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Abstract: In this paper the use of electroencephalogram (EEG) as biometric iden-
tifier is investigated. The use of EEG within the biometric framework has already
been introduced in the recent past although it has not been extensively analyzed. In
this contribution we apply the “bump” modelling analysis for the feature extraction
stage within an identification framework, in order to reduce the huge amount of data
recorded through EEG. For the purpose of this study we rely on the “resting state with
eyes closed” protocol. The employed database is composed of 36 healthy subjects
whose EEG signals have been acquired in an ad hoc laboratory. Different electrodes
configurations pertinent with the employed protocol have been considered. A classifier
based on Mahalanobis distance have been tested for the enrollment of the subjects and
their identification. An information fusion performed at the score level has shown to
improve correct classification performance. The obtained results show that an identifi-
cation accuracy of 99.69% can be achieved. It represents an high degree of accuracy,
given the current state of research on EEG biometrics.

1 Introduction

EEG waves have been largely studied in the past with the aim of analyzing brain func-

tioning, reflected in rhythmic activity of local or widespread neurons’ networks during

specific mental states. This activity can be measured extracting from the EEG signals the

main brain rhythms involved in the integration of different processes, which show spe-

cific frequency content: δ([0.5− 4]Hz), θ([4− 8]Hz), α([8− 14]Hz), β([14− 30]Hz) and

γ(over 30Hz). The description of the brain functioning represented by EEG oscillations,

recorded from the different scalp regions, is supposed to reflect individual-specific anatom-

ical and psycho-physiological traits. In the last decade EEG signals have been proposed

to be used in biometric based recognition systems. The aim of such frameworks is to de-

tect and quantitatively evaluate inter-subject variability in EEG features, expected to show

stability in an individual over time, as discussed in [CLRS12]. Some promising results

have been obtained employing different EEG acquisition protocols, involving both resting

conditions with closed or opened eyes, and response to specific internal or external events.

EEG signals present some peculiarities, which are not shared by the most commonly used

biometrics, like face, iris, and fingerprints. Specifically, brain signals, as a result of the

electrical activity of the cortex, are not exposed like face, iris, and fingerprints. Therefore,
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they are more privacy compliant than other biometrics since they are ”secret” by their na-

ture, being impossible to capture them at a distance. This property makes EEG biometrics

also robust against the spoofing attack at the sensor, since an attacker would not be able

to collect and feed the EEG signals, which are the result of ionic current flows within the

neurons of the brain. Moreover, being brain signals the result of a cognitive process, they

cannot be synthetically generated and fed to a sensor, which also addresses the problem

of liveness detection. Also, the level of universality of brain signals is very high. In fact

people with some physical disabilities, preventing the use of biometrics like fingerprint or

iris, would be able to get access to the required service using EEG biometrics. Due to a

not practical acquisition process, also very sensitive to external and physiological noise,

applications of EEG biometrics could be designed within high security contexts, given the

actual technology. In fact, applications for everyday life access to personal utilities would

result very impractical. Some interesting evidences have already been obtained in the re-

cent literature, see for example [PRCE99], [BK10], [RSFC+], [MdRM07], and [CSB+11]

where a review on the state of the art of EEG biometrics is also given. In the aforemen-

tioned papers, different acquisition protocols have been employed, such as closed or open

eyes resting conditions, where the user is asked to rest and not to perform any specific task,

or response to specific stimuli. Despite the promising results a systematic analysis of EEG

biometric traits aiming at identifying individual specific features is missing.

