
BizTalk Integration Server Architecture

Satish R. Thatte

Microsoft Corporation
satisht@microsoft.com

Abstract: We begin with a brief explanation of how we view the current
integration landscape. The paper then describes the mission and architecture of
BizTalk Server, which is Microsoft’s integration server product. We conclude
with some thoughts on the future of the business integration domain, which we
believe is still in the early stages of its technology lifecycle. The range of target
problems, processing models and even architecture principles for integration
solutions are likely to be evolving rapidly for some time.

1 The Integration Landscape

1.1 The Problem Domain

A vendor receives a purchase order from a customer, a physician orders a medication
change for a patient, an investor transfers funds between financial institutions, a new
employee joins the company, a retail outlet makes a sale. Every kind of business is
driven by myriad events that occur in its environment. In the IT world today, these
events are transmitted as business documents, each in its own idiosyncratic form based
on its domain and origin: an EDI purchase order, an HL7 hospital pharmacy order, or a
SWIFT funds transfer order. A large fraction of the business integration scenarios today
are about highly reliable asynchronous straight-through processing of such business
events in the form of documents flowing to and from partners, employees, business
systems and devices such as point-of-sale terminals.

485

Over the next decade, the heterogeneity of document formats will evolve towards XML
and the heterogeneity of communication modes will evolve towards a uniform web
services protocol fabric. However, the core pattern of reliable asynchronous straight-
through processing of business events will remain invariant because it reflects the way
the world actually works. In some ways this pattern has not changed for decades since
the days of nightly batch processing of the day’s business updates in mainframe systems.
The difference today is that business systems are more pervasive, more heterogeneous,
more connected and involve many more aspects of business than ever before. And the
tolerance for latency between business events (e.g., stock trades) and their reflection in
systems of record (settlement) has gone down from days to seconds. The data in
business systems must be kept consistent, often across enterprise boundaries; it must be
updated in near-real-time in response to business events, and must be made available in
useful aggregates for business users to view and act on. This is the systems integration
problem as it is commonly understood today, and it has now become the biggest pain
point and highest priority for investment in nearly every large IT shop.

At its lowest level, business systems integration is about normalizing and routing
business documents. But nearly every non-trivial integration scenario of both basic
types, asynchronous straight-through processing and synchronous portal access, goes
beyond normalization and routing, and requires a programming model for integration,
i.e., orchestration. In portals, for fetching and aggregating data from multiple backend
systems, and for coordinating multi-system, multi-transactional update actions. In
straight-through processing, for multi-document correlation, orchestrating document
processing through multiple systems of record, and for driving business protocols with
external partners in B2B scenarios. In all cases orchestration must provide capabilities
for check-pointing and failure recovery across multiple ACID transactions to ensure
consistency of business data.

1.2 Integration and Web Services

The bulk of integration today occurs with “legacy” protocols and formats. EDI over
FTP is a common document transmission solution. This will continue and even grow for
some time. Established legacy has a tendency to linger—mainframes are still with us
despite numerous reports of their impending demise over the years. Nevertheless, the
trend towards Web services as the integration fabric of the future is clear.

Web services are interesting because they promise to make integration of heterogeneous
systems easier by standardizing the reliable communication protocols, interface
contracts, and security and other policies across platforms. There are actually two
orthogonal dimensions in the web services architecture that people have mixed up since
the earliest days of SOAP [Bo00] and WSDL [Ch01]. There is a communication model
and there is an interface model.

486

SOAP as a protocol framework has been used to develop an entire portfolio of WS-*
wire protocols with the aim of creating an interoperable communication fabric. With
WS-ReliableMessaging [Bi04] and WS-Security [WSS04] in place, it is possible to
make the MSMQ and MQSeries category of enterprise communication services
interoperable. Similarly, WS-AtomicTransaction [Ca04] provides a platform-neutral
wire protocol for transaction managers to coordinate ACID transactions across
platforms. This protocol can be expected to enjoy much broader support in the industry
than previous attempts such as IETF’s TIP protocol [LEK98] which Microsoft also
helped define and supported in DTC [DTC04].

