information from the physical device.

Such procedures are declared in the standard package LOW_LEVEL_IO and have two parameters
identifying the device and the data. However, the kinds and formats of the control information will
depend on the physical characteristics of the machine and the device. Hence the types of the
parameters are implementation defined. Overloaded definitions of these procedures should be
provided for the supported devices.

The visible part of the package defining these procedures is outlined as follows:

package LOW_LEVEL_IO is
-- declarations of the possible types for DEVICE and DATA
-- declarations of overloaded procedures for these types:
procedure SEND_CONTROL (DEVICE : device_type; DATA : in out data_type);
procedure RECEIVE_CONTROL (DEVICE : device_type; DATA : in out data..type);
end;

The bodies of the procedures SEND_CONTROL and RECEIVE_CONTROL for various devices can

be supplied in the body of the package LOW_LEVEL_IO. These procedure bodies may be written
with code statements.
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A. Predefined Language Attributes

The following attributes are predefined in the language and are denoted by the notation described
in section 4.1, where the name of the entity is followed by an apostrophe and the attribute iden-

tifier.

Attributes of any object or subprogram

ADDRESS X’ADDRESS returns an integer corresponding to the location of the
first storage cell of X, which is given as an index in a linear memory.

Attributes of any type or subtype (or objects thereof)

SIZE Gives the number of bits used to implement objects of the type.

Attributes of any scalar type or subtype

FIRST T'FIRST returns the minimum value in the range of T.

LAST T'LAST returns the maximum value in the range of T.

REP(X) X being an object, T'TREP(X) returns the string representation of the
value of X. The string contains the minimum number of characters
needed, i.e.:

® For a number, only significant digits are given, and the number of
decimal digits is the smallest number required to express the
mantissa within the declared accuracy. A floating point number is
represented in scientific notation with one digit before the
) decimal point, and a signed three digit exponent. A fixed point
number is represented in fixed point notation. All numbers are

expressed in base 10.

® For enumeration literals, identifiers are represented in upper-
case, without any extra space. Character values are represented
surrounded by double quotes.

VAL(X) X being a string, T'VAL(X) returns the value of type T whose external

representation is given by the string X. If no interpretation of X can be
given within T, the RANGE_ERROR exception is raised.

Attributes of any real type or subtype

BITS Returns an integer indicating the minimum number of bits needed to repre-
sent the mantissa of the type or subtype.



Attributes of any discrete type or subtype T

PRED(X)

SUCC(X)

ORD(X)

VAL(l)

Returns the value preceding X in T. The exception RANGE_ERROR is
raised if X = T'FIRST.

Returns the value following X in T. The exception RANGE_ERROR is
raised if X = T'LAST.

Returns an integer which is the ordinal position of X in the type or
subtype T. Note that TORD(T'FIRST) = 1, and that ORD is indepen-
dent of any representation specification: T'ORD(T'SUCC(X)) =
T'ORD(X) + 1.

| being an integer, T'VAL(I) returns the enumeration value occupying
the I-th position in T. The exception RANGE_ERROR is raised if | is
not in the range TTORD(T'FIRST) .. TORD(T'LAST). For any enumera-
tion value X of type T, TVAL(T'ORD(X)) = X.

Attributes of any numeric type or subtype

RADIX

Returns an integer giving the actual radix (base) used to represent
values of the type.

Attributes of any fixed point type or subtype T

DELTA

SMALL

LARGE

Returns a fixed point number indicating the value of the delta speci-
fied in the type declaration.

Returns a fixed point number indicating the closest (positive or negati-
ve) power of 2 immediately inferior to the delta. For example, if TDEL-
TA = 0.005, then T'SMALL is 0.00390625 (1/256).

Returns a fixed point number indicating the largest permissible value
that can be expressed in the binary representation of T, with a delta of
T'SMALL: if T is declared “delta 0.01 range -100.0 .. 100.0” then
T'LARGE = 256 - 1/128 = 255.9921875.

