
A Parallel Fault-tolerant Routing Algorithm
for Real-Time Media Transmission

Roman Messmer, FernUniversität in Hagen, Faculty of Mathematics and Computer Science, 58084 Hagen, Germany

Jörg Keller, FernUniversität in Hagen, Faculty of Mathematics and Computer Science, 58084 Hagen, Germany

Abstract

Networks based on multimedia switches which are designed to carry live media streams (such as video or audio) are the

most recent products used in facilities for television production and distribution. They transport the live signal from a

single source like a camera or microphone to multiple dedicated sinks like video monitors, loudspeakers and transmission

lines, by using multicast or point-to-multipoint technology, and are sensitive to node or line failures. In previous work, we

have introduced a sequential algorithm to overcome single and multiple node or link failures by re-computation of routes.

As current SMP and multicore processors allow parallel computations, we present a parallel version of this algorithm

to achieve real-time behavior in larger graphs with complex structure. We apply our algorithm to example graphs and

present some preliminary experimental results to demonstrate its efficiency.

1 Introduction

Media switches which are capable to switch multimedia

signals from low-bandwidth MIDI-signals up to HDTV-

signals at 3 Gbit/s are the most recent development in the

media industry concerning high quality signal distribution.

Because of the high bandwidth requirements fiber-optic

connections are standard. The signals are coded into Time-

Division-Multiplexer timeslots and the whole signal is con-

verted optical-electrical-optical (OEO) at each switch hop.

Failures of nodes or lines in those packet switched net-

works often lead to unacceptable delays or breakdowns of

data transport. In [10] we proposed a sequential algorithm

(ZirkumFlex) to calculate a bypass route in a short amount

of time. An implementation would provide (almost) real-

time fault-tolerance to fibre-optic switched network plat-

forms and other infrastructure. Rerouting on these plat-

forms can be started on signalled errors on the physical

layer (like fibre loss-of-light) but could also be commenced

on detecting logical errors like CRC mismatch. Though the

algorithm is meant to support the above-mentioned fibre-

optic infrastructure, it also could be used generally as a

methodology to achieve fault tolerance in network topol-

ogy.

Here, we propose a parallel version of the ZirkumFlex al-

gorithm which can speed up calculation substantially, to-

gether with some refinements of the sequential algorithm.

On occurrence of failures, the algorithm basically performs

BFS graph searches over surrounding graph nodes starting

at predecessors and successors of the failing node/line to

calculate a bypass. Additionally, there is a detection mech-

anism for pathological (no longer supported) links so that

unused links can be removed from the local and/or central

routing table after a failure. The parallelization allows real-

time restoration after failures, i.e. restoration in less than

100 milliseconds for larger or complex graphs. This prop-

erty is very important as frozen video images or hickups

in audio streams are very unwanted events in live trans-

missions. At the same time the required overhead is lower

than in completely redundant network structures. We illus-

trate the efficiency of our parallelization by applying it to

example graphs.

The remainder of this article is organized as follows. In

Section 2 we discuss related work. In Section 3 we present

the parallel version of the ZirkumFlex algorithm, and in

Section 4 we apply our algorithm to example graphs and

provide some preliminary experimental results. We con-

clude in Section 5.

2 Related Work

Earlier work like [1, 2, 6] propose distributed algorithms

to restore point-to-point connections after single network

failures. This work does not cope with point-to-multipoint

(multicast) connections. Associated flooding techniques

as well as necessary bidirectional message transmission

stages consume a lot of time (hundreds of milliseconds up

to several seconds, depending on the underlying infrastruc-

ture). Our proposed algorithm is intended to achieve “real-

time” property in fibre-optic networks. In broadcast terms

this generally means restoration time well below 100 mil-

liseconds. In case of a failed multicast route, the construc-

tion of a minimum spanning tree between the predecessor

of the failed node and all successors should be approached

to optimize the number of necessary restoration nodes and

therefore reduce costs. To the best of our knowledge, this

41

unique feature of our algorithm has not been published

elsewhere.