WSDL and WS-Policy [Ba04], on the other hand, are used to define interoperable
service contracts that can be thought of as normalization of API rather than
communication. Of course, SOAP/WS-* protocols and WSDL/WS-Policy are
intimately linked in that the canonical access method for a normalized WSDL API
contract is SOAP. But the key point is that with an interoperable API in the form of
WSDL service contracts, applications can use each other’s services in a loosely coupled
but secure and reliable way so that application architectures become more flexible. The
reality of a heterogeneous platform world is then no longer a high barrier to climb in
building new application functionality based on existing enterprise application assets.
Web service interfaces thus increase the reach of developers building new applications
and help make them more productive in overcoming point-to-point integration problems
in enterprise settings.

But point-to-point integration is about the “last mile” connectivity in an integration
solution. Thus Web services are a boon but not a panacea. Point-to-point solutions are
inherently non-scalable due to combinatorial explosion in the presence of the many-to-
many integration problems common in enterprises. Moreover, integration requires long-
running coordination, e.g., BPEL4WS [An03] processes in the world of Web services.
Thus there is an enduring need for a coordinating integration broker.

But there is another interesting reason to believe that the Web services fabric is only one
dimension of the integration architecture. Web service based application contracts may
be less tightly coupled at the wire protocol level than the client-server relationships
enabled by DCOM, CORBA and similar distributed object technologies. But at the level
of semantic coupling, Web service API contracts are actually quite similar to the older
technologies. The client of a Web service is invoking a known processing function and
is dependent in its own semantics on the semantics of that function. A much more
loosely coupled model relies on reactive event-driven coupling in which the source and
the target of an event know little or nothing about each other and are coupled through a
coordinating broker with pub/sub routing capability. Event-driven architecture is very
natural for many integration problems. The distinction and complementarity between
service-oriented and event-driven business integration architectures is something that
analysts like Gartner are now beginning to recognize and articulate as an industry
direction [SN03]. Business events as key drivers of value are also beginning to feature
in the vision of leaders of technology companies [Gi04]. The majority of asynchronous
straight-through processing of business messages will continue to use the event-driven
processing model even when the communication fabric used is based on WS-* protocols.

487

2 BizTalk Server Architecture

2.1 The Mission

BizTalk Server is an integration broker that is optimized for asynchronous straight-
through transactional processing of business messages in all formats and carried over an
extensible set of protocols. The messages may represent service invocations or business
events. BizTalk Server is aimed at demanding scenarios requiring high throughput with
extreme reliability. It includes capabilities for multi-message coordination, failure
recovery, load balancing, and high availability. BizTalk Server provides a focal point
for configuration, management, tracking and monitoring of integration solutions,
avoiding the “spaghetti” of point-to-point integration links.

BizTalk Server supports both synchronous and asynchronous Web services. BizTalk
Server orchestration provides reliability and recoverability for long-running process
behavior with a declarative programming model for state logging and recovery, based on
a generalization of multi-transaction Sagas [GS87]. The model is essentially identical to
the compensation mechanism in BPEL4WS; in fact the BPEL4WS mechanism was
modeled on the one provided in BizTalk Server orchestration. BizTalk Server also
supports real-time synchronous information retrieval, transformation and aggregation for
portal scenarios.

In the rest of this section we describe the two primary dimensions of the current BizTalk
Server architecture. The abstract processing model describes the way integration
solutions are composed through an asynchronous message-driven architecture. The
deployment architecture describes the way the solutions are deployed in the server
environment to ensure a high level of reliability, scalability and availability. The
complete stack of current BizTalk Server technology is shown in Figure 1. The
architecture description in this section focuses on the processing model and deployment
architecture of the bottom three layers (runtime engines, service container and
communication). Tools and business user services including Business Activity
Monitoring (BAM) are described elsewhere.

2.2 Abstract Processing Model

We realized early on that the range of scenarios, design patterns, processing models and
even architecture principles for integration solutions would be evolving rapidly for some
time, given the low level of maturity in the domain as a whole. We therefore wanted to
build a server architecture that would be resilient to change and would enable
incremental investment to broaden its capability and reach. Since business integration
involves high-value data that cannot be lost or corrupted without serious consequences,
the use of database transactional technology as the base was obvious. But beyond that
we wanted to keep the abstract processing model of the integration engine extremely
simple and general. We believe we have largely succeeded in this goal.