The purpose of this work is to provide an analysis of parametric time-frequency maps of

the acquired EEG signals, in order to identify distinctive measures of the map parameters

for each individual. Therefore, in the proposed EEG-based biometric framework we focus

on the features extraction stage, evaluating the significance of each considered variable

in catching the differences between individuals. We rely on the resting state acquisition

protocol to acquire data from 36 healthy subjects. Different configurations for the spa-

tial placement of the electrodes are tested. Specifically, sets of three acquisition channels

are considered selecting inter-hemispheric symmetrical configurations and combinations

of mid-line electrodes. The analysis of each frequency band is also carried out in order to

evaluate features of different brain rhythms, functionally involved in the integration of dif-

ferent kind of brain activities. The so acquired signals, after proper preprocessing, are then

modeled employing wavelet decomposition to extract time-frequency maps. The wavelet

analysis of EEG signals allows to obtain a dynamic representation of the frequency content

able to catch even transient phenomena. The multi-scale approach allows to locate accu-

rately time-frequency oscillations with different resolutions in the time-frequency space.

Bump modelling of wavelet maps is subsequently performed in order to reduce the data

dimensionality, and to provide relevant features. Fusion at the matching score level is also

performed. The proposed system uses the combination of scores obtained considering dif-

ferent electrodes configurations and different frequency bands. A Mahalanobis distance

based classifier is tested for identification purpose.

The paper is organized as follows. The employed modelling is detailed in Section 2, and

in Section 3 the acquisition protocol, the template extraction stage and the classification

procedure are described. Experimental results are given in Section 4, where the recognition

performance is reported for all the tests carried out. Finally conclusions are drawn in

Section 5.
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2 Bump modelling

Given raw EEG signals collected thruogh a multi-channel EEG device, we seek to obtain

a set of parameters allowing characterizing subjects from their brain electrical activity.

In order to achieve this goal, we use bump modelling [VMD+07], which is a technique

for modelling a timefrequency map, with the aim of representing the map with a limited

number of elementary functions. The purpose is to reduce the huge quantity of parameters

that describe a timefrequency map, tens to hundreds of thousands, to a sum of parametric

functions, a few functions with some tens of parameters. These parameters will be used in

order to characterize each subject.

The main idea of this method is to approximate a time-frequency map with a set of prede-

fined elementary parameterized functions called bumps; therefore, the map is represented

by the set of parameters of the bumps, which is a very sparse encoding of the map, re-

sulting in information compression rates that range from one hundred to one thousand

(rationales for this procedure, proofs and technical details are explained in [VMD+07]).

The algorithm performs the following steps on the time-frequency maps (after appropriate

normalization):

i window the map in order to define the zones to be modelled (those windows form a

set of overlapping sub-areas of the map);

ii find the window that contains the maximum amount of energy;

iii adapt a bump β to the selected zone, and withdraw it from the original map. The

parameters of the bumps are computed using the BFGS algorithm [PFTV92] in order

to minimize the cost function C defined by:

C =
1

2

∑
t,f∈W

(zf,t − β(f, t))2 (1)

where the summation runs on all pixels within the window W, zf,t are time-frequency

coefficients at time t and frequency f , and β(f, t) is the value of the bump function at

time t and frequency f ;

iv if the amount of information modelled by the bumps reaches a threshold, stop; else

return to (iii).

EEG signals are transformed to time-frequency maps using Complex Morlet wavelets, as

they are appropriate for time-frequency analysis of electroencephalographic signals be-

cause of its symmetrical and smooth Gaussian shape both in time and frequency domains

[KMR87].

w(t) = exp(−t2/2σt
2) exp(2iπrt) (2)

Bump functions used are half ellipsoids. Half ellipsoids (see Figure 1) are defined by:

β(f, t) = a
√

1 − v for 0 ≤ v ≤ 1

β(f, t) = 0 for v > 1
(3)
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Figure 1: Half ellipsoid bump function.

Figure 2: Left: normalized time-frequency map of an EEG recording; middle and right: 2D and 3D
bump modeling of the map.

where v = (ef
2 + ef

2) with ef =
f−µf

lf
and et = t−µt

lt
. µf and µt are the coordinates

of the center of the ellipsoid, lf and lt are the half-lengths of the principal axes, α is the

amplitude of the function, t is the time and f the frequency.