In [7], parts of the network are analyzed for backup routes

which could be used in case of a single node or link fail-

ure. This approach extends the resource reservation pro-

tocol (RSVP, RFC2208) to improve resource utilization

and achieve a higher call acceptance rate and perform a

better quality of service (QoS). The level of fault toler-

ance of each connection can be controlled separately. This

approach requires precalculation and reservation of links

which in broadcast technology are expensive. Holding the

reservation information gets more complicated within ex-

tensive networks. Our algorithm does not need any re-

served path and no communication overhead during the

restoration path calculation is necessary, which crucially

simplifies the restoration process.

In [3] several techniques and hints for designing efficient

parallel graph algorithms are given. While most of the

mentioned papers treat link failures, [8] also analyzes node

failures. Our algorithm can even cope with multiple link

and/or node failures. [13] discusses classical network re-

siliency in optical networks. [5] and [9] show a different

fault tolerant approach to achieve fault-tolerance in opti-

cal networks using p-cycle reservation technology. In [11]

dual link failures are surveyed. [12] examines a multiple

segmented backup scheme for dependable real-time com-

munication, but also relies on redundant reservation and

intrinsic costs and complexity.

In most approaches the restoration bases on network flood-

ing and some kind of path route monitoring. Both lead

to a massive communication overhead and slow down the

routing process which leads to latency times of some hun-

dred milliseconds and more depending on the size of the

network. Our concept suggests to calculate the restora-

tion path exclusively on the predecessor of the (first) failed

node. Depending on the number of failed nodes (because

of the error notification time of more distant node fail-

ures) the whole restoration concept consisting of accessing

current network layout, computing the backup route and

finally switching the rerouting paths meet the mentioned

real-time requirements.

3 The Fault-Tolerance Concept of
ZirkumFlex

3.1 Preconditions

Our approach does not assume any reserved or active

redundancy paths. Instead it assumes that there is ad-

ditional bandwidth available in the network that can be

used for a failure-triggered routing. The algorithm can

cope with Fail-stop and byzantine failures, which can

both be discovered by the network, as well as intermit-

Figure 1: Example grid graph, during algorithm run

tent failures w.r.t. the usage of a Synchronous Time Divi-

sion Multiplex (TDM) or Dynamic Synchronous Transfer

Mode (DTM) protocol with repeating time-slots and CRC-

coded information in the data stream.

We assume that a failure can be detected and broadcast im-

mediately by the node succeeding the failed node or link

in the multicast tree. Then the computation of the bypass

routes starts automatically. Restoration of the previous

routing after a switch or line repair must be done manu-

ally if necessary.

When the failure is detected, the local switch databases re-

move the failed node/link from their network graphs in-

stantly so that it is no longer used by the ZirkumFlex algo-

rithm as a potential bypass node or link.

Figure 1 depicts the ZirkumFlex algorithm operating on an

example network graph. Within the image, the set of nodes

visited during the algorithm runtime is outlined. Together

they represent the so-called regional graph.

Node s represents the source. The flash symbol marks a

failed node within the graph. If several failures appear con-

currently, it is left to the implementation whether neigh-

boring failed nodes are treated as two independent fail-

ures launching two runs of the algorithm or whether they

are consolidated into one calculation. This split permits

the algorithm to work locally, not on the whole graph.

Destination nodes d1, . . . ,d5 are shaded in dark grey. Be-

cause the multicast tree is loop-free by definition, there

is only one single predecessor per failed node. We be-

gin at the already established multicast path and assume

that the hop-distance to the source node over the multicast

path is known at each multicast transporting client. Every

node holds the multicast call number (to distinguish be-

tween several multicast routings per node), its own num-

ber, source distance d, and finally rendezvous fields con-

taining encountered predecessor and/or successor numbers

for each multicast path passing the node. A node list holds

node numbers not yet connected to any current or earlier

42

predecessor w.r.t. the multicast path.

