
A Systematic Methodology for
Adapting Software Components*

Soo Dong Kim and Hyun Gi Min

Department of Computer Science
Soongsil University

1-1 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743
sdkim@ssu.ac.kr, hgmin@otlab.ssu.ac.kr

Abstract. Component-based development (CBD) is an effective paradigm
for building software systems with reusable assets, where components often
come in black-box form and expose interfaces while hiding internal details.
Components are reused in developing various applications in a domain.
However, the behavior provided by a component may not exactly match to
the specification of an expected component. This is called a partial matching
problem. Therefore, they have to be adapted for specific requirement. A
component can be adapted in two ways; internal and external adaptation. For
internal adaptation, the mismatch between a candidate component and the
specification of an expected component can be resolved by some
customization mechanism. However, if the component does not provide
adequate customizability, it has to be adapted externally by using some
external adaptation mechanism such as smart connector [1]. In this paper, we
first propose a taxonomy for various mismatches during component
acquisition. Then, we define a systematic process and practical instructions
for identifying mismatches and adapting components.

1 Motivation

CBD is gaining popularity in both industry and academia as an effective reuse
approach. CBD is accepted as an effective paradigm for building software systems
with reusable assets. As the basic reuse unit in CBD, components often come in
black-box form, only exposing well-defined interface while hiding internal details [2].
Since components are mainly for inter-organizational reuse, the behavior provided by
components may not exactly match to the specification of the expected component.
This is called partial matching problem. Therefore, they have to be adapted for
specific requirements.

Components often come in binary and blackbox form to minimize the coupling
between components and applications, and to protect intellectual property. Therefore,

* This work was supported by Korea Research Foundation Grant. (KRF-2004-005-D00172)

9

their source code and internal design cannot be modified by component consumers.
This is especially true for commercial-off-the-shelf (COTS) components.

Components can be adapted in two ways; internal and external. For internal
adaptation, the mismatch between a candidate component and the specification of the
expected component can be resolved by using a pre-defined customization
mechanism. This process is also known as component customization. If the
component does not provide adequate customizability for the mismatch, then the
component has to be adapted externally by using some external adaptation
mechanism such as smart connector [1].

However, various issues in component adaptation are still remained open. The
issue list includes a systematic way to identify and classify gaps between candidate
components and expected components, a method to select the most optimal
adaptation technique, and a process to apply the selected adaptation technique.

In this paper, we first propose taxonomy for various types of mismatches in
component acquisition. Then, we define a process and instructions for systematically
adapting components for target applications. By using the proposed framework, we
believe that candidate components can be either more systematically customizable or
adaptable, greatly increasing the applicability of components.

2 Related Work

Kim’s work establishes a theoretical foundation on variability in CBD [3]. Variability
is classified into five types; attribute logic, workflow, interface and persistence. The
scope of variability is classified into binary, selection, and open. Essential variability-
related terms are defined such as Variation Point (VP), Variant, and Variability.

Catalysis method provides two customization techniques: Inheritance and
Template (IT) and Polymorphism and Forwarding (PF) for implementing variable
functionality [4]. With IT, generic methods are declared in a base class, and are
overridden in derived classes. Effectively, a member-specific variant such as logic can
be realized in a derived method. With PF, a subclass implements an abstract class by
providing member-specific variant in virtual methods, and an instance of a subclass
substitutes an object of its superclass.

Keepence and Mannion’s work suggests three patterns for variability design;
single adapter, multiple adapter and options patterns [5]. In single adapter, generic
features are modeled in a base class and specific features are modeled in subclasses.
Only one subclass can be instantiated in any single system. Multiple adapters are
similar to single adapter, but more than one subclass can be instantiated in any single
system. In options pattern, two associated peer classes are created to realize a
variation. Keepence’s work suggests three types of variability mechanism.

Anastasopoulos and Gacek’s work identifies various customization methods;
aggregation/delegation, conditional compilation, dynamic class loading, dynamic link
libraries(DLL’s), frames, inheritance, overloading, parameterization, properties and

10

static libraries [6]. Among the proposed techniques, aggregation/delegation, dynamic
link library and parameterization methods can be applied to blackbox components.