Attributes of any floating point type or subtype

DIGITS

LARGE

SMALL

EXPONENT_MIN

EXPONENT_MAX

Returns an integer indicating the number of decimal digits specified in
the type or subtype declaration.

Returns the largest positive value that can be expressed in the repre-
sentation within the constraints of the precision of T.

Returns the smallest positive value that can be expressed in the repre-
sentation within the constraints of the precision of T.

The minimum exponent (as an integer) possible in the representation
used for values of the type.

The maximum exponent (as an integer) possible in the representation
used for values of the type.
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Attributes of any array object and of any array type with specified bounds

FIRST

FIRST(i)
LAST
LAST(i)
LENGTH

LENGTH(i)

Returns a value in the type of the first index, which is the lower bound
of that index.

Same as FIRST, for the i-th index.

Upper bound of the first index

Same as LAST, for the i-th index.

Number of elements of the first dimension.

Same as LENGTH, for the i-th dimension.

Attributes of any access type (or object thereof)

ACCESS_SIZE

Returns an integer giving the size in bits required for an object of the
access type (whereas SIZE will give the size of the value denoted by
such object).

Attributes of any record component

FIRST_BIT

LAST_BIT

POSITION

Attributes of any task

ACTIVE

CLOCK

INDEX

PRIORITY

Gives the bit position (as an integer) of the first bit of the component
in the first storage unit used for the component. The first bit in the
storage unit has the position O.

Bit position of the last bit of the component from the beginning of the
first storage unit used for the component.

Gives the position (in storage units) of the first storage unit of the
component relative to the beginning of the record. Position of the first
component is O.

True if the corresponding task has been initiated, and is not yet ter-
minated.

Returns a value of type TIME which is the cumulative processing time
of the task since its last initiation. Can be used only in the task body.

(for a task family) Returns the index (of the type of the family index) of
the current member of the family. Can be used only in the task body.

Returns a value of the predefined type PRIORITY, which is the current
priority of the task. Can be used only in the task body.



Attributes of any entry

COUNT

Attributes of SYSTEM

CLOCK

MEMORY_SIZE

NAME

STORAGE_UNIT

MAX_PRIORITY

MIN_PRIORITY
MAXC_INT

MIN_INT

Translator options
OPTION'SPACE

OPTION'TIME

Indicates the number of tasks currently awaiting a rendezvous with
the entry. Can be used only within the body of the task containing the
entry declaration.

Current time (of type TIME) indicated by the real time clock of the
system.

Number of storage-units available to the program.

Returns a literal of an implementation-defined enumeration type,
identifying the target system.

Number of bits in a storage unit.

The maximum priority level for tasks on the system (of the predefined
subtype PRIORITY).

The minimum priority level.
The maximum integer value supported by the machine.

The minimum integer value supported by the machine.

True if major optimization criterion is space efficiency.

True if major optimization criterion is time efficiency.



Pragma Name

CREATION

ENVIRONMENT

INCLUDE

INLINE

INTERFACE

LIST

MEMORY_SIZE

OPTIMIZE

PAGE

STORAGE_UNIT

SUPPRESS

SYSTEM

B. Predefined Language Pragmas

Meaning

The identifier STATIC or DYNAMIC must be given as a parameter. The
pragma must appear in the visible part of a task module. It specifies
whether storage for the task is to be allocated statically or dynamically.

Takes a list of module names as arguments. The pragma must appear
before a compilation unit. It specifies other visible modules to be included
in the standard environment for all compilation units in the program library.

Takes a string as argument, which is the name of a text file. The pragma
can appear in a declarative part or sequence of statements. It specifies that
the text file is to be included where the pragma is given.

No arguments. The pragma must appear in the declarative part of a sub-
program body. It specifies that the subprogram body should be expanded
in line at each call.

Takes an identifier as argument, indicating that the body of a subprogram
is written in another language, whose linkage convention is to be observed.
The list of possible languages is implementation defined.