488

Operating System (Windows Server 2003)

Communication
Heterogeneous

Messaging Protocols
BTS Adapter
Framework

Web Services
(WSE 2.0, ASMX)

Service State
Management

Content-based
Routing

Queue-Driven
Clustered Hosting

Service
Container

Process Orchestration
Engine

Business Rules
Engine

Adapter Pipeline
Engine

Runtime
Engines

Trading Partner
Management

Business Activity
Monitoring (BAM)Business

User Services

InfoPath Integration

Transformation
Mapper

Orchestration
Designer

Schema
Editor

Deployment
Manager

Dev Tools

Rules
Composer

Orch Designer for
Business Analysts

Admin &
Ops Tools

Server Deployment
and Administration

Health and Activity
Tracking

Pipeline
Designer

Human Workflow
Services (HWS)

MOM Pack for
BizTalk Server

Sharepoint
Integration

Operating System (Windows Server 2003)

Communication
Heterogeneous

Messaging Protocols
BTS Adapter
Framework

Web Services
(WSE 2.0, ASMX)

Service State
Management

Content-based
Routing

Queue-Driven
Clustered Hosting

Service
Container

Process Orchestration
Engine

Business Rules
Engine

Adapter Pipeline
Engine

Runtime
Engines

Trading Partner
Management

Business Activity
Monitoring (BAM)Business

User Services

InfoPath Integration

Transformation
Mapper

Orchestration
Designer

Schema
Editor

Deployment
Manager

Dev Tools

Rules
Composer

Orch Designer for
Business Analysts

Admin &
Ops Tools

Server Deployment
and Administration

Health and Activity
Tracking

Pipeline
Designer

Human Workflow
Services (HWS)

MOM Pack for
BizTalk Server

Sharepoint
Integration

Figure 1: BizTalk Server Technology Stack

There are only a few functional elements that make up the BizTalk Server core, which is
basically a database application.

A durable message store where all messages are persisted. Messages are made
of multiple parts in general, following the WSDL (and MIME) message type
model. Messages and their parts, once persisted in the store, are treated as
being immutable. Only references to them are used within the database in other
functional elements.

Every message has associated with it a set of properties of interest. These
properties are stored in a separate table associated with the message store.
Properties are of two kinds

o Those which reflect the context of the message, e.g., the URI at which
it was received, the identity of the source.

o Properties within the message content that have been “promoted” to
the surface because they are of special interest, e.g., the purchase-
order-number in a purchase order confirmation document, which may
be used to correlate the purchase order to a business process instance.

A store for the state of long-running services such as business process
instances. Instances of long-running processes are quiescent through most of
their lifecycles, and the scalability of the server environment is maintained by
“dehydrating” the state that represents the process context of quiescent
instances. However, the process context of each instance is declaratively
correlated with related messages through content-based routing rules. When a
related message arrives, the routing rule associates the queue entry for the

489

message reference with the appropriate process context. Finally, when the
message is picked up by a service host for processing, the quiescent instance is
automatically “rehydrated” by picking up the associated process context in the
same transaction. The server thus provides highly optimized support for
building long-running processes and durable services in general.

Application queues to which message references are routed by the content-
based routing mechanism (see below). Application queues are the “internal
endpoints” from which services “pull” their work.

Content-based routing. This is the mechanism that ties the engine together.
When a message, with its properties of interest, is persisted, the routing engine
applies routing rules to determine the services which need to process the
message and routes message references to the appropriate application queues.

Typical services configured to run in BizTalk Server today are

Synchronous and asynchronous adapters for internet transfer protocols (FTP,
SMTP, HTTP), Web services, and adapters for proprietary systems with their
own peculiar formats and access methods.

Orchestration process services similar to those expressed in BPEL4WS.
BizTalk Server uses BPEL4WS as a process metadata interchange format and
uses its own .Net based internal representation for actual running processes.

