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Abstract: Recent trends in information extraction have allowed us to not only extract
large semantic knowledge bases from structured or loosely structured Web sources,
but to also extract additional annotations along with the RDF facts these knowledge
bases contain. Among the most important types of annotations are spatial and tem-
poral annotations. In particular the latter temporal annotations help us to reflect that
a majority of facts is not static but highly ephemeral in the real world, i.e., facts are
valid for only a limited amount of time, or multiple facts stand in temporal dependen-
cies with each other. In this paper, we present a declarative reasoning framework to
express and process temporal consistency constraints and queries via first-order logi-
cal predicates. We define a subclass of first-order constraints with temporal predicates
for which the knowledge base is guaranteed to be satisfiable. Moreover, we devise ef-
ficient grounding and approximation algorithms for this class of first order constraints,
which can be solved within our framework. Specifically, we reduce the problem of
finding a consistent subset of time-annotated facts to a scheduling problem and give
an approximation algorithm for it. Experiments over a large temporal knowledge base
(T-YAGO) demonstrate the scalability and excellent approximation performance of
our framework.

1 Introduction

Despite the great advances of Web-based information extraction (IE) techniques in recent

years, the resulting knowledge bases still face a significant amount of noisy and even in-

consistent facts. These knowledge bases are typically captured as RDF facts, with some

of the most prominent representatives being DBpedia, FreeBase, and YAGO. The very

nature of the largely automated extraction techniques that these projects employ however

entails that the resulting RDF knowledge bases may face a significant amount of incorrect,

incomplete, or even inconsistent factual knowledge (which is often summarized under the

term uncertain data). A knowledge base becomes inconsistent only through the presence

of additional consistency constraints, which are typically provided by a human knowledge

engineer according to some real-world-based domain model. In general, we call a knowl-

edge base inconsistent if not all these provided consistency constraints are satisfied with
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respect to the facts captured by the knowledge base. Resolving these inconsistencies thus

requires some form of consistency reasoning, for example, by selecting a consistent sub-

set of the facts contained in the knowledge base, and by considering only this subset for

answering queries.

By default, we assume facts in the knowledge base to be true, and (implicitly) all facts not

contained in the knowledge base to be false, an approach generally known as closed-world

assumption. Consistency constraints may however put two or more facts in the knowledge

base into conflict with each other, thus rendering the knowledge base inconsistent (i.e., un-

satisfiable) under the assumption that all facts contained in it are true. For example, an ex-

tractor might erroneously extract two different birth places of David Beckham, expressed

as the two RDF facts bornIn(David Beckham, Leytonstone) and bornIn(David Beckham,

Old Trafford) in our knowledge base. Without an explicit constraint, which puts these two

facts into conflict with each other, there is no formal inconsistency in a knowledge base

containing these two facts. Therefore, queries asking for the birth place of David Beckham

would return both answers. With an explicit (first-order) logical consistency constraint of

the form
∀x, y, z bornIn(x, y) ∧ bornIn(x, z) → y = z

however, we can express that only one of the two above facts may be true in the real world.

Hence, the reasoner (ideally at query-time) could decide which of the two facts to return

as answer. Moreover, multiple of these constraints may overlap, such that the truth value

of a fact may depend on multiple constraints. In turn, the constraints may put multiple,

partially overlapping (sub-)sets of facts contained in the knowledge base into conflict with

each other. Generally, Boolean reasoning within this family of SAT problems is NP-hard,

and for general first-order formulas the constraints may not be satisfiable at all. In other

words, there may exist no truth assignment to facts (even regardless of the actual facts) in

the knowledge base such that all constraints are satisfied.

Temporal annotations add another dimension of complexity to reasoning with RDF facts.

With temporal annotations, we can not only express general constraints among facts but

also add a finer granularity to the consistency reasoning itself. Only with time information,

we can, for example, express that a person should only be married to at most one other

person at a time, that a soccer player can play for only one club at a time, or that a person

had to be married to another person before they got divorced, and so on. Even when using

simple time intervals for the representation of temporal annotations with such disjointness

and precedence constraints, the satisfiability problem is known to be NP-hard [GS93].

Thus, our goal in this work is to identify a canonical set of first-order constraints, for which

we know that they are satisfiable over a given knowledge base, and to provide an efficient

framework for resolving temporal conflicts directly at query-time.

1.1 Contributions

The contributions of the work presented in this paper are three-fold:

• Declarative reasoning framework for consistency constraints and queries. We fo-

cus on temporal consistency reasoning over large, uncertain, and potentially incon-
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sistent knowledge bases. Our constraints are expressed as first-order logical Horn

formulas with temporal predicates, a setting which leaves the satisfiability problem

NP-hard1, and which may result in unsatisfiable constraints. We thus define a sub-

class of Horn constraints with temporal predicates whose satisfiability is guaranteed,

and which we can solve efficiently in terms of both grounding the first-order formulas

and resolving conflicts among the grounded facts (Section 3.1). Both constraints and

queries can be specified by the user in a fully declarative way.

• Efficient Approximation Algorithm. We develop a linear-time algorithm for check-

ing whether a general set of first-order constraints is included in our previously defined

solvable subclass of constraints (Section 3.1). Moreover, we introduce a grounding

procedure whose running time linearly depends both on the constraints and the number

of query-matches contained in the knowledge base (Section 3.2). Finally, we present

a procedure for efficiently and effectively resolving temporal conflicts among facts

contained in the knowledge base (Section 3.2), which remains an NP-hard problem

also for our class of constraints, and for which we devise an efficient approximation

algorithm (based on results from event scheduling) for solving these conflicts.

• System and Experiments. We experimentally evaluate our system over the T-YAGO

[WZQ+10] knowledge base, consisting of 270,000 temporal facts, and handcrafted

consistency constraints (Section 4). Our evaluation shows that the system scales very

well and at the same time features excellent performance in terms of approximation

quality.