3.2 Procedure

After a failure has been detected, the predecessor and the

successors of the failed node are determined. A follow-

ing test of the predecessor node (pre) being a member of

a unicast or multicast routing determines if any rerouting

activity is necessary. If the local node indeed is a mem-

ber, we propose to first start a relaxation (see Subsection

3.3.3), which reduces the number of potential bypass links

and increases algorithm performance. Depending on the

network topology and the failure position, this part might

not be performed in parallel.

In the sequential Zirkumflex algorithm, breadth first

searches (BFS) are started now at the predecessor(s) and

at the successor node(s) alternating1 and spread within the

regional graph. These calculations are only executed on the

predecessor node, which possesses the necessary network

information. After a BFS reaches a node which already

has been visited by another BFS a link between the two

BFS-start nodes is calculated and the path is added to an

emerging recovery path.

For the parallel version we assume that the nodes are capa-

ble of parallel calculations, use shared memory and consist

of p processors. The calculations again are executed on the

single predecessor node only. Graph breadth first searches

(BFS) for predecessors and successors of failed node(s) are

computed concurrently. The BFS runs reach the neighbor-

ing nodes step by step in parallel. There is no synchro-

nization process necessary. Because of being seperated by

the failed nodes the first search steps will not produce any

data dependencies. Upon the first detection of BFS-node

meetings the emerging bypass graph is modified. In most

cases and infrastructures the BFS runs of two nodes meet

at most once and so a write-lock can be easily applied to

handle the data dependencies.

As long as there are unreached successors do the follow-

ing:

• If the number of predecessors |P| plus the number of

successors |S| are less than or equal to the number of

the p available processors: Do BFS-runs (only for di-

rect neighbors at a time) starting on the predecessor

node and on the successor nodes (for each successor

and the predecessor one BFS is started on one proces-

sor in parallel) and mark the linked list of the reached

nodes with the path to the origin, i.e. the first detected

node gets the predecessor or successor node name in

its linked list, respectively. In the next run there are

two entries in the list and so on. If |P|+ |S| > p, then

the above procedure has to be executed using a round-

robin technique where predecessors and successors

1By alternating we mean, that for each node, we consider all neighbors

at a certain distance before switching to the next node.

53 5
Old routing

6b

6a

SFP

Bypass path

Source

New routing

DestinationP Predecessor
S SuccessorF Failed node

0 1

2 4

7

3

Figure 2: Falling node swap

visit their direct neighbors only, then the processing

is switched to the following predecessors or succes-

sors.

• If a previously predecessor-BFS-marked node is

reached by a successor-BFS, the successor node is

marked as reached and the path from the predeces-

sor to the affected successor is taken into the emerg-

ing regional graph. A simple concatenation of the

reached node’s path lists (linked list) and the node-

BFS’s path lists in inverted visit order directly deliv-

ers the path. Predecessor-BFS are stopped when all

of the successor-BFS are stopped. Successor-BFS are

stopped when the regarded node-BFS finds a connec-

tion to its or an earlier predecessor (BFS-node list).

Their corresponding node names are taken out of the

node list. Already visited nodes/edges are then ex-

cluded from further BFS-runs.

• If another successor-BFS-marked node has been

reached, the path between both successors is also

added to the regional graph. Already visited

nodes/edges are again excluded from further BFS-

runs.

This procedure puts up a local subgraph of the network

graph (regional graph) and delivers a spanning tree consist-

ing of shortest paths between successors and predecessor

in a short amount of time. [4] showed that BFS searches

find a shortest path between two nodes of a graph.

While a small number of BFS steps is sufficient in dense

graphs, some network structures lead to a surprising effect.

It may occur that a network link carries a normal multi-

cast link and a bypass link in opposite directions as seen

in Fig. 2. Supporting nodes which lie closer to the failed

node than the bypass node meeting the original path, in

the example between nodes 5 and 6, means wasting band-

width. To support nodes e.g. by using a prior calculated

and per-node marked source-distance information, routing

from a higher node number to a lower one means that the

43

old routing has to be terminated and a reverse link direc-

tion has to be applied for this graph edge when applying

the new routing.