Figure 2 shows a typical example of bump modelling of the time-frequency map of an

EEG recording. Each bump is described by 5 parameters: its coordinates on the map

(2 parameters), its amplitude (one parameter) and the lengths of its axes (2 parameters).

All the experiments performed in this work have been done using the BUTIF Toolbox

[VSCD+09]1

3 Data Analysis

In the data collection stage brain activity was recorded using a BrainAmp recording sys-

tem, from Brain Products2, operating at a sampling rate Sr = 200Hz. The EEG record-

ings of NC = 36 healthy volunteers have been acquired. Informed consent was obtained

from each subject after the explanation of the study, which was approved by the local in-

stitutional ethical committee. During the experiment, the participants were comfortably

1publicly available at: http://www.bsp.brain.riken.jp/˜fvialatte/bumptoolbox/

toolbox_home.html
2details on the amplifier device in http://www.brainproducts.com/index.php
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Figure 3: Electrodes positioning using the extended 10-20 international system.

seated in a reclining chair with both arms resting on a pillow in a dimly lit room, properly

designed in order to minimize external sounds and noise, not interfering with the attention

and the relaxed state of subjects. The EEG was continuously recorded from CT = 56
sites on the scalp, positioned according to the 10 − 20 international system as shown in

Figure 3, and potentials were referenced to the average signal from the ear lobes. Before

starting the recording session, the electrical impedance of each electrode was kept lower

than 10kOhm through a dedicated gel maximizing the skin contact and allowing for a low-

resistance recording through the skin. A set of NC = 36 EEG digital recordings from

CT = 56 channels V ch
i [n], for i = 1, · · · , NC , n = 1, · · · , NT , and ch = 1, · · · , CT has

been obtained. The recorded signals have been consequently preprocessed as described in

3.2.

3.1 EEG acquisition protocol

Since the earliest applications of the EEG signals, particular interest has been shown in the

study of cerebral activity during resting sate, due to the amount of information conveyed in

it with respect to brain functioning and organization. Specific features of the brain activity

during resting, as described by EEG signals, have given some indications about their capa-

bility to distinguish among people. In fact the resting state protocol has been employed in

the biometric framework [ASLA10], [LRCS12] for recognition purpose. In the presented

work we refer to EEG signals acquired during resting conditions. Specifically, the subjects

were asked to perform one minute of “resting state with closed eyes”. Therefore in each

session an NT = 200×60 samples long record was provided for each acquisition channel.
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3.2 Preprocessing

In the preprocessing stage raw signals are first downsampled applying a decimation factor

to the collected data. A sampling rate of Sr = 100Hz and its anti-aliasing FIR filter are se-

lected according to the Nyquist theorem. A further band-pass filtering stage is applied after

down-sampling in order to retain spectral information in the band [0.5, 40]Hz, containing

most of the frequency components of interest referring to the resting state condition. The

so obtained signals are then segmented into M overlapped frames of length T . A frame

length of T = 15s is selected, in order to achieve a trade-off between the sample size

and the quality of the time-frequency decomposition at lower frequency range. Specifi-

cally, a time interval of one second is considered between the beginnings of consecutive

frames. Such a considerable overlap resulting from the described segmentation is needed,

due to the small sample size, in order to obtain an adequate number of instances which

generate class distributions required when training the proposed classifier. M = 45 EEG

overlapped frames are obtained for each subject and each channel. Subsequently the DC

component is removed from each EEG segment, and a z-score normalization of each sig-

nal is performed in order to make signals referring to different acquisition sessions (users)

reliably comparable, removing differences due to scale factors. The so obtained datasets,

{Zch
i,m}, with i = 1, · · · , NC , ch = 1, · · · , CT , and m = 1, · · · , M is further processed

to extract time-frequency maps from each user brain signal, as described in the following

section.