The remainder of this paper is organized as follows. In Section 2, we provide a formal

definition of our data model and the first-order constraints. In Section 3, we define the

subclass of constraints we tackle, and we discuss offline and online computations required

to solve these constraints over a set of given base facts (the knowledge base). Our exper-

imental results are shown in Section 4. Continuing with related work in Section 5, we

conclude our work in Section 6.

2 Data Model, Constraints, and Problem Statement

2.1 Data and Representation Model

Uncertain Temporal Knowledge Base. We define a knowledge base KB = 〈F , C〉
as a pair consisting of a set of (weighted and temporal) facts F and a set of first-order

(temporal) consistency constraints C (the latter are discussed in Section 2.2). To encode

facts, we employ the widely used Resource Description Format (RDF), in which facts

F ⊆ Rel × Entities × Entities are stored as triples consisting of a relation and a pair of

entities. Moreover, we extend the original RDF triplet structure in two ways: first, to ex-

press uncertainty about a fact’s correctness, we associate a positive, real-valued confidence

weight w(f) with each fact f ∈ F (denoted by the function w : F → R
+); and second,

to include time information into our knowledge base, we also assign a time interval of the

form [tb, te) to each fact f . The weights w(f) can be interpreted as the confidence for the

1The satisfiability problem of propositional Horn-SAT is in P , whereas first-order Horn-SAT (with variables

being all-quantified) is NP-hard.
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fact being true, where a higher value denotes a higher confidence, while the time interval

[tb, te) specifies the begin time tb and end time te during which the fact may be valid, i.e.,

during which it may be true. Outside their validity intervals, facts are assumed to be false.

Time intervals, as well as temporal predicates for logical reasoning with these intervals,

are defined more formally in the next subsection.

Time Intervals and Temporal Predicates. In our setting, the set of time intervals T ⊆
N0 × N0 is composed of all possible (half-open) time intervals of the kind [tb, te) with

tb < te. For presentation purposes, we will denote intervals as if they range over years, like

the interval [1990, 2010) which starts in 1990 and ends in 2009. Our reasoning framework

however supports arbitrary continuous intervals over real numbers.

The set of relations is Rel = RelE ∪̇ RelA is split into a set of extensional relations

RelE (like, e.g., bornIn or graduatedFrom), which are captured purely by facts stored in

the knowledge base, and a set of arithmetic relations RelA (e.g., equal “=”, or notEqual

“6=”), which are evaluated by the reasoner “on demand” based on their arguments (i.e., all

their arguments become constants when the formulas are grounded).

In addition to the common arithmetic predicates for expressing the equality and inequality

of two arguments, we deploy temporal predicates RelT ⊆ RelA as a subset of the arith-

metic predicates we consider in our reasoning framework. Temporal predicates enable us

to reason about the temporal relationships among facts based on their time intervals. For

example, we say that two time intervals overlap if they share a common time interval;

otherwise they are disjoint. Further, a time interval [tb1 , te1
) is before another interval

[tb2 , te2
) if te1

≤ tb2 , which also implies that they are disjoint (see, for example, seminal

work by Allen et al. [All83] for an overview of temporal relations among intervals).

Example 1. Besides the first line expressing that David Beckham was born in Leytonstone

in 1975 with weight 9.0, Figure 1 contains four additional facts related to him.

fbornBL := bornIn(David Beckham,Leytonstone, [1975, 1976))9.0

fbornBOT := bornIn(David Beckham,Old Trafford , [1999, 2000))2.0

fplaysBMU := playsForClub(David Beckham,Manchester United , [1993, 2004))8.0

fplaysBB := playsForClub(David Beckham, 1 .FC Barcelona, [1999, 2001))6.0

fplaysBE := playsForNational(David Beckham,England National Team, [1992, 2011))1.0

Figure 1: The content of F in our running example.

2.2 Constraints and Queries

Consistency Constraints. A consistency constraint in our reasoning framework is a first-

order logical Horn formula with exactly two extensional predicates relE1
, relE2

∈ RelE ,

an optional arithmetic (but non-temporal) predicate relA ∈ RelA\RelT in the body, and

exactly one temporal predicate relT ∈ RelT ∪ {false} as head literal. Constraint (1)

denotes the general template of consistency constraints we consider in the following.

relE1
(e1, e2, t1) ∧ relE2

(e1, e3, t2) ∧ relA(e2, e3) → relT (t1, t2) (1)
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All occurring variables, where e1, e2, e3 represent entities and t1, t2 stand for time in-

tervals, are implicitly universally quantified. We require relE1
and relE2

to share e1 as

their first argument, and the optional arithmetic predicate relA must hold the remaining

variables e2 and e3 as its arguments.

Queries. As opposed to constraints, queries are conjunctions of extensional predicates,

where all variables are implicitly existentially quantified. For example, the query

playsForClub(David Beckham, club) (2)

may be imposed by a user to ask: “Which clubs did David Beckham play for?”

2.3 Reasoning Framework and Semantics

When we instantiate (i.e., ground) the literals in the first-order consistency constraints C
and replace them by facts, we obtain propositional formulas. Then the facts represent

propositional literals, which can be either set to true or false by the reasoner. Arithmetic

predicates with constants are immutable in a propositional sense, i.e., they are always ei-

ther true or false, depending on the constants and the semantics of the predicate. For

example, the two entities Beckham and Ronaldo are never equal under the Unique Name

Assumption of the underlying RDF data model, and the two time intervals [1999, 2003)
and [2004, 2006) can never overlap. Thus, in each grounded instance of a constraint, only

the two literals with extensional predicates become actual Boolean variables and can be as-

signed a truth value by the reasoner. According to the structure of the constraints described

above, two facts are in conflict with each other if they are contained in a propositional in-

stance of a constraint whose (temporal) head literal is false, which implies that the entire

constraint evaluates to false given that both facts are true. Hence, in order to resolve such

an inconsistency, we have to set at least one of the extensional facts to false.

