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ECPL is a langusage which is rea able, casy to learn and efficient.

L

It is ma

¢ self consislont and casy to define accurately by an .

underlying somantic structure based on a simple ddealized object mechine.

The treatment of data tyves is unusual end it allows the power and

-

convenicnce of a lanpusge with dynooically varying typezs end yet the

eificiency of FCRvmaM, BCPL heos buen used successiully to imelomont o
: £

472 %

number of languages ond has proved to be a very uscful tool for compiler

en

-~ [

writing. The BCPL compiler itsolf is written in BCPL and has b

G

designed to be cusy to tronsfer to other machines; 4t has already been

transferred to more than scven cifferont systems.,

ROt
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1.0 . Introduction . : o . - - ' . _
BCPL (Basic CFL)
which is partibular}y
which mochine indepe:.: Jonce is irporiont. It vas criginally
acsiéned as a tool fer ccupiler writ¢ng and has, so far, been use
in three com;iléré. BCPL ¢; ur;antly implecmnted and‘running c
' _ CTSS at Projc MAC, tho GE 635 under GECOS ond on MULRICS.
There are al£ BCPL compilers on the XDF 9 at Cxford ond on Atlas
, tiens cre under ¢o structlou.
ECPL is related to C2L (or CC$biﬂed’Pr051dmmlﬁ8 Tnguage
[1, 21) ond wns develcred vzing cimorience goined from work bn a
CFL comﬁilcr. -
: The BCPL ccpnmlcr is vodtten din BC?T and is desig ned for
fairly casy trensfer to aﬁy othorvx:¢q1no. iere pcssiblv the
L4 : 3 : ;
implcuentation Cependent parts of the compilcr have boen soparatcd
out, and 50 only a small proporticn (about 1/5th) of the uom:il
_ needs to ﬁe rewritten.forwa‘ncw implementation. In adéliJOﬂ to
‘ modifying the compiler, 1t is neceszary to design and write ihu
- : f interface with the new o~crgt1ng \vstem ' tﬁis.is‘u sua 113 writion i
asuumbly lenguaze and lbu‘dan"th is ilholy to be between 200 ond
1000 instructions. = , ' _
| The cos t of transferying BCPL)#O new mdchinc}is ﬁsually
betwoen 2 and 5 man monthé; : ;; - o
. e - - : .
3 3 B B
11 : 15/1/69
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2,0  Hardware RNowrosentations and Syntaon
Since BCPL is duplemented on many machinces having differcnt
. hardware character sets, it iz wceful to separate the machine dznendent
hardwarce representaticen of a BEPL program from the cononical syntsx of
: the langunge.  The details of the hardware represcntation provided for
any dmplcacntation can be found in the corresponding implomentaticn
o notes. In this chepter we give the imachine independent canonicsnl
IL ":;3 ! FrnT !
A) > %

syntax of Bbxu‘and‘prcwido guiie linGS»oﬁ which any hardwafo,
represcntation ahoﬁld bb'based. |

A BCPL pré;ram cen be thought of as o streom of cmmonical symhols
Izid ouf on é Poge. The cononizal synbols arc the baéic‘wcrds,
operators and symbols of the larcuage and they arc the terminal syuocls

of the cononical syntoe. Some canonical symbols are given below:

let ang  "PEtnM 36 A 4  while N

s Sromrnms:

-

Difforent hardwarc representations of the same canonical symbol deoos

not effect its meaning. Thus the symbol let may cqually well bo

Ot

represented in different implementations by ony of the following:

i
ry

Jet LET lot .IET

2/1 . : 15/1/69
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2.1 Table of Cononical Swvmbols

The table ziven below gives the names of all the BC¥L canonical
symbols together with scme examples of their possible hardware
representation,

Hawe of Canonical ' Hardware
Syumbol Eximplies

oo bt s 1 g

NUGHMBER , o 105 2 6000

NAME Abc B2 i Tex yate
STRINGCONST BAH i nafegn
{ ? . CLLRCONST . ‘ "_p‘ ittt
E RUE » , true
! . FaLSE :  falge
‘ ‘ ocT - : 8 oct 48