3.3 Modelling and features extraction

In the herein proposed study, particular interest was directed to the data modelling in

the time-frequency domain as described in Section 2. In more detail, for each subject i
and each channel ch, the wavelet decomposition of EEG signals was computed employing

Complex Morlet waveform, so that each frame m was represented by the extracted wavelet

coefficients in the time-frequency space. The frequency range from 3Hz up to 40Hz was

investigated, while lower frequencies were removed from the analysis, since the selected

frame length limited the estimation accuracy of the related wavelet coefficients. Maps of

coefficients were obtained analyzing the different brain rhythms θ, α, β and γ[30− 40]Hz

individually, as well as altogether. Therefore for each of the M EEG frames, five maps

were provided zb
f,t, with b ∈ {[3 − 40]Hz, θ, α, β, γ[30 − 40]Hz}. Bump modelling was

then employed to obtain a parametric description of most energy contained in the wavelet

maps, as described in Section 2. The publicly available BUTIF toolbox was used to extract

the 5 parameters for each bump fitting the energy spots in the time-frequency representa-

tion of the EEG signals. Subsequently the analysis of the obtained parametric maps was

performed in order to extract discriminant features, as reported in the following. A sta-

tistical analysis was carried out considering the median values for the amplitude (A), the

central frequency (fc), the volume (v), the surface of the meridian ellipse (a), the height

(extension in frequency h) and the width (extension in time w) of the extracted bumps,

modelling the time-frequency maps. Also we included in the analysis of features the to-

tal number of bumps for each map, the sum and max values of A, fc, v, a, h and w, the

number of bumps within different ranges of the investigated time-frequency domain, the

amplitudes and central frequencies of bumps showing max values of parameters a, v, w
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and h. Moreover for each bump map we obtained the spectral centroid c(t), that is the

“center of mas” of the bumps in the frequency domain defined for each time step t, com-

puted as the weighted mean of the frequencies present in the map for each instant, with

the corresponding map amplitudes as the weights. The average value over time of c(t)
was considered as a further feature. Furthermore, each of the listed parameters were also

computed for filtered maps where a threshold value τ = 0.4 was applied to the bump

amplitude A. Therefore a feature vector of 39 components ζtot = [ζ, ζτ ] was obtained

for each EEG frame, where parameters referred respectively to the unfiltered and the fil-

tered maps were concatenated. The one-way Analysis of Variance (ANOVA) [Sch99] was

performed in order to explore the within-subject and between-subjects variance of each

feature extracted from the parametric time-frequency maps. Within the assumptions of

normal distributions of features, homogeneity of variance of the different group distribu-

tions, and independence of observations, the null hypothesis to test was that data extracted

from all groups (corresponding to subjects) show the same stochastic distribution, and that

observed differences of values assumed by a certain feature between subjects is due to the

case. According to the outcome of the test, the features which showed to vary significantly

between subjects were selected to train the classifier for the recognition purpose. The so

selected features were further tested performing the same ANOVA analysis for each pair of

subjects, in order to verify the disjunction of all subjects from each-others. A final combi-

nation of features was selected, such that all pairs of subjects showed significant difference

for most of them (at least two thirds). As a result of the statistical analysis, two thirds of

the computed features were discarded and the remaining 13 discriminant parameters were

considered to form the feature vector used to train and test the classifier. The features

which individually showed to significantly discriminate group (subject) distributions with

a confidence level of 99% are: the median value of A for both the unfiltered and filtered

maps, the median value of v, the number of bumps within different adjacent ranges of the

investigated time-frequency domain (6 elements), the number of bumps with A > τ , the

sum of the values of A for both the unfiltered and filtered maps, and the mean of c(t) over

time. Different spatial distributions of sets of three electrodes were considered, placed

according to both symmetrical inter-hemispheric and mid-line configurations, as shown

in Figure 3 with the marked electrodes. Features related to channels of each set under

analysis were concatenated in a unique vector. Therefore, the resulting feature vector was

obtained for each subject i, each set of channels Ch, each rhythm b and each frame m,

providing a dataset Ch
b ζ̂i(m) to evaluate the recognition performance as discussed below.