2.4 Constraint Types

Depending on the choice of the constraints, the combinatorial complexity of resolving

conflicts is varying, making it crucial to decide which constraints we allow to be formu-

lated. In the following, we consider three kinds of constraints, which handle a significant

number of possible scenarios:

• Temporal disjointness • Temporal precedence • Mutual exclusion

Disjointness. To express that the intervals of any two facts from the same extensional

relation relE (e.g., playsForClub) are non-overlapping, we utilize the following template

to express disjointness constraints.

relE(e1, e2, t1) ∧ relE(e1, e3, t2) ∧ e2 6= e3 → disjoint(t1, t2) (3)

Example 2. We express that a player can only play for one club at a time by replacing

relE in (3) by playsForClub:

playsForClub(e1, e2, t1) ∧ playsForClub(e1, e3, t2) ∧ e2 6= e3 → disjoint(t1, t2) (4)
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The facts fplaysBMU , fplaysBB are in conflict with respect to (4), as their time intervals

[1993, 2004), [1999, 2001) share a time interval, which makes them non-disjoint.

Precedence. Restricting that the time interval of an instance of relE1
ends before the

interval of a fact with relE2
starts is reflected by the following template for precedence

constraints.

relE1
(e1, e2, t1) ∧ relE2

(e1, e3, t2) → before(t1, t2) (5)

We note that in both other constraints (see Equations (3) and (7)), there is only one exten-

sional relation. Here there are two, namely relE1
and relE2

.

Example 3. A very natural constraint in the sports domain is that the birth date of a person

should precede the participation in a sports club.

bornIn(e1, e2, t1) ∧ playsForClub(e1, e3, t2) → before(t1, t2) (6)

Now, neither fplaysBMU nor fplaysBB are in conflict with fbornBL with respect to the

constraint in (6), because [1975, 1976) ends before both [1993, 2004) and [1999, 2001)
start. The situation is different for fbornBOT , having the interval [1999, 2000) and hence

being in conflict with fplaysBMU , fplaysBB under our precedence constraint (6).

Mutual Exclusion. Mutual exclusion, as the last type of constraints we consider, defines

a set of facts which are all in conflict with each other, regardless of time. In general, a

relation relE with a differing argument must not occur as expressed by the template:

relE(e1, e2, t1) ∧ relE(e1, e3, t2) ∧ e2 6= e3 → false (7)

Example 4. Another very natural constraint in the domain of people is that a person cannot

be born in multiple places.

bornIn(e1, e2, t1) ∧ bornIn(e1, e3, t2) ∧ e2 6= e3 → false (8)

In our example, the two facts fbornBL and fbornBOT are in conflict with respect to (8).

2.5 Problem Statement

Assumptions. Our approach is based on two assumptions. First, the cardinality of F can

be huge. Second, the knowledge base may be evolving as new facts are extracted, i.e.,

the set of facts F might be updated as the extraction process proceeds, or the constraints

C might be changing if we learn new relation types. Thus, enforcing consistency of the

entire knowledge base might be both very expensive and abrasive with respect to changing

constraints, which we aim to avoid by resolving conflicts between facts dynamically at

query-time.

Problem Definition. Given a knowledge base KB = 〈F , C〉, with weighted temporal facts

F , temporal consistency constraints C and a query Q, we define FQ ⊆ F as the closure of

all facts which are in conflict to a fact that matches Q.

Next, our goal is to resolve the conflicts by selecting a consistent subset of facts FQ,C ⊆
FQ. In general, there may be several consistent subsets with the same cardinality, so
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we extend our search by requiring that the sum of the weights of the consistent facts is

maximized, as it is expressed by the following optimization problem:

max
FQ,C⊆FQ

∑

f∈FQ,C

w(f)

with the constraints:

∀C ∈ C. Eval(C,FQ,C) ≡ true

Here, Eval is the logical evaluation of all instances of the formula C by setting all facts in

FQ,C to true and all facts in FQ\FQ,C to false.

Finally, we return the matches to Q within FQ,C as answers to the query.

Hardness. We show that the above problem contains the NP-hard Maximum Weight

Independent Set problem.

Imagine a general graph. We introduce one relation for each vertex and one precedence

constraint (5) for each edge, such that the constraint holds exactly the corresponding two

relations which are connected by the edge. Finally, we create one fact for each relation

while using always the same arguments, the same time-interval, and the weight of the

corresponding vertex. It follows that a solution to the above problem is a solution to the

Maximum Weight Independent Set problem, which is NP-hard.

3 Algorithm

The core of our framework is a scheduling algorithm which we employ to resolve con-

flicts between facts. In short, scheduling problems enclose a number of scheduling jobs

which should be assigned to time slots on a number of scheduling machines, such that the

machines do not exceed their capacities. In this section, we develop an algorithm which

maps each fact to a scheduling job and consistency constraints to scheduling machines,

such that a maximum-weight feasible schedule corresponds to a maximum-weight sub-

set of conflict-free facts. This section is structured in accordance to the general flow of

our framework as described in Algorithm 1. There are two phases, where the former deals

with precomputations (Section 3.1, corresponding to Lines 1–4) and the latter (Section 3.2,

corresponding to Lines 6–12) with computations at query-time.

As a first step, in Line 1 we translate the constraints C to an equivalent, more compact

representation as a constraint graph GC (Section 3.1.1), where vertices and edges cor-

respond to extensional relations and corresponding constraints, respectively. In Line 4,

we cover the constraint graph with a number of subgraphs called machine graphs GM

(Section 3.1.2). Each of the machine graphs represents a scheduling machine. Before-

hand, Algorithm 1 checks in Lines 2 and 3, whether such a covering with machine graphs

(scheduling machines) is possible and otherwise rejects the constraints.

