
W. Karl, J. Keller (Eds.): PARS 2017
Proc. 27th PARS-Workshop

An Image Processing Operator Language for Design and
Synthesis of Smart Camera Architectures

Christian Hartmann 1 Konrad Häublein 1 Benjamin Pfundt 1 Marc Reichenbach 1

Dietmar Fey 1

Abstract: Recent trends showed a rise of heterogeneous hardware architectures for image processing
applications. Due to the usage of these camera systems in the embedded field, the reduction of area
and power consumption became essential. Standard CPUs are not suitable in the embedded field,
because of their lavish commerce regarding power and area consumption. Embedded applications
have strict constraints regarding these parameters. Therefore, optimized and specialized hardware is
required resulting in a heterogeneous system architecture. Designing such a system is a challenging
and error-prone task. In the design process, software and hardware skills are needed. Programming
skills in different programming and design languages are necessary. For reducing the complexity a
common language which can easily be mapped on different hardware architectures combined with a
synthesis framework is needed. With the Image Processing Operator Language (IPOL) the descrip-
tion of heterogeneous systems with one language become possible. The synthesis framework called
Image Processing Architecture Synthesis (IPAS) completes the domain-specific language (DSL) as
an underlying mapping methodology.

Keywords: image processing, system design, compiling tools, domain-specific language, UML

1 Introduction
Due to the growth of heterogeneity in image processing systems, the complexity and the
number of different programming and description languages rise. A trade-off between
the design effort and system efficiency in terms of processing time, area and power con-
sumption has to be found. By using traditional development tools the effort for efficient
designs is too high. Thus companies are animated to choose a less efficient way, because
of lack in time, personnel and money. Reducing the design effort for heterogeneous sys-
tems increases the acceptance in companies for the usage of heterogeneous architectures
and this will lead to more efficient systems. It opens up the possibility for more image
processing systems in the embedded field. Embedded image processing applications hold
strict constraints regarding heat transfer, area and power consumption. Reducing the effort
of designing image processing systems will also lead to an advantage in time to market.
Also large projects of heterogeneous systems with groups of people using different pro-
gramming and development background such as GPU programming, micro-controller and
digital IC-design become feasible by using a common description language. Examples of
such projects can be found in the automotive field.

1 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 3, 91058 Erlangen,
{christian.hartmann, kondrad.haeublein, benjamin.pfundt, marc.reichenbach, dietmar.fey}@fau.de

For such projects the domain specific language IPOL serves as an interface and common
description language for creating an efficient hardware architecture. Hence IPOL was cre-
ated with the IPAS framework as synthesis methodology. IPOL is a DSL which is used for
mapping the common structures of an image processing application on different hardware
architectures by using the IPAS framework. For finding a suitable hardware architecture
for an image processing application the IPOL provides an opportunity of defining opti-
mization targets and constraints such as system accuracy, processing time, area and power
consumption. The optimization and mapping will be done by the synthesis tool called
IPAS.

2 Related Work

Domain-specific languages for image processing applications are unoriginal and not new.
Frameworks and DSLs for describing image processing applications for different hardware
platforms with one description language do already exist. A legitimate question is about
the need of a new DSL with underlying mapping methodology. One aspect is the miss-
ing optimization possibilities for system parameters such as accuracy, processing time,
area and power consumption the existing tools do not support. The framework HIPAcc
introduced in [RHR+15] provides a C/C++ library for the description of image process-
ing applications. These applications are able to run on GPUs, CPUs and Xilinx FPGAs
by using Vivado HLS, [HLS17]. However, there is no optimization logic regarding system
parameters. The Vivado HLS back-end is too limited for a suitable mapping. The resulting
circuits are not resource aware and do not consider specialized hardware structures such
as the Full Buffering, [SRF12]. A second framework such as CubeGen, introduced in the
work of [CDAC13] is a rapid prototype platform for testing, evaluating and compiling the
functionality of image processing applications on different hardware architectures. How-
ever, this framework does only work for CPUs by utilizing soft-cores such as Microblaze
or NIOSII. CubeGen tries to distribute image processing applications on whole processor
cores. This can be highly inefficient for image processing algorithms with a local mem-
ory access pattern. A further interesting approach is the Preesm framework introduced in
[PDH+14], it optimizes image processing applications for digital signal processors from
Texas Instruments. However, as for CubeGen Preesm does not provide compareable re-
sults for low power and low area applications such it can be achieved with application
specific heterogeneous hardware architectures. Also a product dependency on Texas In-
struments products exists with Preesm. Another weakness of existing approaches is the
strong limitation in stencil codes. Frameworks such as HIPAcc, Streamit [Str17] and Dark-
room, [HBD+14], are not able to support global processing algorithms such as the Hough
transformation [KA95] and SURF algorithm in [HQ11]. They do not support a whole im-
age processing pipeline with local and global processing algorithms. They just support
algorithms with a local data access pattern. That limits the effort of these tools. The third
aspect is the missing flexibility and extendability of the frameworks. In case of HIPAcc or
Darkroom the user is not able of using their own image processing operators. Only a very
limited number of predefined existing image processing algorithms can be used. The last
argument for defining a new image processing DSL with underlying mapping methodol-

