
“They’re not that hard to mitigate”

What Cryptographic Library Developers Think About Timing Attacks

Jan Jancar1, Marcel Fourné2, Daniel De Almeida Braga3, Mohamed Sabt3, Peter
Schwabe4, Gilles Barthe5, Pierre-Alain Fouque3 und Yasemin Acar6

This paper has been published at the 43rd IEEE Symposium on Security and Privacy in
2022.

Cryptographic protocols, such as TLS (Transport Layer Security), are the backbone of
computer security, and are used at scale for securing the Internet, the Cloud, and many other
applications. Quite strikingly, the deployment of these protocols rests on a small number
of open-source libraries, developed by a rather small group of outstanding developers.
These developers have a unique set of skills that are needed for writing efficient, correct,
and secure implementations of (often sophisticated) cryptographic routines; in particular,
they combine an excellent knowledge of cryptography and of computer architectures and a
deep understanding of low-level programming. Unfortunately, in spite of developers’ skills
and experience, new and sometimes far-reaching vulnerabilities and attacks are regularly
discovered in major open-source cryptographic libraries. One class of vulnerabilities are
timing attacks, which let an attacker retrieve secret material, such as cryptographic keys,

“by carefully measuring the amount of time required to perform private key operations“.
Although timing attacks were first described by Kocher in 1996 [Ko96], they continue to
plague implementations of cryptographic libraries.

At the same time, and most importantly for this paper, we know how to systematically
protect against timing attacks. The basic idea of such systematic countermeasures was
already described by Kocher in 1996 [Ko96]: we need to ensure that all code takes time
independent of secret data. It is important here to not just consider the total time taken by
some cryptographic computation, but make sure that this property holds for each instruction.
This paradigm is known as constant-time7 cryptography and is usually achieved by ensuring
that

• there is no data flow from secrets into branch conditions;

1 Masaryk University, Brno, Czech Republic,
2 MPI-SP, Bochum, Germany, marcel.fourne@mpi-sp.org
3 Rennes University, CNRS, IRISA, Rennes, France,
4 MPI-SP, Bochum, Germany and Radboud University, Nĳmegen, The Netherlands,
5 MPI-SP, Bochum, Germany and IMDEA Software Institute, Madrid, Spain,
6 The George Washington University, Washington D.C., USA,
7 The term constant-time, often referred as CT, is a bit of a misnomer, as it does not refer to CPU execution time

but rather to a structural property of programs. However, it is well-established in the cryptography community.

cba doi:10.18420/sw2024_47

R. Rabiser, M. Wimmer, I. Groher, A. Wortmann, B. Wiesmayr (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 143

mailto:marcel.fourne@mpi-sp.org
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024_47


• addresses used for memory access do not depend on secret data; and

• no secret-dependent data is used as input to variable-time arithmetic instructions
(such as, e.g., DIV on most Intel processors or SMULL/UMULL on ARM Cortex-M3).

We know how to verify that programs areconstant-time. This was first demonstrated by
Adam Langley’s ctgrind [La10], developed in 2010, the first tool to support analysis of
constant-timeness. A decade later, there are now more than 30 tools for checking that
code satisfies constant-timeness or is resistant against side-channels [Ba19; Ja21]. These
tools differ in their goals, achievements, and status. Yet, they collectively demonstrate that
automated analysis of constant-time programs is feasible; for instance, a 2019 review [Ba19]
lists automatic verification of constant-time real-world code as one achievement of computer-
aided cryptography, an emerging field that develops and applies formal, machine-checkable
approaches to the design, analysis, and implementation of cryptography.

Based on this state of affairs, one would expect that timing leaks in cryptographic software
have been systematically eliminated, and timing attacks are a thing of the past. Unfortunately,
this is far from true, so in this paper we set out to answer the question: Why is today’s
cryptographic software not free of timing-attack vulnerabilities?

We find that, while all 44 participants are aware of timing attacks, not all cryptographic
libraries have verified/tested resistance against timing attacks. Reasons for this include
varying threat models, a lack of awareness of tooling that supports testing/verification, lack
of availability, as well as a perceived significant effort in using those tools. We expose
these reasons, and provide recommendations to tool developers, cryptographic libraries
developers, compiler writers, and standardization bodies to overcome the main obstacles
towards a more systematic protection against timing attacks. We also briefly discuss how
these recommendations extend to closely related lines of research.

Literatur
[Ba19] Barbosa, M.; Barthe, G.; Bhargavan, K.; Blanchet, B.; Cremers, C.; Liao, K.;

Parno, B.: SoK: Computer-Aided Cryptography. IACR Cryptol. ePrint Arch.
2019/, S. 1393, 2019, url: https://eprint.iacr.org/2019/1393.

[Ja21] Jancar, J.: The state of tooling for verifying constant-timeness of cryptographic
implementations, 2021, url: https://neuromancer.sk/article/26.

[Ko96] Kocher, P. C.: Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In (Koblitz, N., Hrsg.): Advances in Cryptology
– CRYPTO’96. Bd. 1109. LNCS, Springer, S. 104–113, 1996, url: http:
//www.cryptography.com/public/pdf/TimingAttacks.pdf.

[La10] Langley, A.: ctgrind, 2010, url: https://github.com/agl/ctgrind.

144 Jan Jancar et al.

https://eprint.iacr.org/2019/1393
https://neuromancer.sk/article/26
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
https://github.com/agl/ctgrind