Other stateful services such as drivers for long-running session-based message
transport protocols (MSMQ) and batching services that encapsulate batching
rules for specific trading partners.

Services in BizTalk Server are configured to run in specific abstract application hosts
which provide security, scaleout, availability and other common support for the services
hosted in them. Moreover, these hosts are the granularity at which the core server
provides application queues, i.e., there is one application queue in the database per
abstract host. This allows natural load balancing and throttling based on multiple clones
of application hosts being tied to the same queue and pulling work as they are able based
on their load.

The routing rules used by content-based routing fall into two categories

Stateless rules that are relatively static—used for example to activate new
service instances, or to always route certain types of messages to specific
applications or partners.

Stateful rules that are generated by long-running service instances, the most
interesting example being rules that reflect correlation of messages to business
process instances.

490

Custody of stateful instance data in an environment with scaleout based on cloned
application hosts brings with it responsibilities for instance state locking and other
correctness and performance requirements. Describing those aspects is beyond the scope
of this paper. Suffice it to say that BizTalk Server provides efficient mechanisms for
instance state hydration/dehydration, instance locking, lock release and service recovery
in case of failures, and so forth.

The diagram in Figure 2 depicts the abstract processing model described above

durable message store

message
references

application
queues

content
based
router

instance state store

Clustered
Application
Hosts

SQL Server

Synchronous &
Asynchronous
Adapters

HTTP

MSMQ

FTP

Web
Service

SAP

Instance
state
references

Business Process Execution Engines

durable message store

message
references

application
queues

content
based
router

instance state store

Clustered
Application
Hosts

SQL Server

Synchronous &
Asynchronous
Adapters

HTTP

MSMQ

FTP

Web
Service

SAP

Instance
state
references

Business Process Execution Engines

Figure 2: BizTalk Server Abstract Processing Model

2.3 Deployment Architecture

A high-end deployment of BizTalk Server uses a number of inexpensive server machines
for application hosting. Application hosts are in effect stateless since all data is held in
the database and is only used within the context of ACID transactions as the application
services process the data and make internal state transitions. Thus the application host
server machines are expendable and when application hosts are cloned across multiple
servers, availability is ensured in the obvious way—if a server machine fails no data is
lost and its work is transparently picked up by other servers that are running clones of
the abstract application hosts that the failed server machine was running.

491

The database tier is obviously far more critical and in large-scale mission critical
installations, servers in this tier are typically hosted in MSCS clusters with failover
capability. Given the database-intensive nature of the processing model used, database
capacity is the most common bottleneck in scaling up the performance of the server;
database lock contention and other problems ultimately limit the degree of scaleout of
the stateless application servers. BizTalk Server supports the use of multiple
dynamically partitioned databases with identical abstract model structure (as described
above) in order to scale the database capability in really large installations. The dynamic
partitioning is based on the ownership of service instance state by individual partitions,
and global routing rules ensure that the right messages are processed via the right
database. Further details are unfortunately beyond the scope of this paper. The diagram
in Figure 3 depicts a typical high-end deployment of BizTalk Server.

Orchestration1 Orchestration2 Web Service 1 Adapter2Adapter1 Web Service 2

Abstract Host A Abstract Host B Abstract Host C

Various Types of Application Services

Stateless Application Server Commodity Hardware Boxes

SQL Database Server Active/Active Fault-tolerant High-End Clusters

Orchestration1 Orchestration2 Web Service 1 Adapter2Adapter1 Web Service 2Orchestration1 Orchestration2 Web Service 1 Adapter2Adapter1 Web Service 2

Abstract Host A Abstract Host B Abstract Host C

Various Types of Application Services

Stateless Application Server Commodity Hardware BoxesStateless Application Server Commodity Hardware Boxes

SQL Database Server Active/Active Fault-tolerant High-End ClustersSQL Database Server Active/Active Fault-tolerant High-End Clusters