Turning to the computations at query-time, in Line 6 (and more detailed in Section 3.2.1)

the constraint graph is leveraged to obtain the set of facts FQ comprising the matches

to the query together with their closure of conflicting facts. Then we strive to obtain the

consistent subset FQ,C ⊆ FQ in Line 12 to display the answer. Thereby, we exploit that the
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extensional predicates in a constraint share a variable (see Section 2.2), which enables us to

resolve the conflicts separately for each entity e ∈ FirstArg = {e | relE (e, e2, t) ∈ FQ}
which instantiates this variable. Hence, FQ,e = {f | f ∈ FQ, f = relE (e, e2, t)} denotes

the set facts, which are relevant to the query and which contain the entity e as their first

argument. In Line 10, we invoke the actual scheduling algorithm (Section 3.2.2) for each

of the subsets FQ,e passing the machine graphs (scheduling machines) GM as an additional

argument. It finally returns the set of query-relevant, consistent facts FQ,C,e with respect

to the entity e. The union of all sets FQ,C,e forms FQ,C , which is the set of consistent facts

which are relevant to the query Q.

Algorithm 1 Framework

Require: A knowledge base 〈F , C〉
Require: A set of queries Q

1: Construct GC from C ⊲ Section 3.1.1

2: if GC is not solvable then

3: return error

4: Construct the set of machine graphs GM from GC ⊲ Section 3.1.2

5: for all Q ∈ Q do

6: Ground Q to obtain the set FQ ⊆ F of relevant facts for Q ⊲ Section 3.2.1

7: FQ,C := ∅
8: for all e ∈ FirstArg := {e | relE (e, e2, t) ∈ FQ} do

9: FQ,e := {f | f ∈ FQ, f = relE (e, e2, t)}
10: FQ,C,e := RESOLVECONFLICTS(FQ,e,GM ) ⊲ Algorithm 2, Section 3.2.2

11: FQ,C := FQ,C ∪ FQ,C,e

12: Display matches of Q in FQ,C as answer

3.1 Precomputations

3.1.1 Constraint Graph

A constraint graph is an equivalent, more compact representation of the constraints C.

More formally, a constraint graph GC = (V,E) is a pair consisting of vertices V ⊆ Rel

and labeled edges E ⊆ Eu ∪ Ed . The set of edges E is in turn composed of undirected

edges Eu ⊆ V × V × {mutEx , disjoint} and directed edges Ed ⊆ V × V × {before}.

Thus, edges are triples consisting of two vertices (i.e., relations) that are connected by an

edge with a label representing the constraint type. We remark that our notion of constraint

graphs is inspired by the constraint graphs apparent in constraint satisfaction problems.

See, for example, [RNC+96] for an introduction.

To construct the constraint graph GC from a set of constraints C, we define a bijective

function c : C → E as follows (relation arguments are replaced by dots):

c (relE1
(.) ∧ relE2

(.) ∧ . 6= . → relT (.)) =







(relE1
, relE2

, relT )
if relT

.
= disjoint

or relT
.
= before

(relE1
, relE2

, mutEx) if relT = false

It is worthwhile to accentuate that constraint graphs are solely about constraints among
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relations. That is, GC represents a higher level of abstraction than considering temporal

conflicts among actual facts. It only needs to be precomputed once for a given set of

constraints C and can then be reused for processing an arbitrary amount of queries.

Example 5. If we apply the function c to the constraint in Formula (6), we receive the

triple (bornIn, playsForClub, before). In Figure 2(a), the triple is indicated by the edge

connecting the vertex named bornIn with playsForClub. Formulas (4) and (8) are shown

in Figure 2(a) as well, both depicted as self loops, since their two relations coincide.

(a) Constraint graph GC of our running example,

where each edge represents one of the constraints

depicted in Appendix A.

(b) The maximal machine

graph Gmax
M

, where n ∈ N,

n ≥ 4.

(c) The minimal set GM of common subgraphs of Gmax
M

(Figure 2(b)) and GC (Figure 2(a)) covering

all edges of GC .

Figure 2: Graphs expressing constraints.

Constraint graphs can describe any combination of pairwise temporal constraints among

relations, which might be unsatisfiable, so we focus on a subclass to be defined in the next

section.

Solvable Constraint Graphs. We call a constraint graph GC = (V,E) solvable if its

vertices can be partitioned in three sets V = Vbegin ∪̇Vmiddle ∪̇Vend . Every v ∈ Vbegin ∪
Vend must have exactly one loop labeled by mutEx, and every v ∈ Vmiddle can have a loop

labeled by disjoint . Furthermore, precedence edges can point from Vbegin to Vmiddle ∪
Vend and from Vmiddle to Vend .

Example 6. Figure 2(a) contains a solvable constraint graph, where Vbegin = {bornIn},

Vmiddle = {playsForNational , playsForClub, hasWonPrize}, and Vend = {diedIn}.

We note that solvable constraint graphs are satisfiable, as there are no cycles of precedence

constraints and each pair of facts can be constrained by at most one (precedence, disjoint-

ness, or mutual-exclusion) constraint, which is the reason for limiting (3) and (7) to one

extensional predicate only.

482



Computing Solvable Constraint Graphs. An implementation of Line 1 of Algorithm

1, which translates a set of constraints C to a constraint graph GC , can run in O(|C|) by

iterating over the constraints, thereby creating a vertex for each relation in GC (if not yet

present), and then adding the edges as defined by the bijective function c. The condition in

Line 2 of Algorithm 1 can also be implemented in O(|C|) by checking the following three

conditions for every vertex (which are equivalent to the definition of solvable constraint

graphs of the previous paragraph):

1) ¬∃relE ∈ V s.t. (relE , relE ,mutEx ) ∈ E ∧ (relE , relE , disjoint) ∈ E

2) (relE1
, relE2

, before) ∈ E →

(
(relE1

, relE1
,mutEx ) ∈ E

∨(relE2
, relE2

,mutEx ) ∈ E

)

3) ¬∃relE , relE1
, relE2

∈ V s.t.