Wrappers provide a simple abstraction that hides layers, and they simplify the task
of programming [7]. A wrapper is a type of software "glueware" that is used to attach
other software components together. Wrappers can be utilized to present a simplified
interface, to encapsulate diverse sources so that they all present a common interface,
to add functionality to the data source, or to expose some of the data source's internal
interfaces.

Connector is an essential element of software architecture [8], and it is used to
inter-connect components in a framework. A connector imposes role-specific
constraints on the ports that it connects and can be refined to particular interaction
protocols that implement the joint action.

3 Partial Matching Problems in Component Acquisition

3.1 Taxonomy of Partial Matches

Since components can potentially be used for various products, the behavior provided
by candidate components may not exactly match the specification of the components
required by various component consumers. This is a well known problem in
component acquisition, but there can be different types of partial matches. It is a
prerequisite to classify all possible partial matches in order to define more specific
and detailed adaptation instructions.

To derive types of partial matches, we consider the building blocks of software
components. A component in most current component reference models consists of
classes, workflows among the classes, and interfaces. A class, in turn, captures
attributes and methods. Some classes are persistent meaning their attributes have be
persistently stored and managed. Hence, the five building blocks of software are
identified; attribute, logic, interface, workflow, and persistency [3].

Table 1 shows the taxonomy for all types of partial matches. Let CComp be a
candidate component and Let DComp be an ideal component desired by component
consumers. As in Table 1, we identify 5 classes of partial matches; partial matches
based on attribute, functionality, interface, workflow, and persistency.

Three types of partial attribute matches may occur on attributes; i) Some attributes
required by the component consumer are not supported by CComp ii) Some attributes
supported by CComp are not required by component consumers. iii) Data type of
attribute varies between CComp and DComp. In the case of functionality partial matching
problems, two types of partial functionality matches may occur on functionality; i)
CComp should be appended with some additional functionality for DComp ii) The
extra functionality of CComp should be disabled for DComp. In the case of interface
partial matching problems, CComp has a provided interface which consists of

11

function signatures and their semantic descriptions. If a function satisfies the behavior
required by DComp but its signature does not match the signature required by
DComp, then there is a mismatch problem on the interface. A mismatch may occur on
function name, types of input/output parameters, the ordering of parameters and
return type.

Table 1. Taxonomy of Mismatch Problems

Partial
Match Types of Partial Match

Some attributes required in DComp are not presented in CComp.
Some attributes presented in CComp are not required in DComp. Attribute
Data type of attribute varies between CComp and DComp.

Ex) Integer vs. String for AccountID in banks
Some functionality required in DComp is not provided by CComp. Functionality Some functionality presented in CComp is not required in DComp.
Name of operation varies between CComp and DComp.

Ex) addItem() vs. createItem()
Type of parameter or a return type varies between CComp and DComp.

Ex) integer vs. float for a parameter
Ex) Integer 0 or 1 vs. Boolean for a return type

Value range of a parameter or a return type varies between CComp and
DComp.

Ex) 0..1 vs. 0..100 in percentage for interest rate in banks

Interface

Order of parameters for an operation varies.
Ex) F(name, age, address) vs. F(name,address,age)

Operation of workflow type required in DComp is not provided by
CComp. Ex) A.F1() A.F2() vs. A.F3() which includes F1() and F2()Workflow Order of invocations in a workflow varies between CComp and DComp.

Ex) F1() F2() F5() vs. F5() F1() F2()
Persistent database model employed varies between CComp and
DComp.Ex) Text File vs. Relational TablePersistency Schema for relational tables varies between CComp and DComp.

Ex) Unification, Horizontal and Vertical Partitioning [9]

In the workflow, the order of invocations in a workflow of CComp is not satisfied
by the component consumer. Therefore, the order should be reorganized. The
workflow has partial mismatching problems. In persistency partial matching problems,
CComp has entity classes that have relationship among classes. The classes are
needed for mapping objects to relational tables. The relational tables are various
designed. Therefore, schema for relational tables varies between schema of CComp
and schema of legacy systems.