3.4 Classification

A linear discriminant analysis was performed for the identification purpose, in order to

predict the class, namely the user identity, to which the observed feature vector ζ̂ belongs

to. The model used for the discriminant analysis assumes that the vector ζ̂ has a Gaussian

mixture distribution, the same covariance matrix for each class, and that only the means

vary. The extracted feature vectors were divided into a training dataset ζ̂train used to enroll

users, and a test dataset ζ̂test used to test the classification performance in terms of correct

recognition. The correct recognition rate (CRR) we computed to evaluate the system’s ac-

curacy is defined as the average over the diagonal of the resulting misclassification matrix.

It represents the percentage of test trials which led to a correct identification of each user
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within the cross-validation framework provided, averaged over the subjects. The classifier

we implemented is based on the assumption of Gaussian mixture distribution drawn by

the feature vectors of the training dataset. Mahalanobis distances, in squared units, are

computed between each observation in the test dataset, that is feature vectors averaged

over frames, and the mean of each of the NC class distributions representing the training

dataset. For each tested condition, the classification of the extracted feature vectors was

carried out within a cross-validation framework providing 45 runs. In each cross-validation

run a different partition of the entire dataset into training and test subsequent frames was

provided, consecutively selecting one of the M = 45 frames to start the training. Due

to the small sample dimension when considering 60 seconds EEG recordings, initial tests

were carried out including overlapping frames between the train and test datasets in the

analysis. In this initial experiments 35 frames were used to train the classifier and the re-

maining 10 frames to test the recognition accuracy. The best performing conditions were

further examined removing the overlap between the training and test datasets, and the re-

sulting performance shift was evaluated. In this latter case 20 consecutive frames were

employed in the training stage, while only 5 consecutive frames form the test dataset. For

each considered frequency band and each set of channels, the training stage consists of

the evaluation of the class distributions of the feature vectors ζ̂, which were supposed

belonging to the Gaussian mixture. In the test stage for each user j to be identified, the

Mahalanobis distances d(j, i) between the mean of the feature vectors ζ̂test
j and the means

of the observed NC class distributions µi were evaluated. For each considered vector a

transformation of the classifier score d(j, i) was obtained performing the multiplicative in-

verse s(i, j) = 1/d(j, i). An information fusion integrating multiple sensors distributions

and brain rhythms was then performed at the match score level, which is the most common

approach in multibiometric systems [RNJ06]. The aim was to determine the best sets of

channels configurations and frequency bands that could optimally combine the decisions

rendered individually by each of them. The score fusion was obtained through the sum∑NB

b

∑S
Ch sb

Ch(i, j) of scores related to specific bands b ∈ NB and selected sets Ch ∈ S
composed of three electrodes. All tests performed and obtained results are reported in the

next Section.

4 Results and Discussion

For the purpose of user identification EEG signals have been acquired from 36 subjects

in resting conditions3, and modelled in the time-frequency domain, in order to extract

discriminant features. Bump modelling has been employed to reduce the dimensionality

of the time-frequency representation of each EEG segment, while retaining most of the

energy content, as discussed in Section 2. Within the feature extraction stage of the pro-

posed biometric framework an extensive analysis of the parameters which describe the

bump maps led to obtain a set of discriminant traits. Different tests have been carried

out in order to infer about the best performant electrodes configuration and to analyze

the distinctive contribution of each brain rhythm. More in detail, given the “resting state

with eyes closed” acquisition protocol here investigated and the 56 employed channels

shown in Figure 3, we considered different subsets of acquisition channels in order to find

3The authors thank prof. F. Babiloni Fondazione Santa Lucia, Rome, for having provided the dataset
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the best performing spatial arrangements of the electrodes while minimizing their num-

ber. To achieve this goal we selected sets of three symmetrical inter-hemispheric and sets

of mid-line electrodes. Template extraction has been performed as described in Section