(rel , rel ,mutEx ) ∈ E
∧(relE1

, relE , before) ∈ E
∧(relE , relE2

, before) ∈ E





3.1.2 Machine Graphs

A machine graph corresponds to the combination of constraints to be enforced by one

scheduling machine. A single scheduling machine cannot carry any combination of con-

straints, but at most the graph Gmax
M displayed in Figure 2(b). Intuitively, a machine graph

GM is a subgraph of Gmax
M or to put it differently, a scheduling machine is a part of the

maximal machine.

Now, we cover a given constraint graph GC with a set of machine graphs GM , all enclosing

different combinations of constraints. As we have to respect all constraints encoded in GC ,

we require that every edge in GC is part of at least one machine graph GM ∈ GM . Based

on the scheduling machines defined by GM the scheduling algorithm in Section 3.2.2 will

implement all constraints.

More formally, the set of machine subgraphs is a set of graphs GM which are all iso-

morphic to connected, vertex-induced subgraphs of both Gmax
M and GC = (VC , EC). A

vertex-induced subgraph is a subset of the vertices together with all the edges connecting

vertices in the subset. Furthermore, we demand that
⋃

(VM ,EM )∈GM
EM = EC and that

|GM | is minimal in the number of subgraphs it contains. The former requirement expresses

that all edges (each representing a constraint) of GC are covered by at least one graph in

GM . The latter requirement calls for a minimum number of graphs in GM , thus making

scheduling more efficient.

As constraints are encoded in edges, a subgraph with no edge would be meaningless. An

effect of both requirements is that subgraphs consisting of only one vertex but no edge

(although being isomorphic to, for example, rel 4 in Gmax
M ) are always removed from GM ,

as they do not cover an edge of GC .

Example 7. For GC as in Figure 2(a) and Gmax
M as in Figure 2(b), a set of common induced

subgraphs covering all edges of GC is depicted in Figure 2(c).

Computing Machine Subgraphs. The problem of finding a maximal isomorphic sub-

graph of two graphs is known to be NP-hard. Nevertheless, in the case of Gmax
M , it suffices

to compare the vertices rel 1,. . . ,rel 4 with the vertices in GC . At every comparison, we
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try to expand the common subgraphs following the edges in both GC and Gmax
M . This is

how we find one common subgraph.

To compute the full set, we aim for a minimum number of subgraphs covering all edges

of GC . If we think of the edges as elements of sets and of the subgraphs as sets, then

any procedure solving the NP-hard set-cover problem can tackle our problem. For this

set-cover problem, a greedy approximation algorithm, which chooses sets of maximum

size first, is well established [CLRS01]. Hence we apply the same idea, by determining a

maximum common subgraph with respect to the number of edges in every iteration.

3.2 Computations at Query Time

Having introduced all the precomputation steps, we move on to the procedures to be exe-

cuted for each query, which builds on these precomputed data structures. Since we strive

for computing a consistent set of facts, which are all relevant for answering the query,

there are two major steps at query-time. The first is the retrieval of the relevant facts from

a database (grounding), and the second determines the consistent subset of these facts

(scheduling).

3.2.1 Grounding

One main observation is that for facts, which are not in a temporal conflict with each

other, constraints do not even have to be grounded because the temporal head literal would

already evaluate to true, such that the grounded clause would already be satisfied. Facts

that do not occur in any grounded clause thus remain true, while only between conflicting

facts, the reasoner needs to decide for a different truth assignment. Since (typically) a

majority of facts is not in conflict with any other fact, this observation helps to keep the

grounding phase more efficient.

Line 6 of Algorithm 1 is implemented in two steps. First, all matches to the query from

the knowledge base are collected in the set FQ. Second, all facts possibly conflicting with

them are added to FQ as follows. We begin by identifying all vertices in GC corresponding

to the relations of facts in the matches of the query. Then we traverse GC in a breath-first

manner starting from the identified vertices. During the traversal, we ground the occurring

relations and add the retrieved facts to FQ.

A feature of GC is that every connected component shares the first argument resulting

from (1). Hence we have to execute a breath-first traversal for every member in FirstArg ,

which results in an implementation with O(|GC | · |FirstArg |) run-time.

Example 8. Let Q be from (2), GC from Figure 2(a), and F from Figure 1. The initial

matches of Q are FQ = {fplaysBMU , fplaysBB}. So FirstArg = {David Beckham},

which means there is only one traversal. We start from playsForClub, visit bornIn and

diedIn in the first stage, and finally playsForNational and hasWonPrize. So, fbornBL

and fbornBOT are added to FQ first, followed by fplaysBE , which results in FQ = F .
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3.2.2 Scheduling Problem

Once we have retrieved all relevant facts FQ, we continue by identifying a maximum-

weight consistent subset of the facts FQ,C . We map this problem to a scheduling problem,

consisting of scheduling machines and scheduling jobs.

• A scheduling machine is a time interval of T with a capacity ∈ R
+.

• A scheduling job is a weighted time interval of T coming with different sizes for each

machine, i.e., size : Jobs × Machines → [0, capacity ].

We note that all scheduling machines share the same capacity.

A scheduling problem is a set of scheduling machines Machines and a set of scheduling

jobs Jobs, where the task is to find a subset J ′ ⊆ Jobs of jobs which maximize the sum of

weights

max
J′⊆Jobs

∑

j∈J′

weight(j) · xj

such that

∀m ∈ Machines, ∀t ∈ N0

∑

j∈J′|begin(j)≤t<end(j)

size(j,m) · xj ≤ capacity

and xj ∈ {0, 1}.

In words, we are looking for a maximum-weight subset of the jobs, such that the capacity

of each machine is not exceeded by the sum of the sizes of the jobs running on them. The

variable xj indicates whether the job belongs to the solution (xj = 1) or not (xj = 0).

We remark, that the above optimization problem is NP-hard, as we obtain the Knapsack

problem as a special case, i.e., by considering only one scheduling machine for all con-

straints and one time interval [0,+∞) for all facts.