3.2 Internal and External Adaptations

A component can be adapted in two ways; internal and external adaptation as in Fig.
1. For internal adaptation, the partial matches between a CComp and the specification
of DComp can be resolved through the pre-defined customization interface of CComp.

12

Component
ConnectorConnector

Internal
Adaptation

External
Adaptation

Component

Component

P
P

P

Component
PConnectorConnector

External
Adaptation

C C

C

C

Fig. 1. Two ways of Adaptation Technique

Internal adaptation is applied by component customization. Customization is a task to
set variants into variation points inside components using customize interface or
mechanism [10]. The effect of customization remains inside the component. The
variation points pre-defined for variation are filled by variants as in Fig. 2. The
customer selects pre-implemented variants in a component or plugs in new variants
for the application through customize interfaces to accept variants.

«Component»

VP

B C

Provided Interface

Customize Interface

Known Variant

Invokes a method.
Sets a variant.

A
Unknown Variant

Plugs in a new variant.X

Fig. 2. Mechanism of Customizable Components

External adaptation uses smart connectors [1] that resolve mismatch problems
among components. A smart connector is an external module that sits between the
component consumer and the component and mediates the partial matches between
them as in Fig. 3. Hence, the connector mechanism does not alter any internal part of
the component. The smart connector has a transformation rule to resolve partial
matches between components that have different functionalities, interfaces, data value
ranges, and workflows. The Smart connector mechanism is used to adapt components
without modifying the components themselves.

Client
P «component»

CComp

Smart
ConnectorRP

Transformation Rule
to resolve mismatch problems

Fig. 3. Mechanism of Smart Connectors

13

4 The Process and Instructions

In this section, we present the overall process which consists of four phases as shown
in Fig. 4, and we give instructions to carry out the activities.

Phase 2. Gap AnalysisPhase 2. Gap AnalysisPhase 2. Gap Analysis

Phase 1. Component AcquisitionPhase 1. Component AcquisitionPhase 1. Component Acquisition

Activity 1a. Specify Expected Components
Activity 1b. Locate Candidate Components

Activity 2a. Identify Gap
Activity 2b. Identify Potential Conflicts

Phase 3. Adaptation DesignPhase 3. Adaptation DesignPhase 3. Adaptation Design

Activity 3a. Select Mechanisms for Adaptation
Activity 3b. Refine Adaptation Mechanisms

Phase 4. Component AdaptationPhase 4. Component AdaptationPhase 4. Component Adaptation

Activity 4a. Apply Adaptation Mechanisms
Activity 4b. Validate Adapted Components

Mismatch
Description

Adaptation
Mechanisms

Adapted
Component

Candidate
ComponentCandidate

Component

Fig. 4. The Process and Artifacts

4.1 Phase 1. Component Acquisition

This phase is to acquire suitable components for a target application.

Activity 1a. Specify Expected Components
To locate the right components for a target application, the requirement for

expected components should be described. Activity 1a specifies the requirement of
expected components. This specification should include four parts; expected
functionality, specific interface required if any, data manipulated, and constraints such
as programming language, component platform, quality attribute, etc. An example of
an expected component specification is given in Fig. 5.

Activity 1b. Locate Candidate Components
To describe and acquire the list of suitable candidate components, activity 1b

searches and verifies candidate components for the target system. First, component
customers survey component markets to get compatible component lists. The
candidate component lists that can be used in the same domain are searched.

14

Second, the customers do some initial checking to confirm the compatible
component, but detailed testing may not be required. Some COTS components are not
opened before consumers buy them. Therefore, if we can explore them, the customer
explores the searched initial component lists. The candidate components are explored
by conceptual mapping functional and non-functional requirements such as
component platform, component sale price, etc. While exploring, the number of
candidate component lists are decreased. As a result, the customer can find some
compatible components.

Specification of Expected Component

1. Component Name: Membership Manager
2. Functionality

- Register Member
Member’s information can be stored.

- Modify Member
Member’s information can be modified.