3.3, by first preprocessing the EEG signals, which includes decimation with sampling rate

Sr = 100Hz, band-pass filtering to remove very low and high frequency noise, z-score

normalization and segmentation into overlapping frames of T = 15s. Then the so ob-

tained frames are modeled through wavelet decomposition and parametric functions are

used to obtain compact representations of the extracted wavelet coefficients in the time-

frequency domain, employing the BUTIF toolbox. Different features have been extracted

from the bump maps, and the analysis of variance was employed to evaluate the inter-

subject variability of each of them, so that 13 features have been selected as discussed in

Section 3.3. The subbands related to the different brain rhythms θ, α, β, γ([30 − 40]Hz),
which are the ones interested by the “resting state with eyes closed” protocol, and their

combination [3 − 40]Hz are individually modelled and analyzed. For each identity the

template is subsequently obtained by concatenating the selected features related to the dif-

ferent electrodes in the set under analysis, thus generating feature vectors of length 13× 3
for the sets of three electrodes listed in Table 2, first column.

In Table 1 the results obtained from the analysis of different subbands using the classifier

based on the Mahalanobis distance, described in Section 3.4, are given for some of the

tested electrodes configurations. The correct recognition percentages reported in the table

refers to overlapped training and test datasets, and are obtained within a cross-validation

framework as described in Section 3.4. In Table 2 the same analysis for a larger set of scalp

electrodes configurations is provided considering disjoint datasets, which are obtained by

removing overlapping frames. It is worth pointing out that the classification performance

varies considerably for the different scalp regions and rhythms under analysis. Moreover

the performance significantly decreases for the disjoint datasets than for the overlapped

frames. On the other hand, the match score fusion obtained as discussed in Section 3.4

has led to a dramatic increase in recognition accuracy, especially for the otherwise poorly

performing case of disjoint training and test datasets, as observed in Figure 4. For the

selection of the frequency bands to combine, the best performing set of three channels

PO3 − POz − PO4 (see Table 2) was considered, and subsequent score fusions were

performed. To this aim the brain rhythms were sorted in descending order of performance

achieved individually, and sequentially combined within a forward-backward stepwise ap-

proach, retaining in the information fusion only those bands which improved the correct

classification. Results reported in Figure 4 showed that a significant improvement was

obtained combining β, α and θ rhythms. The same approach was considered to select

the combination of electrodes configurations, while considering the best performing band

fusion β ∪ α ∪ θ. For the case of disjoint training and test datasets a correct recognition

percentage of 99.69% could be achieved when the sets of three inter-hemispheric and mid-

line channels PO3 − POz − PO4, O1 − POz −O2, CP5 −CPz −CP6, TP7 −CPz −
TP8, PO1−POz−PO2, POz−Pz−CPz, T7−Cz−T8, P5−Pz−P6, CPz−Cz−FCz ,

and the three rhythms θ, α, β containing most information were combined into the match

score fusion. It should be noticed that the selected channels result located in the posterior

region of the head, where the considered rhythms are mainly detected. Figure 4 reports the

improvements obtained in the subsequent steps of the information fusion. Moreover the re-
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Figure 4: Improvement of the correct recognition rate obtained performing subsequent score fusions
(see Section 4). Curves refer to the combination of different brain rhythms (top x-axis) and different
electrodes sets (bottom x-axis). Labels in the x-axes refers to the score added at the related step.

sulting misclassification matrix showed that a 100% of correct identification was obtained

for all users but one, who presented correct recognition rate of about 89%. The result

obtained did not differ significantly from the perfect recognition performance (100%) ob-

tained for the case of overlapped datasets, within the same information fusion approach

and cross-validation framework.

5 Conclusions

In this paper the feature extraction from parametric representations of EEG signals, within

the framework of EEG based biometric recognition, has been addressed. The simple “rest-

ing state with eyes closed” protocol has been employed to acquire a database of 36 people.