Mapping Constraint Graphs to Scheduling Machines. Next, we map the search for a

consistent subset of facts to the above scheduling problem by relating every fact in FQ

with a scheduling job and every graph in GM with a scheduling machine. To encode a

conflict between two facts in the scheduling problem, we ensure that the intervals of the

corresponding jobs are overlapping, and there is at least one machine which cannot process

both jobs at the same time.

We begin with the assignment of different sizes to facts on different machines as defined

by the function size : FQ × GM → [0, capacity ] where

size(frel
︸︷︷︸

∈FQ

, (V,E)
︸ ︷︷ ︸

∈GM

) =







0 if rel /∈ V
capacity if rel ∈ V and rel represented by

‘rel 1’ or ‘rel 2’ in Gmax
M

capacity
2 + ǫ if rel ∈ V and rel represented by ‘rel 3’ in Gmax

M
capacity

2
−ǫ

|FQ| if rel ∈ V and rel represented by ‘rel 4’ in Gmax
M

and we use frel to denote a fact with relation rel.
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If a fact is not constrained by GM ∈ GM , we set its size to zero, so no conflicts result. Sec-

ond, if a fact is an instance of vertices rel 1 or rel 2, then it is subject to a mutual exclusion

constraint. Hence, the size is fixed to capacity, which makes its job mutually exclusive

to all overlapping jobs of non-zero size. In the third case, by assigning capacity
2 + ǫ (for

an ǫ > 0) to the size of the fact (job), we achieve that all facts of rel 3 become mutually

exclusive if they overlap. Finally, the fourth case sets the size of jobs corresponding to

facts matching rel 4 in Gmax
M to

capacity
2

−ǫ

|FQ| , which admits all of them to be scheduled even

though a job related to case three is scheduled at the same time.

The above construction models disjointness correctly, but it fails for precedence and mutual-

exclusion. For example, two facts, which are supposed to be mutually exclusive but have

no overlap in their intervals, could be scheduled.

So we continue with the translation from intervals of facts to intervals of jobs as defined

by the functions begin : F × 2GM → N0 and end : F × 2GM → N0 ∪ {+∞} where,

begin(frel,[tb,te),GM ) = min{tb}∪

{

0

∣
∣
∣
∣
∃GM ∈ GM .

GM = (V,E), rel ∈ V,
rel isomorphic to rel 1 in Gmax

M

}

and

end(frel,[tb,te),GM ) = max{te}∪

{

+∞

∣
∣
∣
∣
∃GM ∈ GM .

GM = (V,E), rel ∈ V,
rel isomorphic to rel 2 in Gmax

M

}

and we use frel,[tb,te) to represent a fact with relation rel and interval [tb, te). Again, the

weight w(j) of a scheduling job j is simply the weight w(f) of the associated fact f .

Both functions leave all interval limits of facts not being subject of a mutual-exclusion

constraint untouched. On the contrary, the interval limit is either set to the very begin or

the very end, depending on the possible precedence constraints. As a result, all intervals

of mutual-exclusive facts overlap either in 0 or +∞. At the same time, facts of rel 1
cannot be preceded by other facts, as they start at 0, thus correctly modeling precedence.

A symmetric argument holds for instances of rel 2.

Computing the Mapping. Regarding complexity, the mapping from a set of facts |FQ|
to the corresponding scheduling jobs can be done in O(|FQ|), since we can compute the

mapping for each fact independently by applying the functions size, begin, and end.

f ∈ F size(f, left) size(f, middle) size(f, right) begin(f, all) end(f, all)
fbornBL capacity capacity capacity 0 1976

fbornBOT capacity capacity capacity 0 2000

fplaysBMU 0 0 capacity
2 + ǫ 1993 2004

fplaysBB 0 0 capacity
2 + ǫ 1999 2001

fplaysBE 0 capacity
2 + ǫ 0 1992 2011

Table 1: The translation of the facts F of Figure 1 to scheduling jobs using capacity = 1.0, where
the second argument of size and end refer to the graphs of Figure 2(c).
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Figure 3: Jobs (translated facts) of Table 1 for the scheduling machine (graph) at the right of Fig-
ure 2(c).

Example 9. The translation of the facts of Figure 1 to three scheduling machines with

respect to the graph GM of Figure 2(c) is shown in Table 1. Additionally, Figure 3 depicts

the facts fbornBL, fbornBOT , fplaysBMU , and fplaysBB to be scheduled on the machine

corresponding to the graph at the right of Figure 2(c).

Computing a Consistent Subset. Algorithm 2 presents an efficient approximation algo-

rithm for the NP-hard scheduling problem, whose performance is analyzed empirically by

the experiments in Section 4. It is inspired by the general scheduling framework presented

in [BNBYF+01].

Every connected component of a solvable constraint graph GC shares one variable as both

relations in (1) have the same variable as their first argument. As a result, only facts with

identical entities as their first argument can be in conflict. Thus, we invoke Algorithm 2

for every entity e ∈ FirstArg (see Lines 8 to 11 in Algorithm 1).

Algorithm 2 is based on the interplay with a stack and consists of a pushing phase (Lines 3

to 10) during which some facts are pushed onto the stack, and a popping phase (Lines 12 to

17) during which facts are popped from the stack and possibly included in the solution. In

the first step of the pushing phase, the fact f with minimum end(f, GC) is pushed onto the

stack, while the weight of every interval in conflict with f is decreased by w(f). Intervals

with negative weights are then removed and ignored from further consideration. In the

next step, the fact whose end time is minimal among the remaining ones is pushed onto

the stack, while the weights of its conflicting facts are decreased and all facts with negative

weights are removed. These steps are iterated until every fact is either on the stack or is

deleted. In the popping phase, facts are iteratively popped from the stack and included in

the solution if this maintains feasible, or—in the scheduling sense—if the fact does fit on

the machines. The algorithm ends when the stack becomes empty.