The major advantage of this model is that the successor

nodes and further on the destination nodes get the source

stream as quickly as technically possible and nodes that

are not affected directly are not disconnected for rerouting

purposes.

3.3 Data dependencies

3.3.1 Relaxation part

The proposed data structure for an appropriate availabil-

ity graph - which is the fundamental graph our algorithm

is intended to work on - is an adjacency list representing

available links for the current multicast path bandwidth

in the local network area. Another adjacency list which

holds the predecessors for quick access is recommended.

It can easily be calculated offline from the main list in O(k)
time, where k denotes the size of the (limited) network part

known by the calculating predecessor. Alternatively an ad-

jacency matrix can be used to determine successors and

predecessors, the latter by accessing the matrix in reverse

direction. We recommend using the list version because

the underlying fibre-network represents a sparse network

graph. We assume that synchonized access to the list en-

tries is possible by read-write-locking or other appropriate

data structures. Two different kinds of processes for pre-

decessor and successor nodes are provided.

In Fig. 3 the relaxation procedure, which slightly differs

from the sequential algorithm version, is detailed. There is

no more additional call of the process if there are links left

to be removed. Starting from the failed predecessor and

successors each process takes away unnecessary links from

the network graph one by one until a branch is reached.

Therefore, prior to removing a link the process has to know

if the indegree and outdegree of a neighbor equal one. This

information has to be calculated and provided separately.

In the example in Fig. 3 the F2-process deletes the dashed

marked link. No other process will access this link by writ-

ing because all delete processes will stop at any branch of

the network. Therefore, no write-locking is necessary here.

If, on the other hand, the deletion process of F1 reaches P2

after several steps, it finds P2 as indeg=outdeg=1 and pro-

ceeds deleting the following links. For a successor, the

deletion process ends at a destination node or branch. A

predecessor run stops at a detected branch or source node.

On finding a destination node the effective starting node is

moved (corrected) until a branch is detected, but to support

the destination node no further link will be deleted.

The number of simultaneous failures to be treated depends

on the implementation target: faster computation or larger

failure count. For big graphs, we propose the former ver-

� �

������

��	
	��
��������

�
�
�

�
�

�

��
��������
	������������
�	���
������
�����

�
�

�
�

��
��������������� �!
�
��	����

�
�
����	���
������
���

"���������	�����
��	�
������
�
������� �!

�
�������������

�� �#����
��

	��������

������������������ �
������	�
�"$����������%

!
�

!
�

Figure 3: Relaxation details

sion, which assumes the determination of nodes to be col-

lected in sets and assigned to groups of failures.

3.3.2 BFS part

Also for the BFS part, we engage the adjacency list we in-

troduced in the relaxation part and use read-write-locking

per entry within the list. In the first part of the algo-

rithm, the parallel processes, executed only at the prede-

cessor node, begin from different nodes (predecessor and

successors) per definition and perform read-and-write ac-

cess to the referring node entries within the list. As long as

new nodes are being detected, they are untouched by other

processes; thus, collisions are not conceivable and write-

lock will be efficient. When finding an already touched

node, each process writes its own path information into

the BFS-node list. In parallel, the path information in the

node is concatenated and the result is stored in the emerg-

ing ZirkumFlex-graph. Compared to the number of vis-

ited nodes, conflicts in the graph construction process are

relatively rare hence the read-write-locking is a practica-

ble way for handling dependencies. After finishing the

construction of the bypass path a DFS over the remaining

graph makes sure that potential loops are eliminated.

3.3.3 FNDS part

After establishing the bypass path, the assembly of the

routing commands has to be checked for routings which

lead opposite to the original direction. The old routing

links have to be removed to drop the reservation of un-

necessary bandwidth. This part as secondary priority can

be done while or even after sending the routing commands

because the former direction cannot be necessary for the

bypath path2. As a prerequisite, the distances to the source

2The bypass path is loop-free and directing the signal on a link in both

directions would presume a loop.