 - …
3. Interface Requirement (optional)

- registerMember (id : String, pw : integer, …) : void
 - …

4. Data Manipulated (optional)
- Democratic Information of Members

 - …
5. Constrains (optional)

- Component for EJB (For BEA Web Logic 8.0 or Higher)

Fig. 5. Template for the Specification of Expected Component

Finally, the candidate components are verified. They conform to its specifications.
There are risks of partial matching between the component specification and the real
characters of the component. While verifying, faulty components may be rejected on
the candidate component lists.

4.2 Phase 2. Gap Analysis

This phase is to identify gaps between the requirement specification for the target
system and components. If a candidate component provides a limited applicability
and customizability so that it does not completely satisfy the functionality needed,
then a component consumer cannot reuse the component in application development.
We call it a partial matching problem [1] in component acquisition.

Activity 2a. Identify Gap
The purpose of this activity is to identify the gap between expected components

and candidate components. This activity identifies partial mismatch problem about

15

attribute, function, and workflow categories. The input artifacts are the expected
components or requirement specifications of the target system. The outputs are partial
mismatch problems information in candidate components.

Compare the use case with functionality supported by components

Compare use case with workflow supported by components

Compare use case with attributes supported by components

Define Use Case
Model From RS Select Use Case

Search Matched
Behavior

Search Insufficient
Behavior

Search Extra
Behavior

Search Matched
Workflow

Search Insufficient
Workflow

Search Switched
Workflow

Search Matched
Attributes

Search Insufficient
Attributes

Search Extra
Attributes [Other]

Compare persistency supported by the selected component with persistency required by the system
Search Matched

Repository Model
Search Mismatched
Repository Model

Search Matched
Schema

Search Mismatched
Schema

[A use case remains]

Fig. 6. The Process for Identifying Partial Match Problems based on Use Case

The taxonomy of partial match problems in Table 1 is used for this activity. First,
the requirement specifications are refined. This step defines the use case model that
includes a main flow, alternative flows, exception flows, and scenarios. Second, a use
case is selected to find compatible components as in Fig. 6. Third, the selected use
case is compared with functionality of candidate components. Sufficient behavior of
the candidate components is identified. The partial mismatch problems of the
candidate components are also identified. The candidate components have insufficient
behavior and extra behavior. The extra behavior raises side effects and reduces
performance of the target system.

Fourth, the selected use case is compared with the workflow of candidate
components. Sufficient workflow of the candidate components is identified by flows
and scenarios of use case. The partial match problems of the candidate components
are also identified. The candidate components may need new workflow and have
extra workflow.

Fifth, the selected use case is compared with attributes of candidate components.
Each attribute is needed while the component performs the use case. Components
should manage all attributes needed by the target system. The supported attributes in
the candidate components are identified. The partial match problems of the candidate
components are also identified. The candidate components may need more attributes
and have useless attributes. Finally, degrees of match such as perfect match (FULL),
partial match (PARTIAL), and no match (NONE) are identified.

16

Activity 2b. Identify Potential Conflicts
This activity identifies potential conflicts among selected components.

Components that have inter-relationships are assembled to build applications.
Components have provided and required interfaces. The provided interface specifies
the services provided by a component and it is invoked by other components or client
programs at runtime. The required interface specifies external services invoked by the
current component, i.e. a specification of external services required by the current
component [11]. By specifying the required interface for a component, we can
precisely define the services invoked by the current component.

If components may not completely satisfy required interfaces expected by other
components, the components cannot be used because a component is assembled with
other components. The input artifacts are required and provided interfaces
specification of candidate components, requirement specifications of the client
program.

Components have provided interfaces that consist of function signatures and their
semantic descriptions. If a function satisfies the behavior required by other
components, but its signature does not match the signature required by other
components, then there is a mismatch problem on the interface as in Fig. 7.

Required Interfaces
of a Component

Provided Interfaces
of Components

Provided Interfaces
of Components

Gap
(Partial
Match)

«component»
Loan

«required interface»
Customer

«required interface»
Deposit

«use»

«use»

«provided interface»
Customer

«provided interface»
Deposit

«component»
Customer

«component»
Deposit

Fig. 7. Gap between Required Interface and Provided Interface of Components

A required interface and a provided interface have a key role in identifying partial
match problems between components as in Fig. 8. First, the required interface of one
of the candidate components is selected to find gaps with a provided interface of the
component required by them. Second, the signature of a selected required interface is
compared with the signature of a provided interface. Mismatch problems such as
operation name, type of parameter, ordering of parameters, and return type can be
identified.