The argument is either ON or OFF. The pragma can appear in a declarative
part or sequence of statements. It specifies that listing of the program unit
is to be continued or suspended until a LIST pragma is given with the
opposite argument,

Takes an integer argument indicating the number of storage units available
in memory.

The argument is TIME or SPACE. The pragma can appear before a com-
pilation unit or within a declarative part or sequence of statements. It
specifies whether time or space is the primary optimization criterion. The
effect of the pragma holds until the end of the unit, unless another
OPTIMIZE pragma overriding it is given.

Indicates that the listing should start on a new page.

Takes an integer argument indicating the number of bits to be used for
each storage unit.

Exception names are given as arguments. The pragma must appear in the
declarative part of a program unit. It specifies that within the unit no run-
time checks need be provided for the named exceptions.

An identifier is given as argument, and interpreted as the name of the

target system of the program. The list of possible names is implementation
defined.
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C. Predefined Language Environment

This appendix outlines a definition of the predefined identifiers in thg Ia'ngu?ge. T_he dgfinition is
given in the form of a package module called STANDARD, which is implicitly inherited by all
program units (see 8.6).

The types and other facilities given in STANDARD are deliberatgly minimal, sinc_e further
packages, for instance, for complex arithmetic, can be expressed in the la.nguage itself. An
implementation may, of course, make such packages a part of the standard environment. .Further—
more, the predefined functions, operators, and procedures can be implementeq in special ways
that are particularly efficient on a given machine. For this reason, the corresponding package body
is not shown.

Not all the predefined entities can be completely described in the language i’fself. For instance,
although the enumeration type BOOLEAN can be written showing the two literals FALSE and
TRUE, the relationship of BOOLEAN to conditions cannot be expressed in the language. In conse-
quence, the text of the package given below does not give the complete semantics of the entities
defined.

package STANDARD is
type BOOLEAN is (FALSE, TRUE);
function “not” (X : BOOLEAN) return BOOLEAN;

function “and” (XY : BOOLEAN) return BOOLEAN:;
function “or” (XY : BOOLEAN) return BOOLEAN;
function “xor” (XY : BOOLEAN) return BOOLEAN;:

type SHORT_INTEGER is range implementation._defined:
type INTEGER is range /mplementation_defined:
type LONG_INTEGER is range /mplementation..defined:;

function “+” (X : INTEGER) return INTEGER;
function "-" (X : INTEGER) return INTEGER;
function ABS (X : INTEGER) return INTEGER:

function "+ (X,Y : INTEGER) return INTEGER;
function "-” (XY : INTEGER) return INTEGER:
function “x” (X,Y : INTEGER) return INTEGER:
function “/” (XY : INTEGER) return INTEGER:
function “mod” (X,Y : INTEGER) return INTEGER;
function “xx” (X : INTEGER; Y : INTEGER range O .. INTEGER'LAST) return INTEGER;

-- Similarly for SHORT_INTEGER and LONG_INTEGER



type SHORT_FLOAT is digits implementation_defined range implementation..defined;
type FLOAT is digits /mplementation._defined range implementation..defined;
type LONG_FLOAT is digits /mplementation..defined range implementation..defined;

function “+” (X : FLOAT) return FLOAT;

function “-" (X : FLOAT) return FLOAT;

function ABS (X : FLOAT) return FLOAT;

function “+” (X)Y : FLOAT) return FLOAT;

function “-" (XY : FLOAT) return FLOAT;

function “x” (XY : FLOAT) return FLOAT

function "/” (XY : FLOAT) return FLOAT;

function "xx” (X : FLOAT; Y : INTEGER) return FLOAT;

-- Similarly for SHORT_FLOAT and LONG_FLOAT

- The following characters comprise the standard ASCIl character set.

