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Abstract: To reduce 𝐶𝑂2 emissions in the mobility sector, battery electric service vehicles might
play an important role in the future. Here, an optimal charging scheduling use case will be presented
which includes local solar power generation for minimizing the power grid usage for electric service
vehicles. Different formulations of the use case are given to illustrate the differences for classical and
quantum-based optimization using a mixed integer linear program and a quadratic unconstrained
binary optimization program, respectively. Addtionally, we study the complexity of our benchmark
experiments by characterizing the respective QUBO matrices and the optimization landscapes. It is
shown how the setting of the parameters of a certain experiment and its penalty function inŕuences the
complexity for a quantum-based optimizer. Additionally, we present a comparison of the computing
times and summarize the current state of gate-based quantum computing for electromobility.
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1 Introduction

Reducing greenhouse gases dramatically is one of the major challenges in the near-term

future. To achieve this goal within the mobility sector, by assuming that the number of

electric vehicles worldwide registered will rise to 140 million or more by 2030 [ABG+20],

it is obvious that the mobility sector might have a large impact in that challenge. However,

optimal utility of ŕuctuating renewable energy generation is a requirement to achieve

𝐶𝑂2-neutral charging of electric vehicles. Next to the private sector, the service sector

has to reduce its emissions, here we investigate the optimization of a charging scheduling

problem for electric service vehicles of an airport. Based on the proposed progress of

quantum computing for optimization applications, we present an approach which can be

used for gate-based quantum computing and quantum annealing.

2 Model formalism and benchmark

We consider a system at the airport Erfurt-Weimar to charge a couple of electric service

vehicles based on the ŕight schedule and the availability of photovoltaic (PV) electricity
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generation.

The target is to optimize the charging schedule for several service electric vehicles (EVs) in

accordance with the ŕight schedule by using predominantly the electricity generated by a

roof-top photovoltaic station to minimize the electricity costs and the 𝐶𝑂2 emissions.

The classical optimization problem can be formulated using unit-less values as an integer

linear problem

𝑧 = 𝑚𝑖𝑛

(

∑︁

𝑡

| 𝑗 (𝑡) − 𝑝𝑣(𝑡) |

)

(1)

w. r. t. 𝑗 (𝑡) ≤ 𝑗𝑚𝑎𝑥 (𝑡) (2)
∑︁

𝑡

𝑗 (𝑡) ≥ 𝑒𝑚𝑖𝑛 (3)

∑︁

𝑡

𝑗 (𝑡) ≤ 𝑒𝑚𝑎𝑥 . (4)

with the PV power forecast time series 𝑝𝑣(𝑡), the (aggregated) maximal charging power

forecast 𝑗𝑚𝑎𝑥 (𝑡), the minimal and maximal charging energies 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 . Eq. (1) is our

target (or cost) function of the integer linear program.

However, for the use of quantum computing, i. e., quantum annealing and quantum

approximate optimization algorithm (QAOA) for gate-based quantum computing, the

optimization problem is usually written as a quadratic unconstrained binary optimization

(QUBO) problem [Ko14; Lu14]. Therefore, we replace the absolute value function of

the target function by a square function. This step causes that certain entangled states

of the original expression might be shifted to higher target values. However, these states

contain higher charging power peaks, which might negatively affect the electric grid and,

thus, should be generally avoided, i. e., this shift does not alter our optimization problem

negatively.

The constraints have to be included into the target function, which can be done using

quadratic penalty functions and penalty factors.

To yield the QUBO representation, the integer values 𝑗 (𝑡) are mapped to an appropriate

binary representation [Kü21; Lu14]

𝑗 (𝑡) =

𝑏 (𝑡 )−2
∑︁

𝑛=0

2𝑛 𝑗𝑛 + ( 𝑗𝑚𝑎𝑥 (𝑡) − 2𝑏 (𝑡 )−1 + 1) 𝑗𝑏 (𝑡 )−1 . (5)

with the necessary number of binary variables 𝑏(𝑡) ≔ ⌈log2 ( 𝑗𝑚𝑎𝑥 (𝑡) + 1)⌉. This choice

of binary representation already ensures the őrst constraint (2) and, thus, only two penalty

functions have to be considered.

The QUBO formulation of the optimization model representing the target function in eq. (1)

as well as the two constraints of eqs. (3)-(4) can be written as

𝑧 = 𝑚𝑖𝑛

(

∑︁

𝑡

( 𝑗 (𝑡) − 𝑝𝑣(𝑡))2 + 𝐶𝑎 + 𝐶𝑏

)

(6)
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where

𝐶𝑎 = 𝑃𝑎

(

∑︁

𝑡

𝑗 (𝑡) − 𝑡 − 𝑒𝑚𝑖𝑛

)2

(7)

𝐶𝑏 = 𝑃𝑏

(

∑︁

𝑡

𝑗 (𝑡) + 𝑣 − 𝑒𝑚𝑎𝑥

)2

. (8)

To obtain the quantum mechanical Hamiltonian [Lu14], the binaries are substituted in eq. (5)

by

𝑗𝑛 =

1

2

(

1 + 𝜎𝑧
𝑛

)

, (9)

to act on respective qubits.