ogy is that the existing frameworks do not support the communication between the dif-
ferent components of a heterogeneous system. The bus protocol support for buses such as
AXI or I2C is missing for connecting different hardware components. But these protocols
are needed for supporting a real heterogeneous image processing system. Therefore we
created the image processing DSL called IPOL with the underlying mapping methodol-
ogy called IPAS.

3 The Example Application

This section introduces the test application used as an example, in order to illustrate the
synthesis concept. The image processing application is a circle centroid detection, im-
plemented by the Sobel-Bresenham algorithm. This kind of application is often used in
the industry automation field for marker and position detection. In non-industrial fields
it can be used as object detection for sport events, eye-tracking or automated landing of
drones. The Sobel-Bresenham centroid detection algorithm covers the following process-
ing scheme for detecting the centroid point of a circle. The first stage is a Sobel edge
detection algorithm used for shape detection of the circle which is done by detecting the
edge points. Coherent edge points are forming the circle’s shape. The second result of
the Sobel algorithm is the gradient’s direction for each edge point. An illustration of the
algorithm is shown in Figure 1.

Fig. 1: The algorithm from left to right: Input image, Canny with gradient direction, Bresenham with
the search path in gradient direction

The left Figure shows the input image, the central part shows the result of the Sobel edge
detector. The pointer in the central Figure is the gradient direction exemplary for one edge
point position. The result of the edge detector is always the edge point with its gradient
direction. The Sobel algorithm is followed by the Bresenham algorithm and starts the
processing for each detected edge point in the direction of the gradient. By touching every
pixel in gradient direction a counter at each pixel recognizes the total number of touches.
The pixel with the highest counter value represents the centroid point. This is shown in
Figure 1 on the right. Exemplary eight edge points are used for determining the centroid
point colored in light green. The advantage of this algorithm is the flexibility in different
circle sizes. The algorithm can work with every circle size.

4 Structure of IPOL and the Mapping Methodology of IPAS

The last section introduced the image processing application. This section shows how such
image processing applications can be described in the IPOL DSL. The image processing

operator language (IPOL) is used as formal description language with its structure and the
synthesis design flow called image processing architecture synthesis (IPAS), [HHRF16].
IPOL is an XML-based meta-language for image processing applications. Every image
processing application follows a standard processing scheme - (1) data acquisition, (2)
local preprocessing, (3) global post processing and at the end a (4) data sink for display or
storage. These parts are distributed in several so-called image processing operators. Image
processing operators can be image processing algorithms such as Sobel, Canny, Hough
transformation etc. or hardware elements such as image sensors for the data acquisition and
monitors for the data representation. Numerous image processing operators combine to an
operator chain is called image processing pipeline. All these elements can be described by
IPOL.

An example pipeline comprising the Sobel-Bresenham application is shown in Figure 2.
Active elements such as operators are described inside the image operators tag. Opera-
tors of an image processing application can be described in two ways. For well-known
operators such as the Sobel and the Bresenham, predefined mapping modules are provided
by a library inside the IPAS framework. They can be addressed by using the name in the
op object name part e.g. < op ob ject name =′′ Sobel′′ >. The communication between
the image processing operators is managed in the connection part.