Figure 3: BizTalk Server Deployment Architecture

492

3 The Future: We Have Only Scratched the Surface

In the broadest sense, business integration and business process are synonymous. If one
takes a comprehensive view of the notion of business process, then “real” business
processes in domains such as supply-chain, healthcare, financial services, etc., are today
embedded in line-of-business applications in the form of the process logic attached to
business entities that represent the data of record. Both enterprises and application
vendors recognize that the processes associated with business applications need to
evolve far faster than the applications themselves to meet business needs. In the absence
of this kind of process agility, business applications as repositories of process can go
from being business enablers and organizers to millstones around the neck of an
enterprise. Given the current slowdown in technology spending, this is becoming a key
driver of the search for “business value” in the entire area of business application and
integration software. Nobody has yet (at least publicly) articulated an adequate approach
to separating the business application logic into different modes based on the “clock-
speed” of its evolution, but it is clear that traditional process models are not going to be
sufficient for restructuring business applications, although they will do perfectly well in
their current sphere of message-driven service-composition and long-running
conversation management processes.

The limitations of current models are partly due to the fact that the origins of many of
the modeling metaphors of the day are in models of communication (pi and join calculi)
and synchronization (Petri nets) rather than in models of data-centric behavior which
predominates in business applications. Business communication may trigger or be
triggered by processes that manage business data, and the management of such
communication is of course part of the overall business process embedded in
applications, but not the core of it. Process calculi are very good at representing the
logic of long-running business messaging protocols. But for that very reason, their
internal elements tend to have deeply interconnected semantics and it is very difficult to
take such a process and evolve it piecemeal without running into a host of semantic
issues. But incremental evolution is a critical requirement for process improvement.
Moreover, the processes embedded in business applications are frequently open-ended—
for instance, a supply-chain process may need to be able to deal with recalls, disputes,
returns, etc., long after the product is shipped. In other words, a large part of the process
logic deals with contingencies rather than long-running conversations. Processes may
even be simultaneously very dynamic and very long-lived, so that the process model
may need to change not only for new instances of a process but even for instances that
are in progress. The ability to support this category of application-embedded agile
processes is an essential requirement for the business integration platform of the future.
In some sense, this requires a deep restructuring of the very notion of business
application. The challenges make this an exciting area for both academic research and
commercial innovation. We have a long and interesting road ahead of us.

493

4 References

[An03] Andrews, Tony et al: Business Process Execution Language for Web Services, version
1.1; Link: http://msdn.microsoft.com/library/en-us/dnbizspec/html/bpel1-1.asp, 2003.

[Ba04] Bajaj, S. et al: Web Services Policy Framework; Link:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-policy.asp, 2004.

[Bi04] Bilorusets, R., et al: Web Services Reliable Messaging Protocol; Link:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-reliablemessaging.asp,
2004.

[Bo00] Box, Don et al: Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000;
Link: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, 2000.

[Ca04] Cabrera, L. F. et al: Web Services Atomic Transaction; Link:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf,
2004.

[Ch01] Christensen, Erik et al: Web Services Description Language (WSDL) 1.1, W3C Note 15
March 2001; Link: http://www.w3.org/TR/wsdl, 2001.

[DTC04] Microsoft Product Documentation: Using TIP with DTC; Link:
http://msdn.microsoft.com/library/en-us/cossdk/htm/pgdtc_dev_48kz.asp, 2004.

[Gi04] Gillmor, Steve: SAP's Agassi Lays Out Business Event Network, eWeek enterprise
news and reviews article; Link: http://www.eweek.com/article2/0,1759,1563262,00.asp,
2004.

[GS87] Garcia-Molina, Hector; Salem, Kenneth: Sagas, Proceedings of the 1987 ACM
SIGMOD international conference on Management of Data, 1987.

[LEK98] Lyon, J; Evans, K; Klein, J.: Transaction Internet Protocol, version 3.0. ; IETF Network
Working Group RFC 2371; Web Link: http://www.ietf.org/rfc/rfc2371.txt, 1998:

[SN03] Schulte, Roy W.; Natis, Yefim V.: Event-Driven Architecture Complements SOA,
Gartner Research Note DF-20-1154, 2003.

[WSS04] OASIS Web Services Security Technical Committee; Link: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss, 2004.

494