44

������ �

��������	
��
���

�

�

�

�
�

�
�

�

�

�

Figure 4: Predecessor BFS touching successor-BFS

node for each multicast call is marked into a node. The

routing commands can be analyzed for routing from higher

to lower marked nodes. In that case, the old routing direc-

tion has to be deleted.

4 Example Graphs

The efficiency of the ZirkumFlex parallelization has been

tested by several carefully chosen example graphs. When

looking at Fig. 4, we see the predecessor BFS reaching its

three incident nodes and the successor nodes which both

also reach three nodes and connect together to the shortest

bypass route. In theory, there are only three process steps

necessary when parallel processes are used, or nine steps

sequentially. This results in a speedup of 3.

In Fig. 5, we consider two failed nodes in an example grid

graph. This graph exemplifies the other extreme of the

speedup-range. There are five successors, one predeces-

sor and 16 links to visit sequentially. Parallel processes

need no more than three links concurrently when

Speedup =
no. o f visited nodes

no. nodes handled per processor
=

16

3
= 5.3

This graph demonstrates another fact: The maximum

speedup is directly proportional to the number of succes-

sors plus predecessors. Concerning grid graphs the max-

imum number of successors per failure equals three like

already seen in Fig. 4. The handling of several failures

allows an accordingly larger number of parallel processes

leading to a accordingly larger speedup.

In a tested grid graph 8 neighboring failed nodes on a uni-

cast path lead to a regional graph of about 200 nodes. A

series of failed nodes on a unicast path represents the worst

case for our algorithm within grid graphs. In this case,

the parallel version of our algorithm reaches a speedup of

2. The BFS calculation can be split and starts from pre-

decessor and successor in parallel. As a result of exam-

ples with several graphs of different sizes with an arbitrar-

ily chosen number of failures and the experience with the

������ �

��������	
��
���

�

�

�

�

�

�

�

�

�
�

�
�

�

�
�

�
�

�

�

�
�

�

Figure 5: Two failed nodes and BFS propagation

� �
����	
��
�
��
�
	�

�
��
	
��

�
�
	
�
��

�
�

�
�

�
�
�

� � �

��

��

���

��	
���
�
��	
���

����

�

�����	�	
��

���

��

��������	
����
�
���
�
��
�

��

Figure 6: Regional graph size

limitation concerning the relation of successors and pro-

cesses the diagram in Fig. 6 has been set up. It displays the

upper and lower limits of the runtime with sequential as

well as parallel computation on different topologies on the

basis of failed node number against regional graph size.

It can clearly be seen that the size of the regional graph

grows linearly with the number of failures and the aver-

age speedup over the tested topologies is about 3.7. There

is no overlapping of the areas and therefore no topology

and failure layout where the parallel version would lose

performance. Since in practical applications there is some

overhead in splitting tasks to processes, the exact resulting

speedup value will also depend on the number and position

of failures relatively to the multicast path and on the graph

topology itself.

5 Conclusion and Outlook

We have presented a parallel version of the fault-tolerance

algorithm Zirkumflex, together with some refinements of

the sequential algorithm itself. Our preliminary experi-

ments indicate that within grid graphs the parallel imple-

mentation speeds up linear with the number of multicast

45

path-successors and therefore the usable number of pro-

cessors. Even in the worst case (several failed nodes in a

series on a unicast path within a grid graph) we still achieve

speedup 2. Starting from predecessors and successors the

BFS propagation synchronously sweeps in circles upon ex-

isting links until they meet. Within general graphs the effi-

ciency will not be as high because there are no underlying

symmetries which allow a more or less equal runtime of the

processes. The minimum speedup will always be above 2,

yet. As in the sequential version of the algorithm there is

no need of redundant paths, path reservations and no com-

munication overhead. All surveyed alternatives suffer at

least from one of the mentioned drawbacks, communica-

tion overhead or bandwidth use. After a failure of one or

more neighboring nodes recalculation of the multicast path

is done automatically and in a very short time.