Third, the semantic of a selected required interface is compared with the semantic
of a provided interface. Potential problems are that the signature such as data type is
correct but the data semantic such as data range, data meaning is incorrect.
Programming compilers cannot find these problems.

17

Compare signature between a required interface(RI) and a provided interface (PI)

Compare semantic between a RI and a PI

Select
Required Inteface

Search Matched
Opeation name

Search Matched
Parameter Type

Search Matched
Order of Parameters

Search Matched
Semantic of Parameter

Search Matched
Semantic of Return Value

Search Matched
Return Type

Compare functionality between a RI and a PI
Search Matched

Functionality of P.I.
Search Insufficient
Fucntionality of P.I.

Search Extra
Functionality of P.I.

Compare workflow between a RI and a PI
Search Matched
Workflow Type

Search Matched
Order of Invocation in a Workflow

[Other]

[A required Interface
remains]

Fig. 8. Process for Identifying Partial Match Problems between Components

Fourth, the partially mismatching problems about functionality are identified.
When a provided interface satisfies most of the functionality that the required
interface expects but partially lacks, there are two cases when comparing the provided
and the required functionality. Functionality is determined by the set of all functions
in a component. Let a predicate Fn(DComp) be the functionality provided by DComp
and Fn(CComp) accordingly. In case i), the extra functionality of COMP should be
disabled for DComp. In case ii), COMP should be appended with some additional
functionality by a connector.

Table 2. Specification for Describing Partial Match Problems

Use Case Item Element Descriptions

Requirement
Specification Function

Reserving a vacant room
Validating customer’s SSN when a customer
reserves a room.
reserveRoom (roomNum:String,

customerID:String) : booleanProvide
Interface This operation is to reserve a room using a

room number and general customer ID.

Candidate
Component

Function Reserving a vacant room
Sufficient
Function This CComp supports reserving a vacant room.

Reserve
a Room

Mismatch
Problems Insufficient

Function
This CComp does not support validating
customer’s ID

Fifth, problems about workflow are found. If provided interfaces have dependency
with some ordering, the clients of them should call the provided interface through the
ordering. Workflow is a sequence of method invocations among components to carry
out a function in an interface. Workflow mismatch is distinguished from functional
mismatches; workflow mismatch is determined by examining the orders of multiple

18

method invocations where functional mismatch is about the behavior of a single
method. In other case, clients expect an operation in a required interface to call a
function. However, a component services two operations for supporting the function.
Finally, the degrees of match such as perfect match (FULL), partial match
(PARTIAL), and no match (NONE) is identified.

As shown in Table 2, the partial matching descriptions define features satisfied by
candidate components and write features not satisfied by candidate components.
These descriptions are derived from 2a and 2b activities. We describe partial match
problems that include related use case name, requirement specifications, provided
interface and functionality of candidate components, and mismatch problems.

4.3 Phase 3. Adaptation Design

The aim of this phase is to obtain adaptation techniques and strategies for adapting
candidate components that are partially matched components.

Activity 3a. Select Mechanisms for Adaptation
This activity determines the method such as internal or external adaptation to adapt

the candidate components. Internal adaptation uses a customization mechanism [10]
in each component. If the partial matching problems are not resolved by the
customization method, external adaptation is used.

External adaptation uses smart connectors that fill the gap between candidate
components and the specification of components required [1]. By using smart
connectors, partially matched components can be reused. The input artifacts are
partial match problems, category of partial match and candidate components that have
partial matching problems. The output is the adaptation methods to adaptation the
candidate components.

We define the taxonomy of partial matching problems as functional, workflow,
attribute, data value range, persistency, and interface mismatch problems in Table 1.
Internal adaptation can adapt functional, workflow, attribute, data value range,
persistency, and interface mismatch problems. External adaptation can adapt
functional, workflow, data, and interface mismatch problems.