The worst-case complexity of Algorithm 2 is O(|FQ,e|
2|GM |), which is dominated by the

three nested loops in Lines 3 to 5. After the example, we will explain how to improve this

worst-case run-time, while we keep Algorithm 2 for its easier presentation.

Example 10. We execute Algorithm 2 for the problem setting of Figure 3, where we as-

sume ǫ = 0.1 and capacity = 1.0. The loop in Line 3 inspects the facts ordered by

end as fbornBL, fbornBOT , fplaysBB , and fplaysBMU , where only fbornBOT does not get

pushed to the stack as its weight becomes negative in a conflict with fplaysBB . Contin-

uing with the loop in Line 12 we schedule first fplaysBMU , then we omit fplaysBB , be-
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cause it exceeds the capacity at from 1999 to 2001. Finally, fbornBL is added, such that

FQ,C,e = {fplaysBMU , fbornBL}.

Algorithm 2 Resolving conflicts

Require: A set of facts FQ,e with identical first argument e
Require: A machine set GM

1: Initialize a stack S = 〈〉
2: Sort all f ∈ FQ,e by end(f,GM )
3: for all f ∈ FQ,e by increasing end(f,GM ) do

4: for all machine graphs GM ∈ GM do

5: for all f ′ ∈ S do

6: if f and f ′ intersect and size(f, GM ) > 0, size(f ′, GM ) > 0 then

7: w(f ′) := w(f ′) − size(f ′, GM ) · w(f)
8: if w(f ′) ≤ 0 then

9: Remove f ′ from S

10: Push f to S

11: FQ,C,e := ∅ ⊲ FQ,C,e ⊆ FQ,e

12: while S is not empty do

13: f[tb,te) := S.pop()
14: for all GM ∈ GM do

15: if ∀t ∈ [tb, te). capacityused(GM , t) + size(f, GM ) > capacity then

16: Continue with loop in Line 12

17: Add f[tb,te) to FQ,C,e

18: for all GM ∈ GM do

19: ∀t ∈ [tb, te). capacityused(GM , t) := capacityused(GM , t) − size(f, GM )

20: return FQ,C,e ⊲ FQ,C,e ⊆ FQ,e

Improving the Worst-Case Complexity. Following Section 3.3 of [BNBYF+01], the

worst-case complexity can be reduced to O(|FQ,e|log |FQ,e|+ |FQ,e||GM |), thus breaking

the quadratic barrier and allowing us to efficiently process huge sets of conflicting facts.

The main idea is to replace the stack of intervals by a sorted list of interval end-times (for

both begin and end). Then the pushing-phase is substituted by a forward-iteration over

the list. The weight of the intersecting intervals can be obtained implicitly by keeping

track of the total amount of weights of the iterated intervals and by comparing this value

at both end-times of the intervals. In a similar manner, the popping phase is changed to

a backwards-iteration over the list. In total, both iterations for each graph in GM require

O(|FQ,e||GM |) steps, where we have to add O(|FQ,e|log |FQ,e|) steps in order to create

the sorted list of interval end-times.

4 Experiments

System. Our system featuring the algorithms of the previous section was implemented in

Java 1.6 in about 3k lines of code. As a back-end, a Postgres 8.3 database is deployed to
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store the RDF triples along with their corresponding weights and time intervals. Both the

program and the database are run on the same Intel E8200 machine with 4 GB RAM.

Competitors. We can reduce the optimization problem of Section 2.5 to the Maximum

Weight Independent Set problem (MWIS)2 by considering facts as vertices and drawing

an edge between them if they are in conflict. Then a maximum-weight subset of vertices

(facts), that do not share an edge (according to the definition of MWIS), coincides with

a conflict-free solution. Thus, we utilize a simple exponential time algorithm to compute

the optimal solution of MWIS as long as this remains feasible.

Additionally, we employ a greedy heuristic [BSK10] for the MWIS, which proved to per-

form best on our data among all the greedy methods we tried. There are other means of

approximating the MWIS problem, like stochastic optimization. However they are even

less scalable than greedy methods [BBPP99]. As the greedy methods are based on the

graph, the ingredients for choosing a fact (vertex), in order to remove or add facts to the

approximated MWIS, are the weights of the facts (vertices) and the number of conflicting

facts (degree of the vertex). Thus, the worst-case run-time is in Ω(|FQ|
2), as there can

be quadratically many edges. Hence, in terms of run-time complexity, our scheduling al-

gorithm also asymptotically performs better than this greedy approach, as it is based on

sorting facts (vertices) represented by scheduling jobs, rather than enumerating all pairs of

facts (edges), which are in conflict with each other.

Parameters, Constraints & Queries. The only free parameter is 0.5 > ǫ > 0 (Section

3.2) which we fixed to ǫ = 0.49, as we have good experiences with values close to 0.5. As

constraints, we employ the formulas of Appendix A, and as query we use Equation (2).

Dataset. T-YAGO [WZQ+10] contains data about the playsForClub, playsForNational,

and hasWonPrize relations, which we extended manually by dates of birth and death. Nev-

ertheless, the data in T-YAGO is nearly conflict-free, thus we add synthetic facts to create

conflicts in the following manner.

First, we choose one of the consistent facts uniformly. Then we create a perturbed copy by

drawing the start-time of the interval, the length of the interval, and the confidence from

three different Gaussians N (µs, σ
2
s), N (µl, σ

2
l ), and N (µc, σ

2
c ), respectively. The means

µs, µl, and µc are set to the original value of the fact contained in T-YAGO, whereas the

variances are varied during the experiments to produce problem instances of diverse nature

(see Figure 4(a)). By writing n, we refer to the number of added synthetic facts about the

queried entity.

Approximation Ratio. In order to evaluate the performance of the algorithms, we de-

fine the approximation ratio as W
W∗ , where W and W ∗ represent the sum of the weights

computed by a heuristic and the optimal exponential-time algorithm, respectively.