To further increase re-routing speed on a larger number of

sequential failures the regional graph could be restricted.

Meeting the criterion for this purpose will be the subject of

further work.

References

[1] C. Edward Chow, Steve McCaughey, and Sami Syed.

Rreact: A distributed protocol for rapid restoration

of active communication trunks. In Proc. 2nd IEEE
Network Management and Control Workshop, 1993.

[2] E. Chow, J. Bicknell, S. McCaughey, and S. Syed.

A fast distributed network restoration algorithm. In

Twelfth Annual International Phoenix Conference on
Computers and Communications, pages 261–267,

1993.

[3] Guojing Cong and David Bader. Techniques for de-

signing efficient parallel graph algorithms for SMPs

and multicore processors. In Ivan Stojmenovic,

Ruppa Thulasiram, Laurence Yang, Weijia Jia, Minyi

Guo, and Rodrigo de Mello, editors, Parallel and
Distributed Processing and Applications, volume

4742 of Lecture Notes in Computer Science, pages

137–147. Springer Berlin / Heidelberg, 2007.

[4] B. A. Crane. Path finding with associative memory.

IEEE Transactions on Computers, C-17(7):691–698,

July 1968.

[5] Hamza Drid, Samer Lahoud, Bernard Cousin, and

Miklós Molnár. A topology aggregation model for

survivability in multi-domain optical networks using

p-cycles. In Proc. 6th IFIP International Conference
on Network and Parallel Computing, pages 211–218,

2009.

[6] W.D. Grover. Selfhealing networks: a distributed al-
gorithm for k-shortest link-disjoint paths in a multi-
graph with applications in real time network restora-
tion. PhD thesis, University of Alberta, 1990.

[7] P. Krishna Gummadi, Jnana Pradeep Madhavarapu,

and C. Siva Ram Murthy. An efficient primary-

segmented backup scheme for dependable real-time

communication in multihop networks. IEEE/ACM
Trans. Netw, 11(1):81–94, 2003.

[8] H. Komine, T. Chujo, T. Ogura, K. Miyazaki, and

T. Soejima. A distributed restoration algorithm for

multiple-link and node failures of transport networks.

Proceedings GlobalCom ’90, 1990.

[9] C. Liu and L. Ruan. p-cycle design in surviv-

able WDM networks with shared risk link groups

(SRLGs). Photonic Network Communications,

11(3):301–311, 2006.

[10] R. Messmer and J. Keller. Real-time fault-tolerant

routing in high-availability multicast-aware video

networks. In Felix C. Freiling, editor, Sicherheit
2010, Lecture Notes in Informatics, GI Edition,

pages 49–60, 10 2010.

[11] Srinivasan Ramasubramanian and Amit Chandak.

Dual-link failure resiliency through backup link mu-

tual exclusion. IEEE/ACM Trans. Netw, 16(1):157–

169, 2008.

[12] G. Ranjith and C. Siva RamMurthy. A multiple

segmented backups scheme for dependable real-time

communication in multihop networks. In Proc.
17th International Parallel and Distributed Process-
ing Symposium, page 121, Nice, France, April 2003.

IEEE Computer Society (Los Alamitos, CA).

[13] Lena Wosinska, Didier Colle, Piet Demeester, Kostas

Katrinis, Marko Lackovic, Ozren Lapcevic, Ilse

Lievens, George Markidis, Branko Mikac, Mario

Pickavet, Bart Puype, Nina Skorin-Kapov, Dimitri

Staessens, and Anna Tzanakaki. Network resilience

in future optical networks. In Ioannis Tomkos,

Maria Spyropoulou, Karin Ennser, Martin Köhn, and

Branko Mikac, editors, COST Action 291 Final Re-
port, volume 5412 of Lecture Notes in Computer Sci-
ence, pages 253–284. Springer, 2009.

46