type CHARACTER

(NUL, SOH,
BS, HT,
DLE, DcC1,
CAN, EM,
1. r,
07 A5
“8", "9,
o
¢
“P”; QY
X Y,
oo
o
x' YI

is
STX,
LF,
DC2,
SUB,

e

ETX, EOT,
VT, FF,
DC3, DcC4,
ESC, FS,
"#", “$",
ngn g
" e
e, "D
“K", g L
"87 T
I e
e, “d”,
e "
s®, “t";

-- Enumeration literals for characters not

EXCLAM
DOLLAR
QUESTION
AT_SIGN
L_BRACKET
BACK_SLASH
R_BRACKET
CIRCUMFLEX
GRAVE

LC_A

LC_B

LC_Z
L_BRACE
R_BRACE
TILDE

: constant
. constant
. constant
. constant
. constant
. constant
. constant
. constant
. constant
. constant
. constant

. constant
. constant
: constant
. constant

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

CHARACTER :
CHARACTER :

CHARACTER
CHARACTER
CHARACTER
CHARACTER

CHARACTER
CHARACTER
CHARACTER
CHARACTER

T R N R T TR T T )

LR

ENQ, ACK, BEL,
CR, so. sl
NAK,  SYN, ETB,
GS, RS,  US,
%%, &, ",
"6", I
N
“EY, "F", "G,
"M, "N, 0",
gl g e
e g’ =
R
"u”, V", "w",
¥ “~",  DEL)

e~

3
> —

oo

3

U=
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subtype NATURAL is INTEGER range 1 .. INTEGER'LAST;
type STRING is array (NATURAL) of CHARACTER;

type TIME is digits /implementation_defined range implementation._.defined;
SECONDS : constant TIME := /mplementation._.defined.;

SYSTEM : -- predefined name
OPTION : -- predefined name

subtype PRIORITY is INTEGER range implementation..defined;
procedure SET_PRIORITY(P : PRIORITY);

Alphabetical list of exceptions

ACCESS_ERROR : exception;
ASSERT_ERROR : exception;
DISCRIMINANT_ERROR : exception;
DIVIDE_ERROR : exception;
FAILURE : exception;
INITIATE_ERROR : exception;
NO_VALUE_ERROR : exception;
OVERFLOW : exception;
OVERLAP_ERROR : exception;
RANGE_ERROR : exception;
SELECT_ERROR : exception;
STORAGE_OVERFLOW  : exception;
TASKING_ERROR : exception;
UNDERFLOW : exception;
generic task SEMAPHORE is

entry P;

entry V;
end;

generic task SIGNAL is
entry SEND;
entry WAIT;

end;

for CHARACTER use -- 128 ASCIl character set without holes
(0.1,2 3 45,6,7,8 .. ,126, 127);

for STRING use packing;

end STANDARD;
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D. Glossary

Access type An access type is a type whose
objects are allocated dynamically during program
execution. An access value designates a
dynamically allocated object.

Aggregate An aggregate is the written form
denoting a value of a composite type. An array
aggregate denotes a value for an array; a record
aggregate denotes a value for a record.

Allocator An allocator creates a new dynamically
allocated object and returns an access value
designating the object.

Attribute An attribute is a characteristic of a
named entity. A predefined attribute relates to
the program entity, and is obtained by using one
of the predefined attribute identifiers in the
language. A user defined attribute exists only for
types, and denotes a user defined subprogram
for the type.

Body A body is a program unit defining the
execution of a subprogram or module. A body
stub is a replacement for a body that is compiled
separately.

Compilation unit A compilation unit is a
restricted program unit that is presented for com-
pilation as a separate text. |t may be a sub-
program body, a module specification, or a
module body.

Component A component denotes a part of a
composite object or a nameable entity declared
in a program unit. An indexed component is a
name containing expressions denoting indices.
An indexed component can denote either a com-
ponent of an array, a task in a task family, or an
entry in an entry family. A selected component is
@ name whose prefix names another declared
entity and whose suffix denotes a component of
the entity. A selected component can denote
glther a component of a record, an entity
dz;’:;gd in another program unit, or a user
type attribute.