Electrodes configurations have been selected in order to find the brain region containing

the most significant information for the user identification purpose. Extensive simulations

have been performed by considering different sets of 3 electrodes with respect to their

positioning. Bump modelling has been employed for the parametric representation of the

time-frequency maps, and the extraction of different features. Different subbands have

been tested. In summary our analysis has shown that a very high degree of correct recog-

nition can be achieved with a multibiometric approach consisting in an information fusion

at the match score level, combining specific sets of electrodes configurations and brain

rhythms.

A small set of features of parametric time-frequency maps obtained from EEG segments

showed a significant variability between users, as observed from recognition accuracy ob-

tained employing a simple Mahalanobis based classifier. In future works other classifiers

could be considered in order to overcome the assumptions of the linear discriminant analy-

sis, and to best fit the separation surfaces between the decision regions in the classification

problem, since such surfaces are generally not hyper-planes. Different task performances
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Channels 3− 40Hz θ α β γ

C1 Cz C2 62.22 76.60 83.02 83.21 73.27

C3 Cz C4 73.27 84.26 87.10 87.90 76.67

C5 Cz C6 75.56 86.54 89.94 91.67 83.64

T7 Cz T8 78.83 85.43 93.09 92.96 85.19

PO1 POz PO2 79.69 86.23 90.43 93.77 79.01

TP7 CPz TP8 80.68 87.90 92.65 93.70 83.09

P7 Pz P8 81.60 89.44 94.57 92.90 83.33

O1 POz O2 82.59 86.30 94.14 94.38 83.70

PO3 POz PO4 84.69 89.69 95.74 95.19 83.21

Table 1: Classification performance in terms of correct recognition rate. Results refer to overlapped
training and test datasets. The analysis of individual subbands is reposted in subsequent columns,
and the set of 3 channels considered is listed in the first column.

Channels 3− 40Hz θ α β γ

C1 Cz C2 24.81 38.61 43.70 45.65 35.56

CP1 CPz CP2 28.98 42.69 44.35 48.61 33.89

FCz Fz AFz 29.54 42.13 47.96 46.57 34.44

F3 Fz F4 29.63 41.02 54.35 51.39 38.98

Cz FCz Fz 30.19 39.17 49.07 46.85 39.44

CPz Cz FCz 30.46 44.81 49.72 53.70 41.02

C3 Cz C4 31.76 43.80 48.43 52.22 40.00

Pz CPz Cz 32.59 42.96 57.78 55.83 39.72

Fz AFz Fpz 34.17 38.43 44.63 51.20 31.30

CP5 CPz CP6 37.04 50.28 53.61 53.43 36.20

CP3 CPz CP4 37.59 45.09 49.35 55.28 36.76

FC3 FCz FC4 37.87 43.06 52.69 56.67 47.31

C5 Cz C6 40.00 46.11 57.78 58.70 48.98

P5 Pz P6 41.57 49.63 69.17 63.06 40.65

T7 Cz T8 42.41 42.41 62.41 62.69 50.09

POz Pz CPz 42.87 49.17 59.54 61.02 37.41

PO1 POz PO2 46.57 52.78 62.13 66.39 45.56

P7 Pz P8 46.94 53.98 71.11 62.31 47.50

TP7 CPz TP8 49.07 48.61 64.44 69.26 48.52

P3 Pz P4 49.91 45.28 64.91 62.04 43.98

O1 POz O2 52.59 51.57 64.91 69.91 52.04

PO3 POz PO4 52.78 55.56 67.31 73.98 49.81

Table 2: Classification performance in terms of correct recognition rate. Results refer to disjoint
training and test datasets. The analysis of individual subbands is reposted in subsequent columns,
and the set of 3 channels considered is listed in the first column.
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could be also proposed for the acquisition of EEG signals to be represented through the

bump modelling approach, in order to investigate the significance of the information re-

lated to the event timing for user recognition.
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