To be able to compare classical solvers and the hybrid quantum classical algorithm QAOA

[FGG14], we created a benchmark consisting of 28 experiments with different complexity

and varying number of binaries/qubits ranging from 3 to 23. The amount of qubits is limited

by the quantum hardware. As an example, the experiment 28 of our benchmark is visualized

in Fig. 1. The parameters can be found in Tab. 1
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Fig. 1: Visualization of the input time series for experiment 28. The PV forecast time series 𝑝𝑣(𝑡) is

given in green, whereas the maximal charging power forecast 𝑗𝑚𝑎𝑥 (𝑡) is marked by the bold black

line.
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3 Complexity

The details for four speciőc benchmark experiments are given in Tab. 1 to represent our

complexity study. It can be seen from table that the number of time steps is increased

Fig. 2: Overview of QUBO matrices for experiments 1 (upper left), 7 (upper right), 27 (lower left) and

28 (lower right).

Tab. 1: Details of selected benchmark experiments

exp. ®𝑗𝑚𝑎𝑥 ®𝑝𝑣 𝑒𝑚𝑖𝑛 𝑒𝑚𝑎𝑥 nr. qubits

1 [0, 1] [0, 1] 0 1 3

7 [7, 5] [10, 3] 1 10 14

27 [5, 1, 2, 4, 2, 1, 3, 4] [1, 3, 2, 5, 2, 1, 2, 4] 2 5 23

28 [0, 1, 2, 1, 2, 1, 0, 1, 2] [1, 1, 2, 0, 2, 1, 2, 1, 3] 0 1 12

for the selected experiments 1 to 28. However, the number of qubits increases only from

experiment 1 to 27 and it is reduced in experiment 28 compared to 27. This is due the

reduction of the maximal number of charging levels 𝑗𝑚𝑎𝑥 (from 5 in exp. 27 to 3 in exp.

28). Thus, the largest number of qubits is found for exp. 27 due to a combination of the

number of time steps and charging levels.
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To study the complexity of the combinatorial optimization program, we show the QUBO

matrices of the selected experiments in Fig. 2. The non-zero qubits related to the optimization

variable 𝑗 representing the cost function are marked in blue, whereas the penalties causes

the qubits marked in red to be non-zero. Obviously, the most of the non-zero elements

in the QUBO matrix originates from the penalties since eqs. (7) and (8) describe global

penalties, i. e., corresponds to interactions between all 𝑗 qubits. Another remarking point is

that there are qubits, which are not included in the cost function but represents the slack

variables 𝑡 and 𝑣 in the penalty terms of eqs. (7) and (8). Their number is determined by

the values of the binary representation of parameters 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 . Although the cost

function includes rather limited coupling of the qubits, it is observable that an increase

of the maximal charging levels 𝑗𝑚𝑎𝑥 (𝑡) at a certain time step 𝑡 yield to an interaction of

the qubits representing the integer value 𝑗 as a binary, see the blue marked elements in

Fig. 2, e. g., for exp. 7. Since for future applications, a large amount of charging levels is

expected, this increase in complexity should be considered for a strategy to achieve quantum

advantage with shallow circuits [BGK18] in this special application case.

Since the coupling of the QUBO matrix does not necessarily correspond to a increase

in complexity in the optimization landscape for the quantum approximate optimization

algorithm [FGG14] with 𝑝 = 1, we also study the landscape in Fig. 3. The optimization

landscape corresponds to the expectation value of the sampled cost functions. In Fig. 3,

we show the landscapes for experiments 1 (upper part) and 7 (lower part). On the left of

őg. 3, the landscape is drawn for the program without penalties, i. e., 𝐶𝑎 = 𝐶𝑏 = 0, and on

the right, it is shown considering the penalties. As indicated by the QUBO matrices, the

penalties complicate the optimization landscape by increasing the number of local minima

but also by increasing the variance of the landscape. Both effects might yield to problems for

the classical optimizer of the QAOA algorithm to őnd the optimal values for the parameters

𝛾 and 𝛽 for the cost Hamiltonian and the mixing Hamiltonian, respectively.

4 Summary and Outlook

We have shown the formulation of a real-world application using MILP and QUBO models

and the involved complexity for the QUBO model using a visualization of its matrices and

the optimization landscape. The next step will be to analyze if a measure of complexity

can be found based on the optimization landscape and if it can be estimated using only the

(easily available) QUBO matrix. Since the main part of the coupling terms within the QUBO

matrices arises from the global penalties, different implementations of the penalties will be

considered in future works. Here, a promising approach seems to be an implementation

using conditional gates or a dynamic decoupling approach [De22].

Additionally, we will study if a QAOA algorithm can be used to solve benchmark experiments

resembling real-world application scenarios. We will build the algorithm for real quantum

hardware and consider different transpiling, mapping and dynamic decoupling strategies to

őnd the most suitable approach for our benchmark. Additionally, we will investigate the

1149



Fig. 3: Energy landscapes for experiments 1 (upper row) and 7 (lower row), without penalties (left

column) and with penalties (right column).

inŕuence of the classical and quantum part of the hybrid quantum-classical approach to

discover bottlenecks and improvements.
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