Constraint A constraint is a restriction on the set
of possible values of a type. A range constraint
specifies the lower and upper bounds for the
values of a scalar type. An accuracy constraint
specifies the relative or absolute bounds on
errors for a real type. An Jindex constraint
specifies the lower and upper bounds of an array
index. A discriminant constraint specifies a par-
ticular variant for a record type.

Declarative part A declarative part is a sequence
of declarations and related information such as
subprogram bodies and representation specifica-
tions that apply over a region of program text.

Derived type A derived type is a type whose
operations and values are taken from an existing

type.

Discrete type The discrete types are the
enumeration types and integer types. Discrete
types may be used for indexing and iteration over
loops.

Discriminant A discriminant is a constant com-
ponent of a record. The value of the discriminant
determines the particular variant of a given
record value or the size of an array component.

Elaboration Elaboration is the process by which
a declaration achieves its effect. For example it
can associate a name with a program entity or
initialize a newly declared variable.

Entry An entry is used for communication
between tasks. Externally an entry is called just
as a subprogram is called; its internal behavior is
specified by one or more accept statements
specifying the actions to be performed when the
entry is called.

Exception An exception is an event that causes
suspension of normal program execution. Bring-
ing an exception to attention is called raising the
exception. An exception handler is a piece of
program text specifying a response to the excep-
tion. Execution of such a program text is called
handling the exception.



Generic program unit A generic program unit is a
subprogram or module specified with a generic
clause. A generic clause contains the declaration
of generic parameters. A generic program unit
may be thought of as a possibly parameterized
model of program units. Instances (i.e. filled-in
copies) of the model can be obtained by generic
instantiation. Such instantiated program units
define subprograms and modules that can be
used directly in a program.

Lexical unit A lexical unit is one of the basic syn-
tactic elements comprising a program. A lexical
unit is either an identifier, number, string, or
delimiter.

Literal A literal denotes an explicit value of a
given type, for example a number or a character
string.

Module A module is a program unit specifying a
group of logically related entities. The visible part
of the module specification defines the informa-
tion that another program unit is able to know
about the module. The private part of the module
specification defines the physical characteristics
of the information specified in the visible part. A
module body contains the bodies of specified
subprograms and local declarative information,
as well as statements to be executed when the
module body is elaborated (for a package
nmodule) or initiated (for a task module).

Object An object is a variable or a constant. An
object can denote any kind of data element,
whether a scalar value, a composite value, or a
value in an access type.

Overloading Overloading is the property of
fiterals, identifiers, and operators that can have
several alternative meanings within the same
scope. For example an overloaded enumeration
literal is a literal appearing in two or more
enumeration types; an overloaded subprogram
{s a subprogram whose name can denote one of
several subprogram bodies, depending upon the
kind of its parameters and returned value.

Package A package is a module specifying a col-
lection of related entities such as constants,
variables, types, and subprograms.

Parameter A parameter is one of the named
entities associated with a subprogram, entry, or
generic program unit. A formal parameter is an
identifier used to denote the named entity in the
unit body. An actual parameter is the particular
entity associated with the corresponding formal
parameter in a subprogram call, entry call, or
generic instantiation. A parameter mode
specifies whether the parameter is used for input,
output or input-output of data. A positional
parameter is an actual parameter passed in
positional order. A named parameter is an actual
parameter passed by naming the corresponding
formal parameter.

Pragma A pragma is an instruction to the com-
piler, and may be language defined or implemen-
tation defined.

Private type A private type is a type where the
set of possible values is clearly defined, but not
known to the users of such types. A private type
is only known by the set of operations applicable
to its values. A private type and its applicable
operations are defined in the visible part of a
module. Assignment and the predefined com-
parison for equality or inequality are allowed for
all private types, unless the private type is
marked as restricted.