Results. Our algorithm showed impressive robustness with respect to the perturbed data

as shown in Figure 4(a). In particular, its average approximation ratio never dropped be-

low 0.98. In Figure 4(b) we show the distribution of approximation ratios for 1,000 runs,

whereas the previous three figures focused on the mean. The histogram of our scheduling

algorithm exhibits excellent behavior as in nearly every problem instance the optimal so-

2The opposite direction compared to the reduction in the hardness paragraph of Section 2.5.
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lution was found. The greedy heuristic for MWIS does little worse, but still is very good.

The run-time of the scheduling algorithm and the grounding algorithm (both described in

Section 3.2) is depicted in the left of Figure 4(c). Their complexities are sub-quadratic.

Finally, the run-times of the MWIS greedy heuristic and its grounding procedure are dis-

played in the right of Figure 4(c). Admittedly, the implementations were less optimized,

however optimization can only lower the constants, but not the quadratic complexity.
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Figure 4: Experiments

5 Related Work

Temporal RDF. Temporal databases were introduced more than 25 years ago [JS99].

Early work on RDF and time, which discusses many design issues, can be found in

[GHV05], and which was later pursued in [GHV07]. A query language for RDF with

temporal capabilities was presented in [TB09], which is a complementary issue compared

to our work. Moreover, [PUS08] introduces an indexing scheme for time-annotated RDF

triples without confidence values. Its notion of consistency rejects contradicting state-

ments about the number of validity points in a time interval, whereas its temporal distance

metric is purely used for indexing purposes.

Temporal Constraints. The relations between temporal intervals probably were first in-

troduced in [All83] and were later extended in various ways, where [FGV05] provides a

comprehensive overview. Additionally, [FGV05] contains an outline of how to encode

time in first-order logic. In terms of Description Logics, there are several temporal exten-

sions, where [AF00, LWZ08] provide surveys. Temporal Constraint Satisfaction problems
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[SV98] are usually not based on data but focus on the search for a valid solution in terms of

variables representing time which fulfill given constraints. Regarding temporal constraints

on RDF graphs, purely theoretical work was carried out in [HV06].

Machine Learning. In the machine learning community, there exist frameworks [RY05]

and [RD06] for supporting general constraints on uncertain data whose performances are

rather slow compared to our algorithm, due to solving general ILP problems and the

grounding algorithm solely being based on typing, respectively.

Scheduling. Intensive research was conducted in the scheduling field with numerous ap-

plications [Pin08, LKA04]. Still, the combination of precedence and disjointness con-

straints is not well covered, and to our best knowledge, only [XP90] presents an algorithm

tackling the problem. Yet, its limited scalability makes it unsuitable for bigger data sets.

Maximum Weight Independent Set. In the past, many heuristics for the MWIS prob-

lem [BBPP99, JT96] have been developed, covering—among others—greedy approaches,

stochastic optimization like simulated annealing or genetic algorithms, and hybrid meth-

ods of these. However, our implicit representation of conflicts (see Section 3.2.2, last

paragraph) is more scalable than the explicit form using edges of a graph.

Uncertain and Probabilistic Databases. Recent work on uncertain data management and

probabilistic databases [OSH+08, AJKO08, DS07], including our own work [DSTW08,

DSTW10], have shown how to represent and handle dependencies of data objects inside an

SQL-like environment. Yet, only very few database-oriented works on handling temporal

inconsistencies in a first-order reasoning setting have been proposed so far. In [WYT10],

we devised a probabilistic model, based on time histograms and data lineage, for a first-

order, rule-based reasoner with temporal predicates. The rules considered in that work

do not consider the inclusion of actual consistency constraints, where only some facts out

of a given set may be set to true while other facts are considered false. Technically, this

resolves to including also negation into the constraints, while [WYT10] considers posi-

tive lineage (i.e., conjunctions and disjunctions) only. Moreover, our approach resembles

some similarity to probabilistic extensions to Datalog [Fuh95], however, no resolution of

inconsistencies or forms of temporal reasoning had been considered in this context.

6 Conclusions

We have presented a declarative framework for temporal consistency reasoning in uncer-

tain and inconsistent knowledge bases. Our approach works by identifying a subclass of

first-order consistency constraints, which can be efficiently mapped to constraint graphs

and be solved using results from scheduling theory. Our experiments show that our ap-

proach performs superior to common approximation heuristics that directly operate over

the underlying Maximum Weight Independent Set problem in terms of both run-time and

approximation quality. As for future work, we aim to investigate in further generalizing

the class of constraints we can solve with our approach, and we also aim at making our

interval operations more fine-grained, for example, by cutting off conflicting intervals, or

by incorporating time histograms that may capture different confidences in a fact’s validity

at different points in time.
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A Constraints Used for Experiments

(bornIn(p, l1, t1) ∧ bornIn(p, l2, t2) ∧ l1 6= l2) → false

(bornIn(p, l1, t1) ∧ diedIn(p, l2, t2)) → before(t1, t2)
(bornIn(p, l, t1) ∧ playsForClub(p, c, t2)) → before(t1, t2)
(bornIn(p, l, t1) ∧ playsForNational(p, n, t2)) → before(t1, t2)
(bornIn(p, l, t1) ∧ hasWonPrize(p, pr , t2)) → before(t1, t2)
(playsForNational(p, n1, t1) ∧ playsForNational(p, n2, t2) ∧ c1 6= c2) → disjoint(t1, t2)
(playsForClub(p, c1, t1) ∧ playsForClub(p, c2, t2) ∧ c1 6= c2) → disjoint(t1, t2)
(playsForClub(p, c, t1) ∧ diedIn(p, l, t2)) → before(t1, t2)
(playsForNational(p, n, t1) ∧ diedIn(p, l, t2)) → before(t1, t2)
(diedIn(p, l1, t1) ∧ diedIn(p, l2, t2) ∧ l1 6= l2) → false
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