If the problems can be solved by both internal and external adaptation, then we
prefer internal adaptation because internal adaptation is simpler than external
adaptation. Internal adaptation has better performance. If functional partial matching
problems are fully supported by internal adaptation such as with a customization
mechanism, then internal adaptation determines whether or not external adaptation
supported the problems. If the mismatch is partially supported by internal adaptation,
then external adaptation adapts the partial problem that is not covered by the
customization mechanism. The problems are supported by combination techniques.

If workflow partial matching problems are partially supported by internal
adaptation, external adaptation is decided. We do not recommend combination
method to resolve workflow and persistency partial matching categories. If the

19

mismatches are adapted by internal and external adaptation, the complexity and side
effects are increased. Table 3 is algorithms for determining the adaptation technique.
If the partial matching problems can not be solved by the internal and external
adaptations, then the candidate component is rejected or the requirement specification
of the target system will be modified.

Table 3. Algorithm for Determining Adaptation

Category Degree of Adapting
using Customize

Degree of Adapting
using Connector Identified Method

Full InternalAttribute
None Reject Comp.
Full Internal

Full Combination Partial
Partial or None Reject Comp.

Full External
Functionality

None
Partial or None Reject Comp

Full Internal
Full Combination Partial

Partial, None Reject Comp.
Full External

Interface
None

Partial, None Reject Comp
Full Internal

Full External Partial
Partial or None Reject Comp.

Full External
Workflow

None Partial, None Reject Comp.
Full Internal

Persistency Partial, None Reject Comp.

Activity 3b. Refine Adaptation Mechanisms
The purpose of this activity is to describe how to adapt partial matching problems.

This activity describes strategies to reuse components that have partial matching
problems. The requirement set for adaptation through internal and external
adaptations is defined. Table 4 shows adaptation for each mismatched situation.

If the selected adaptation technique is internal adaptation, the customize
mechanism is described to adapt partial matching problems. The description consists
of related components information, partial match problems, customize interface,
feature of compatible variants, pre-condition and post-condition. The candidate
components are adapted by these descriptions in the activity 4.1 of the next phases.

If the selected adaptation technique is external adaptation, the description focuses
on the requirement specification of the smart connector. The requirement
specification consists of related components information, partial matching problems,
connector types, connector ports, connector roles, pre-conditions, and post-conditions.
The connector types are interface adapter, value range transformer, functional
transformer, and workflow handler [1]. Partial matching problems between

20

components are resolved by smart connectors that are implemented according to the
requirement specification of the smart connector in activity 4.2 of the next phases.

Table 4. Adaptations Required for Partial Matching

Partial
Match Types of Partial Match Adaptation Required

Some attributes required Appending additional attributes
Some extra attributes presented Disabling extra attribute Attribute
Data type of attribute varies Transforming attribute type
Some functionality required Appending additional behavior Func-

tionality Some extra functionality presented Disabling extra behavior
Name of operation varies Adapting operation names
Type of parameter or a return type varies Transforming types
Value range of a parameter or a return
type varies Transforming value ranges Interface

Order of parameters for an operation
varies. Rearranging order of parameters

Operation of workflow type required Revising operation of workflow Workflow Order of invocations in a workflow varies Rearranging order of workflows
Persistent database model employed varies Adapting database models Persistency Schema for relational tables varies Adapting database schemas

4.4 Phase 4. Component Adaptation

The last phase is to realize adaptation techniques such as customizing candidate
components and gluing smart connectors.

Activity 4a. Apply Adaptation Mechanisms
The purpose of this activity is to realize adaptation techniques such as customizing

candidate components and creating smart connectors.

If components should be customized, the candidate components are adapted using
a customization mechanism [10] through the plan of phase 3. Candidate components
that need internal adaptation or a combination of internal and external adaptation are
applied. Input artifacts are determined by the adaptation technique, adaptation
descriptions, and candidate components with the manual for customizing. An output
artifact consists of adapted components.

If component should be needed smart connectors, the candidate components are
adapted by smart connector [1]. Smart connectors resolve candidate components that
need external adaptation or combination of internal and external adaptations. Input
artifacts are determined by the adapting technique, requirements specifications of
smart connectors, and specifications of provided and required interface of candidate
components. The Output artifact is a design and implementation of the smart
connectors.