Qualified expression A qualified expression is an
expression qualified by the name of a type or
subtype. It can be used to state the type or sub-
type of an expression, for example for an
overloaded literal. It can also be used to specify a
conversion to the named type when the conver-
sion is permitted.

Range A range is a contiguous set of values of a
scalar type. A range is specified by giving the
lower and upper bounds for the values.

Rendezvous A rendezvous is the interaction that
occurs between two parallel tasks when one task
has called an entry of the other task, and a cor-
responding accept statement is being executed
by the other task. During a rendezvous, informa-
tion can be exchanged by means of parameters
associated with the entry.



Representation specification Representation
specifications specify the mapping between data
types and features of the underlying machine
that execute a program. In some cases, they
completely specify the mapping, in other cases
they provide criteria for choosing a mapping.

Restricted program unit A restricted program
unit is a subprogram or module with a visibility
restriction. The visibility restriction limits the
visibility of outer units.

Restricted type A restricted type is a private type
for which assignment and the predefined com-
parison for equality are not available.

Scalar type A scalar type is a type whose values
have no components. Scalar types comprise dis-
crete types (i.e. enumeration and integer types)
and real types.

Scope The scope of a declaration is the region of
text over which the declaration has an effect.

Static expression A static expression is one
whose value does not depend on any dynamical-
ly computed values of variables.

Subprogram A subprogram is an executable
program unit, possibly with parameters specify-
ing its calling conventions. A subprogram
declaration specifies the name of a subprogram
and its calling conventions. A subprogram body
specifies its execution.

Subtype A subtype of a type is obtained from the
type by constraining the set of possible values of
the type. The operations over a subtype are the
same as those of the type from which the sub-
type is obtained.

Task A task is a module that may operate in
parallel with other task modules. A task family
defines a number of tasks with identical proper-
ties, each denoted by an index.

Type A type characterizes a set of values and a
set of operations applicable to those values. A
type attribute denotes an operation for the type
or a property of its values. A type definition is a
language construct introducing a type. A type
declaration associates a name with a type
introduced by a type definition.

Use clause A use clause opens the visibility to
declarations given in the visible parts of given
modules.

Variant A variant part specifies alternative record
components in a record type. Each variant
defines the components for a corresponding
value of the record’s discriminant.

Visibility At a given point in a program text. the
declaration of an entity with a certain identifier is
said to be visible if the entity is an acceptable
meaning for an occurrence of the identifier. By
convention an identifier is said to be visible if its
declaration is visible. A visibility restriction is a
restriction on a program unit that limits its
visibility of outer units.
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E. Syntax Summary

23

identifier ::=
letter {lunderscore| letter_or_digit|

letter_or_digit = letter | digit

letter ::= upper_case_letter | lower_case_letter
24

Number := integer_number | approximate_number
‘integer_number 1= integer | based_integer
integer ::= digit {lunderscore] digit|

based_integer ::=
base # extended_digit {lunderscore] extended_digit}

base := integer
extended_digit ::= digit | letter
approximate_number =

integer.integer |E exponent|
| integer E exponent

exponent = |+] integer | - integer
2.5

character_string ::= " |character} "
2.7

pragma =

pragma identifier |(argument {, argument})];

argument := identifier | character_string | number

3.1

declaration ::=
object_declaration
subtype_declaration

| | type_declaration
I subprogram_declaration
|

| private_type_declaration
| module_declaration
entry_declaration | exception_declaration

renaming_declaration
3.2

Obj.ecL(_ieclaration e
'dentifier_list : |constant] type |:= expression|;

ntifier_list ::= identifier {, identifier|

3.3
type ::= type_definition | type_mark [constraint]

type_definition :=
enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition

type_mark := type_name | subtype_name
constraint =

range_constraint
| index_constraint

| accuracy_constraint
| discriminant_constraint

type_declaration :=
type identifier |is type_definition];

subtype_declaration :i=
subtype identifier is type_mark |constraint];