In the part system parameters the requirements of the image processing application are
defined. Application-specific test cases can be created in the system testcase part. A re-
alistic test environment will be formed by using the system testcase. The synthesis part
at the end of Figure 2 is a reserved place for the results produced by the mathematical,
simulation and implementation layer. These layers will be introduced in a later section. In
the following a more detailed description of the elements inside the image operators and
chain parts will be given.
image operator are members of the image processing application such as sensors, mon-

itors or implementations of image processing algorithms.

type operator types differ between Sensor, Monitor and Operator.

op class image processing algorithms are distributed in classes for example the Sobel,
Canny, LoG and Roberts are all edge detectors. This information can be used for
comparing the members of an op class and find the best solution for the application.

op object The name of the image processing operator, it will be used for referencing
the (predefined) implementation. It also contains the definitions of input and output
ports and parameters for the implementation. The parameters can influence the shape
of the image processing operator (e.g. for local operators the mask size).

connect describes the communication between the image processing operators. The pa-
rameters op out refer to the sending operator, op in to the receiving operator. Multi-
ple ports of each operator can be defined by using port out and port in with different
ports for the same operator.

When reading the introduction about IPOL and how to describe an image processing ap-
plication in IPOL, you may think about the need of learning such an uncomfortable XML

<i p o l>
<s y s t e m p a r a m e t e r s>

<a c c u r a c y v a l =”20” u n i t =” db”>
<power consumpt ion v a l =”10” u n i t =”W” />
<i m a g e s i z e pwid th =”1920” p h e i g h t =”1080”/>

</ s y s t e m p a r a m e t e r s>

<s y s t e m t e s t c a s e>
<o b j e c t e q u a t i o n>y=5*x+4</ o b j e c t e q u a t i o n>
<domain v a r =”x ” lower =”100” upper =”500”/>

</ s y s t e m t e s t c a s e>
. . .

<i m a g e o p e r a t o r i d =”1”>
<type>Opera to r </type>
<o p c l a s s>Edge</o p c l a s s>
<o p o b j e c t name=” Sobe l”>

<g e n e r i c>
<mask>3x3<mask>

</g e n e r i c>
<p o r t s>

<p name=” edge ” wid th =”1” d i r e c t i o n =” o u t ”/>
<p name=” dx ” wid th =”32” d i r e c t i o n =” o u t ”/>
<p name=” dy ” wid th =”32” d i r e c t i o n =” o u t ”/>

</p o r t s>
</o p o b j e c t>

</ i m a g e o p e r a t o r>

<i m a g e o p e r a t o r i d =”2”>
<type>Opera to r </type>
<o p c l a s s></o p c l a s s>
<o p o b j e c t name=” Bresenham”>

<g e n e r i c>
<s t e p l e n g t h>50<s t e p l e n g t h>

</g e n e r i c>
<p o r t s>

<p name=” edge ” wid th =”1” d i r e c t i o n =” i n ”/>
<p name=” dx ” wid th =”32” d i r e c t i o n =” i n ”/>
<p name=” dy ” wid th =”32” d i r e c t i o n =” i n ”/>

</p o r t s>
</o p o b j e c t>

</ i m a g e o p e r a t o r>
. . .

<cha in>
<c o n n e c t o p o u t =”0” o p i n =”1” p o r t o u t =”0” p o r t i n =”0”/>
<c o n n e c t o p o u t =”1” o p i n =”2” p o r t o u t =” edge ” p o r t i n =” edge”/>
<c o n n e c t o p o u t =”1” o p i n =”2” p o r t o u t =” dx ” p o r t i n =” dx”/>
<c o n n e c t o p o u t =”1” o p i n =”2” p o r t o u t =” dy ” p o r t i n =” dy”/>
<c o n n e c t o p o u t =”2” o p i n =”3” p o r t o u t =”0” p o r t i n =”0”/>

</cha in>

<s y n t h e s i s>
. . .

</ s y n t h e s i s>
</ i p o l>

Fig. 2: Example of an operator chain in the IPOL

based language. The answer is very simple, you don’t have. IPOL was developed to sim-
plify the design process of image processing applications by using high level modeling
methods such as SysML, [CLY+15]. The advantage of using an XML-based language
is that most modeling tools have an XML-based representation of their UML or SysML
diagrams. This representation can easily be transferred in an IPOL-conform language.