21

Activity 4b. Validate Adapted Components
Adapted components from phase 3 are validated by this activity. Specifications of

desired components are compared with adapted components. Test cases should be
written in enough detail that they could be given to a new team member who would
be able to quickly start to carry out the tests and find defects. Candidate components
are compared with its specifications.

This activity also resolves conflicts between internal and external adaptations. It
identifies dependency between mismatches and rejects candidate components. During
the adapting partial matching, some adapted mismatches affect other components. If
functions or interfaces that depend on other components are adapted, then unexpected
side effects can be generated. Therefore, these side effects are considered and
resolved.

For example, if adaptation techniques adapt the workflows to resolve partial
matching problems but side effects are not resolved, the candidate component should
be rejected. Note that side effects such as state changes and database updates caused
by invoking new function, data value range, workflow and persistency must be
carefully examined to maintain the integrity of components.

It validates the applicability of components. The adapted component meets the
needs and expectations of the customer. The adapted components are tested with test
cases for both functional and non-functional requirements such as performance issues.
If the components do not satisfy the requirements, the components should be revised
or rejected.

5 Conclusion

In CBD, if the behavior provided by components does not exactly match the
specification of the desired components, they have to be adapted for the specific
requirements of each application. In this paper, we first identified and organized
commonly occurring forms of partial matching into taxonomy of partial matching.
Then, we proposed a process and instructions for component adaptation as a way to
resolve the problem of partial matching.

For internal adaptation, the partial matches between a candidate component and
the specification of the desired component can be resolved through pre-defined
customization interface or the mechanism of candidate components using component
customization. If the component does not provide adequate customizability for the
partial match, then the component has to be adapted through an external adaptation
mechanism such as smart connectors. By using connectors, partially matched
components become reusable in application development without sacrificing the
component consumer’s requirement.

The process proposed in this paper has 4 phases; acquiring candidate components,
identifying gaps between candidate components and desired components, defining the
adaptation technique, and applying the selected adaptation. We also provided

22

instructions and an internal and external mechanism for these phases. By using the
proposed framework, we believe that the reusability, applicability, customizability
and maintainability of black-box components can be greatly increased.

References

[1] Min, H., Choi, S., and Kim, S., “Using Smart Connectors to Resolve Partial
Matching Problems in COTS Component Acquisition,” Proceedings of 7th

International Symposium on Component Based Software Engineering (CBSE
2004), LNCS 3054, pp. 40-47, 2004.

[2] Ravichandran, T., and Rothenberger, M., “Software Reuse Strategies and
Component Markets,” Communications of the ACM, Volume 46, Issue 8, pp.
109-114, 2003.

[3] Kim, S., Her, J., and Chang, S., “A Theoretical Foundation of Variability in
Component-based Development,” Journal of Information and Software
Technology, Volume 47, Issue 10, pp. 663-673, 2005.

[4] D’Souza D., and Wills A., Objects, Components, and Frameworks with UML,
Addison Wesley, 1999.

[5] Keepence, B., and Mannion, M., “Using patterns to model variability in product
families,” IEEE Software, Vol. 16, Issue. 4, July-Aug., 1999.

[6] Anastasopoulos, M., and Gacek, C., “Implementing Product Line Variabilities,”
Proceedings of the 2001 symposium on Software reusability: putting software
reuse in context, Toronto, Canada, May 2001.

[7] Heineman, G., and Council, W., Component-based Software Engineering,
Addison Wesley, 2001.

[8] Gomaa, H., Desiging Software Product Lines with UML, Addison-Wesley, pp. 6-
7, 2004.

[9] Angrawal, S., Narasayya, V., and Yang, B., “Integrating Vertical and Horizontal
Partitioning into Automated Physical Database Design,” SIGMOD 2004, pp359-
370, 2004.

[10] Kim, S., Min, H., and Rhew, S., “Variability Design and Customization
Mechanisms for COTS Components,” Proceedings of the International
Conference on Computational Science and its Applications (ICCSA 2005), LNCS
3480, pp. 57-66, 2005.

[11] OMG, Unified Modeling Language: Superstructure Version 2.0, ptc/03-08-02,
2003.

23