34
derived_type_definition := new type_mark [constraint]
3.5
range_constraint := range range
range := simple_expression .. simple_expression
3.5:1
enumeration_type_definition ::=
(enumeration_literal |, enumeration_literal})
enumeration_literal ::= identifier | ciharacter_literal
354
integer_type_definition ::= range_constraint
355
real_type_definition = accuracy_constraint

accuracy_constraint = )
digits simple_expression |range_constraint]
| delta simple_expression |range_constraint|
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3.6

array_type_definition :i=
array (index {, index}) of type_mark |constraint]

index = discrete_range | type_mark

discrete_range := [type_mark range] range

index_constraint ::= (discrete_range {, discrete_range})

3.6.2

aggregate =
(component_association {, component_association})

component_association =
|choice || choice}] => | expression

choice := simple_expression | discrete_range | others

3.7

record_type_definition =
record
component_list
end record

component_list =
{object_declaration} |variant_part] | null;

variant_part =
case discriminant of
{when choice {| choice} =>
component_list}

end case;
discriminant ::= constant_component_name
373
discriminant_constraint := aggregate
3.8
access_type_definition = access type
4.1
name :=

identifier | indexed_component

| selected_component | predefined_attribute

indexed_component ::= name(expression |, expression})
selected_component := name . identifier
predefined_attribute ::= name ‘ identifier

4.2

literal =
number | enumeration_literal | character_string | null

4.3

variable = name |(discrete_range)] | name.all

4.4

expression =
relation {and relation}
| relation lor relation}
| relation {xor relation}

relation = .
simple_expression |relational_operator simple_expression]
| simple_expression |not| in range
| simple_expression |not] in type_mark |constraint]

simple_expression =
|unary_operator] term {adding_operator term|

term = factor |multiplying_operator factor}
factor ;= primary [xx primary]
primary =

literal | aggregate | variable | allocator )
| subprogram_call | qualified_expression | (expression)

4.5

logical_operator u= and

or | xor

relational_operator = =

=€ 1<=]|>1>=

adding_operator = o+ |- | &
unary_operator = + |- | not
multiplying_operator = & | / | mod
exponentiating_operator = xx

4.6

qualified_expression ::=
type_mark(expression) | type_mark aggregate

4.7

allocator ::= new qualified_expression



5

sequence_of_statements := {statement|
statement ;=
simple_statement l compound_statement
| <<identifier>> statement

simple_statement ::=

assignment_statement subprogram_call_statement

|
| exit_statement | return_statement
| goto_statement | assert_statement
| initiate_statement | delay_statement
| raise_statement | abort_statement
| code_statement | null;
€ompound_statement :=
if_statement | case_statement
| loop_statement | accept_statement
| select_statement | block
51
assignment_statement ::= variable := expression;

5.2

subprogram_call_statement := subprogram_call;
Subprogram_call =
subprogram_name

|(parameter_association |, parameter_association})]

parameter_association =
|formal_parameter :=| actual_parameter
| [formal_parameter =:| actual_parameter
| |formal_parameter :=:| actual_parameter

formal_parameter ::= identifier

actual_parameter := expression

5.3

return_statement := return |expression|;

5.4

if_statement ::=

if condition then
sgquence_of_statements

| elsif condition then
sequence_of_statements}

| else
Sequence_of_statements|
end if;

°0nditi0n =

e ;
| e:z:essgon land then expression}
ession {or else expression}

5.5

case_statement =
case expression of
|when choice {| choice} => sequence_of_statements}

end case;
5.6

loop_statement ::= literation_specification| basic_loop
basic_loop ::=
loop
sequence_of_statements
end loop lidentifier];

iteration_specification :i=
for loop_parameter in |reverse] discrete_range
| while condition
loop_parameter := identifier
5.7

exit_statement ;= exit lidentifier] |when condition];