4.1 The IPOL Instruction Set

This subsection introduces a methodology for creating custom image processing operators.
It shows the instruction set for custom operators in the IPOL language and their utilization.
The definition of new custom operators can be done in the image operator class part of the
IPOL language and can be referenced from the image operator by using the same operator

name. Figure 3 shows the definition of a Sobel operator with a 3×3 convolution mask and
derivation in x- direction by using the instruction set for custom operators.

<i m a g e o p e r a t o r c l a s s>
<name>Sobel</name>
<c l a s s>Edge</o p c l a s s>
<g e n e r i c>

<mask>3x3<mask>
</g e n e r i c>
<o p d e s c r i p t i o n>

<![CDATA[
SET a d d r e s s s t a r t a d d r e s s
ADD a d d r e s s 1 a d d r e s s wid th
ADD a d d r e s s 2 a d d r e s s 1 wid th
ADD a d d r e s s 3 a d d r e s s 2 wid th
ADD a d d r e s s 4 a d d r e s s 3 wid th
ADD a d d r e s s 5 a d d r e s s 4 wid th

LOAD p1 p o r t i n a d d r e s s # I (x +0 , y +0)
LOAD p2 p o r t i n a d d r e s s 1 # I (x +0 , y +1)
LOAD p3 p o r t i n a d d r e s s 2 # I (x +0 , y +2)
LOAD p4 p o r t i n a d d r e s s 3 # I (x +2 , y +0)
LOAD p5 p o r t i n a d d r e s s 4 # I (x +2 , y +1)
LOAD p6 p o r t i n a d d r e s s 5 # I (x +2 , y +2)

ADD x1 p1 p2
ADD x1 x1 p3
SUB x1 x1 p4
SUB x1 x1 p5
SUB x1 x1 p6

STORE x1 a d d r e s s
]]>

</ o p d e s c r i p t i o n>
</ i m a g e o p e r a t o r c l a s s>

Fig. 3: IPOL custom code for image processing algorithms

The custom code has a similar structure to common assembler code. Its compiler is part of
the IPAS framework. For custom code following instructions are supported by the IPOL
language: LOAD, STORE, SET, ADD, SUB, MUL, DIV, POW, SIN, COS, IF. With this
instruction set a custom design for small image processing operators or an extension of ex-
isting image processing operators can be done. It makes the design process more flexible
and constrained in a wider manner. An image processing application can use more algo-
rithms than just well-known algorithms predefined in the libraries of the IPAS framework.

4.2 The IPAS Synthesis

Using the IPOL language for describing an image processing application, predefined or
custom-created algorithms can be used. These two ways are already introduced in the last
subsection. For mapping an image processing application described in IPOL on a hetero-
geneous hardware architecture a methodology is necessary. Hence a synthesis design flow
called IPAS [HHRF16] will be introduced in this subsection. IPAS stands for Image Pro-
cessing Architecture Synthesis. The IPAS framework consisting of four layers at different
abstraction levels which are: the application layer, the mathematical layer, the simula-
tion layer and the implementation layer. Figure 4 illustrates the top-down design synthesis
process of the IPAS framework by using the IPOL language as input and output of ev-
ery layer. IPOL can be seen as a kind of interface between the layers. Every layer stores
its synthesis results in the IPOL. As shown in Figure 4 IPAS uses different languages at
the layers. The application layer uses SysML and XML, the mathematical layer describes
the applications by using Wolfram Mathematica, the simulation layer takes the languages

Algorithm1

SystemC HW

Algorithm2

SystemC HW

Channel
Sensor

SystemC HW

Channel

Sensor
Algorithm1

Channel
Display

SystemC HW

Algorithm2

Area: Power consumption: Processing Time: Accuracy:

Area: Power consumption: Processing Time: Accuracy:

Area: Power consumption: Processing Time: Accuracy:

Area: Power consumption: Processing Time: Accuracy:

Formal Description

UML

Algorithm1

Algorithm2

A
p
p
lic

a
ti

o
n

La
y
e
r

M
a
th

e
m

a
ti

ca
l

La
y
e
r

S
im

u
la

ti
o
n
 L

a
y
e
r

Im
p
le

m
e
n
ta

ti
o
n

 L
a
y
e
r

Formal
Texform

Σα ζΔ βπ λ

Im
a
g

e
 P

ro
ce

ss
in

g
 O

p
e
ra

to
r

La
n

g
u
a
g

e
 (

IP
O

L) S
y
sM

L,
X

M
L

W
o
lf
ra

m
M

a
th

e
m

a
ti

ca
S
y
st

e
m

C
,C

/C
+

+
V

H
D

L,
C

/C
+

+
C

u
d
a
,

S
P
IC

E
La

n
g
u
a
g
e
s

Fig. 4: IPAS: Holistic top-down design flow for image processing [HHRF16]

SystemC and C/C++ and the implementation layer uses VHDL, Verilog, C/C++, Cuda and
SPICE. With the IPOL description we are able to describe an image processing application
in one language which is the IPOL an XML-based DSL. A XML parser [Xer17] is used
to detect IPOL syntax inside a XML description. The XML parser is coupled to a XSD
and XSLT scheme to read/write information out/in the IPOL file. In further steps the IPAS
framework uses uses compilation rules written in XSLT to transform IPOL code to C/C++,
Cuda, Mathematica or a VHDL description. XSLT is used for compiling IPOL described
applications to a layer-specific code. For the transformation of the IPOL code in executable
code a predefined subset of compiling rules must exist. Figure 5 shows the methodology
of the image processing transformation. In Figure 5 a custom defined-operator written in
IPOL will be transfered to Wolfram Mathematica and C code. In this case the executable
code can be used in the mathematical and simulation layer. Rules for other instructions
or well-known image processing operators will be transferred by using the same princi-
ple. The transformation rules of IPOL to result in an executable code is the first part of the
IPAS synthesis. The second part of the IPAS synthesis is the evaluation of the layer results.

Before a layer uses the transformation for generating executable code the synthesis results
of the upper layer will be evaluated for making design decisions. The IPAS layers will be
executed in the following order, the mathematical layer, simulation layer and implementa-
tion layer. That means the simulation layer evaluates the results of the mathematical layer
before executable code will be created from the implementation layer.

ADD x1 x1 p1

SUB x2 x1 p1

ADD x2 30 p1

<xsl:result-document href="{$pDest}operator{position()}.m"
 <!--Parsing of every ADD instruction-->
 <xsl:analyze-string select="." regex="(ADD|add) ([a-zA-Z0-9]+)
 ([a-zA-Z0-9]+) ([a-zA-Z0-9]+).*\n" flags="m">
 <xsl:matching-substring>
 <!--For Mathematica-->
 <xsl:value-of select="(regex-group(2),'=',regex-group(3),
 '+',regex-group(4))"/>
 <xsl:text>
</xsl:text>
 </xsl:matching-substring>
 </xsl:analyze-string>

 <!--Parsing of every SUB instruction-->
 <xsl:analyze-string select="." regex="(ADD|add) ([a-zA-Z0-9]+)
 ([a-zA-Z0-9]+) ([a-zA-Z0-9]+).*\n" flags="m">
 <xsl:matching-substring>
 <!--For Mathematica-->
 <xsl:value-of select="(regex-group(2),'=',regex-group(3),
 '-',regex-group(4))"/>
 <xsl:text>
</xsl:text>
 </xsl:matching-substring>
 </xsl:analyze-string>

<xsl:result-document href="{$pDest}operator{position()}.c"
 <!--Parsing of every ADD instruction-->
 <xsl:analyze-string select="." regex="(ADD|add) ([a-zA-Z0-9]+)
 ([a-zA-Z0-9]+) ([a-zA-Z0-9]+).*\n" flags="m">
 <xsl:matching-substring>
 <!--For C-->
 <xsl:value-of select="(regex-group(2),'=',regex-group(3),
 '+',regex-group(4))",';'/>
 <xsl:text>
</xsl:text>
 </xsl:matching-substring>
 </xsl:analyze-string>