5.8

goto_statement := goto identifier;
5.9

assert_statement ::= assert condition;
6.1

declarative_part ::= |use_clause]
{declaration| {representation_specification} {body}
body ::= |visibility_restriction] unit_body | body_stub

unit_body =

subprogram_body | module_specification | module_body
6.2
subprogram_declaration =

subprogram_specification;

| subprogram_nature designator is generic_instantiation;
subprogram_specification ::= |generic_clause]

subprogram_nature designator |formal_part]

|return type_mark [constraint||
subprogram_nature ::= function | procedure
designator ::= identifier | character_string

formal_part =
(parameter_declaration |; parameter_declaration})

parameter_declaration =
identifier_list :

mode := lin] | out | in out
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6.4

subprogram_body =

subprogram_specification is
declarative_part

begin
sequence_of_statements

| exception
|exception_handler}|

end |designator];

6.7

block :=
| declare
declarative_part|]
begin
sequence_of_statements
| exception
|exception_handler}]
end lidentifier];

& |

module_declaration :=
|visibility_restriction] module_specification
| module_nature identifier |(discrete_range)]
is generic_instantiation;

module_specification :=
| generic_clause]
module_nature identifier |(discrete_range)| lis
declarative_part
| private
declarative_part]
end lidentifier|];

module_nature := package | task

module_body :=

module_nature body identifier is
declarative_part

| begin
sequence_of_statements|

| exception
{exception_handler}]

end lidentifier|;

7.4

private_type_declaration :=
|restricted| type identifier is private;

8.3
visibility_restriction ::= restricted |visibility_list]
visibility_list ::= (unit_name {, unit_name})

8.4
use_clause := use module_name |, module_name};
8.5
renaming_declaration =
identifier : type_mark renames name;
| identifier : exception renames name;

| subprogram_nature designator renames |name.]designator;
| module_nature identifier renames name;

9.3

initiate_statement ::=
initiate task_designator |, task_designator};

task_designator ::= task_name |(discrete_range)|

9.5

entry_declaration ::=
entry identifier |(discrete_range)| |formal_part|;

accept_statement :=
accept entry_name [formal part] |do
sequence_of_statements
end lidentifier||;

9.6

delay_statement ::= delay simple_expression;

9.7

select_statement :=
select
|when condition =>]
select_alternative
| or [when condition =>|
select_alternative}
| else
sequence_of_statements)
end select;

select_alternative :=

accept_statement |sequence_of_statements]
| delay_statement [sequence_of_statements|

9.10

abort_statement ::= abort task_designator {task_designator};



10.1 13

representation_specification :=
packing_specification | length_specification
compilation_unit = | record_type_representation | address_specification

|visibility_restriction]|separate] unit_body | enumeration_type_representation

compilation ::= |compilation_unitf

10.2
13.1

body_stub ::= . e . king:
subprogram_specification is separate; packing_specification ::= for type_name use packing;
| module_nature body identifier is separate;

“13.2
111
length_specification ::= for name use static_expression;
exception_declaration ::= identifier_list : exception;
11.2 13.3
exception_handler ::= ) . enumeration_type_representation ::=
when exception_choice {| exception_choice| => for type_name use aggregate;
sequence_of_statements
exception_choice ::= exception_name | others
13.4
11.3 .
record_type_representation :=
raise_statement := raise |exception_name]|; for type_name use
record |alignment_clause;]
{component_name location;}
12:1 end record;
generic_clause ::= location ::= at static_expression range range
generic |(generic_parameter {; generic_parameter})) . . .
alignment_clause := at mod static_expression
generic_parameter =
parameter_declaration
| subprogram_specification lis [name.|designator|
| lrestricted] type identifier 13.5

—— address_specification ::=
2 for name use at static_expression;

generic_instantiation ::=
new name [(generic_association {, generic_association})|

generic_association ::=
parameter_association
| formal_parameter is| [name.|designator
| formal_parameter is| type_mark

13.8

code_statement := qualified_expression;
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