 <!--Parsing of every SUB instruction-->
 <xsl:analyze-string select="." regex="(SUB|sub) ([a-zA-Z0-9]+)
 ([a-zA-Z0-9]+) ([a-zA-Z0-9]+).*\n" flags="m">
 <xsl:matching-substring>
 <!--For C-->
 <xsl:value-of select="(regex-group(2),'=',regex-group(3),
 '-',regex-group(4)),';'"/>
 <xsl:text>
</xsl:text>
 </xsl:matching-substring>
 </xsl:analyze-string>

operatorn.m

operatorn.c

x1 = x1 + p1
x2 = 30 + p1
x2 = x1 - p1

x1 = x1 + p1;
x2 = 30 + p1;
x2 = x1 - p1;

Rule ADD for Mathematica

Rule ADD for C

Rule SUB for C

Rule SUB for Mathematica

IPOL XSLT Rules Executeable Code

Fig. 5: IPAS: transformation rules

5 Results

For an executable system a hardware implementation is necessary. Therefore, the imple-
mentation layer of the IPAS framework is responsible. Specialized hardware such as the
Generic-IP-Library which is a generic VHDL implementation of kernel based processing
are included. This set is useful for supporting a broad pallet of specialized and efficient
hardware components. Also back ends for standard processing units such as an ARM
Cortex A9, Intel Core I7 and Kepler K1 are part of the implementation layer and can
be addressed by using the IPOL. This section introduces the implementation layer by an
example image processing application. The example application is the Sobel-Bresenham
application which was already introduced in Section 3. The test input is shown in Figure
6.

The following shows the parameter set for the experiment: Algorithm: Bresenham; Image
size: 1280×720; Pixel width: 24 bit; Sobel Mask: 3×3

First we start with mapping the preprocessing operator and stepping through the whole
application by mapping every part of the application on different hardware components.

Fig. 6: Sobel-Bresenham test image. Input on the left and output on the right side

We will measure the power consumption and pixel delay. The pixel delay is the processing
time which is needed by the architecture for one single pixel.

5.1 Generic-IP-Library (FPGA back-end)

A low power preprocessing hardware back-end of the IPAS is the IP-Library. The IP-
Library is a generic VHDL library for local preprocessing algorithms on FPGAs. Stencil
codes are implemented according to the full buffering scheme [SRF12] in order to avoid
time-consuming external memory accesses. From the Sobel-Bresenham application, only
the Sobel operator is implemented and tested by the Generic-IP-Library. For designing
a filter with the Generic-IP-Library, predefined and generic blocks of the VHDL library
will be instanced and connected. The blocks are scalable in functional parameters and
can be recycled for similar filters. Sobel, Canny, Gaussian blur and LoG are all using a
convolution mask. This convolution mask is a generic block included in the IP-Library and
can be accessed by using the IPOL language. For the experimental results the Sobel edge
detector implemented by the Generic-IP-Library was tested on the Zynq7020 platform.
The results are listed in the following table.

Architecture Custom Digital Design (Zynq7020)
Power Consumption 1.5 W

Pixel delay 1.8 ns

Compared to standard PCs, the power consumption of the IP-Library is very low. The
Generic-IP-Library can be used on FPGAs and does not need a realization in silicon.

5.2 ARM Processing

Image processing applications can include more than preprocessing algorithms. In this
Subsection a hardware back-end which supports a higher range of algorithms will be in-
troduced. In the IPAS implementation layer a back-end for embedded CPUs was created; it
supports the series of ARM Cortex cores. For our tests we chose the ARM Cortex A9. All
parts of the image processing pipeline except the sensor are supported by the ARM core.

The main difference between the ARM architecture and the libraries as mentioned before
is the memory hierarchy. The IP library supports stencil-code based processing because
of the limited amount of on-chip-memory. The ARM architecture uses a L1 and L2 cache
and thus brings a better performance on random memory access. In that case the ARM
Cortex A9 is able to support global image processing algorithms.

Architecture ARM Cortex A9
Power Consumption 4 W

Pixel delay 11.5 µs

With its low power consumption and small size the ARM Cortex A9 can be found in the
embedded systems field and in mobile devices. The result show a high delay for one pixel
and a moderate power consumption.

5.3 Embedded GPU Tegra K1

The second general processing platform architecture which is supported by the IPAS im-
plementation layer is the Tegra K1 GPU. The Tegra K1 is a Nvidia SoC with 192 Kepler
Cores and 2 GB RAM. With its low power and area consumption the Tegra K1 can be
used in the embedded field. In contrast to the ARM architecture the Kepler architecture
does not have a single powerful processor core. It has many small cores which are suitable
for parallel processing. Such as the ARM core the Tegra K1 supports the same parts of the
application. For the example application the Tegra K1 has the following results.

Architecture Kepler K1
Power Consumption 12 W

Pixel delay 48 ns

The low volume, power consumption and the low processing time of the Tegra K1 makes
an effort in the embedded field possible.

6 Conclusion

In this paper we introduced a novel DSL for image processing applications. The tests show
the necessity of supporting heterogeneous systems. All of the introduced components are
not able to provide a suitable solution for the whole application on its own. A combination
of the components is needed. That leads to a heterogeneous system which is supported by
the IPOL DSL combined with the IPAS framework. In contrast to most frameworks and
DSLs in that field, IPOL does not support just stencil-code based algorithms; also global
processing algorithms can be described by using known predefined algorithms from the
library or own custom designed algorithms. Thus, the IPOL language is not strictly limited.
It means all algorithms of the image processing domain can be supported. The underlying
methodology called IPAS makes a mapping on different hardware components and the
creation of a heterogeneous system feasible. The usage of the IPOL language and IPAS
framework lowers the project effort with heterogeneous systems and provides efficient
solutions in an easier way.

References
[CDAC13] H. Chenini, J. P. Derutin, R. Aufrere, and Roland Chapuis. Parallel embedded processor

architecture for FPGA-based image processing using parallel software skeletons. pages
1 – 23, 2013.

[CLY+15] C. Chang, C. Lu, W. P. Yang, W. C. Chu, C. Yang, and P. Hsiung. A SysML Based
Requirement Modeling Automatic Transformation Approach. In Computer Software
and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th International,
pages 474 – 479, Vasteras, Sweden, 2015. IEE.

[HBD+14] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelly, N. Cohen, S. Bell, A. Vasilyev,
M. Horowitz, and P. Hanrahan. Darkroom: Compiling High-Level Image Processing
Code into Hardware Pipelines. Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2014, pages 144:1 – 144:11, 2014.

[HHRF16] C. Hartmann, K. Häublein, M. Reichenbach, and D. Fey. IPAS: a design framework for
analysis, synthesis and optimization of image processing applications for heterogenous
computing architectures. Journal of Real-Time Image Processing, pages 1–16, 2016.

[HLS17] Xilinx Vivado HLS. {http://www.xilinx.com/products/design-tools/
vivado.html}, Url = http://www.xilinx.com/products/design-tools/vivado.html,
Timestamp = 2016.02.24, 2017.

[HQ11] Z. Huijuan and H. Qiong. Fast image matching based-on improved SURF algorithm.
In Electronics, Communication and Control, pages 1460 – 1463, Ningbo, China, 2011.
IEEE.

[KA95] D. J. Kerbyson and T. J. Atherton. Circle Detection Using Hough Transform Filters.
In Image Processing and its Applications, pages 370 – 374, Edinburgh, Scotland, 1995.
IEEE.

[PDH+14] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J-F. Nezan, and S. Aridhi. Preesm: A dataflow-
based rapid prototyping framework for simplifying multicore DSP programming. In
European Embedded Design in Education and Research Conference, pages 30 – 40,
Milano, Italy, 2014. IEEE.

[RHR+15] O. Reiche, K. Häublein, M. Reichenbach, F. Hannig, J. Teich, and D. Fey. Automatic
Optimization of Hardware Accelerators for Image Processing. In Heterogeneous Archi-
tectures and Design Methods for Embedded Image Systems (HIS 2015), pages 10 – 15,
Grenoble, France, 2015. arXiv.

[SRF12] M. Schmidt, M. Reichenbach, and D. Fey. A Generic VHDL Template for
2D Stencil Code Applications on FPGAs. In International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops
(ISORCW), pages 180 – 187, Shenzen, China, 2012. IEEE.

[Str17] Streamit. http://groups.csail.mit.edu/cag/streamit, 2017.

[Xer17] Xerces. https://xerces.apache.org/xerces-c, 2017.