VALOR alof
VECAP A : A
v ~ ' , Yoy
RV f ' rv
DIV 7
R rem
MULT : =
PLUS
MINUS
Qo
. : NE
i
GR
18
GE
Non
, .  LSHIFD
- ‘ . RSUIFT
LOGAND &
LOGOR : V - V¥ logor
BV » cqv
- REQY ; neov
COND : -5
COMMA

S JIVIAV AN 1+ =
]

-
%
o

Fy Py

.
ol
&

3
2

o]
2
=
oy iy
ﬂ-icfx

o g0

.
bl

Hy

3

i

%
ABLE Lable
AS S o=

22 | - 15/1/69
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Nanme of Crononical Hardware
Symibol . Bmples

GOTO goto ‘
RESULTIS resuliis

- : ' ‘
COLLH :

g tent
PCR for
Ir : if
UNILRSS . unless
UI‘TIL unti’

T ot

rggr.rv('

repaat Atuhile

NEDRATWITLY

REPTATUNTLIL : TC fergt b‘)‘L}_’l
BREAK ‘ - o vbrcc..\
P}IIL’?J‘ ~ Yyetuwn

S I ,LC’IC»I

wi tchon

CAER cnre

DILFAULT defanlt

LET Tet

AHIFEST wmnifest
+ GLOBAL {*.J;L,_:L

STATIC ' - shatic ‘

BE ‘ . be .
5 AT

SECTRRA 8 (6

SEoTHED . %) ‘“)J.r ang
JTLJJ«..& » : : ¢ (
oA )
SEIICCLON .
INTO - . into
. m . . i
. PO ' ~ do  then

OR . . or

-

The symbols EUMBER, 11%’33 SJ./.IZ‘JCCC‘EEST, C:LLJ‘COI'ST SIZCTBRA and

SEC! "’{3 "'notc coxpesite symbols which have associated variable lengtn

V parts.

Throughout this manual syntax end rrogramuving examples un.ll be

given in some suitable hardware representation.

3 15/1/69
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2.2.1

Syntactic Netation

The syntax given in this manual is Bochus Naur Form with
he following oxtonsions:

(1) Scme common cyntactic categerics are not surrounced

3
1

by meéta linguistic brackets.

i " B :
(2) ‘The symbols 3 and % are used to indicate repeiion,

for exomple:

Ge
E S, E 2 neans o
L o ;
E l E,E!E,E’,Eiw.‘e*"}

The synt~x given in the next section is ambipgucus snd is

+
-

simply intended to list 211 the syntactic constructions

available. The ambisuities ave rosclved later in the

manuals

a4 15/1/69
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2.2,2 The Concnical Svntas: of BCPL
B :ii= <pame> | <stringeonst® | <charconstd | <oumber> |
;// truc - | fnlse | (E) | valof <bleck> | 1v E | rz 5 |
i%ﬁﬁ%i@w‘ B( <8 list> ) | BQ) | B < /dldf“c op> E | <m033dic op> B |
- BE~3, B | teble <constant> : , <eonstunt> L
i dy
<dingdic on> iz | o* ] / from | + | = |
.
dshift l rohift [~ ]l v]= | #
<monadic op> ti= 4+ | - | not
<E ligt> ::= R §, E 3
<constant> 1:1:= B
/c‘ ti= KB dist> 1= <B list> | B( <E list> ) | EQ) | poto E |

\/WM

g

<name> : C | if B do C | unless B do C | while B éo C |

until E do c | C repeat | € rewentuntil B |

C repoatunile B
finish | v

wen € or C | breck | retum |
=EtoEdoC |

B ’ tost B th

canltis B | for <aone>

1
swiﬁahon E into <block> | case <ccn>tan+> 1 C {f

default : C | <oloch> | &»moty)

15/1/69
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D/ ::= <nome> ( <GPL> ) = B | <aame> ( <PL> ) be C |

<name list> = <5 1ist> | < name® = vee <constamt>

<FPL> ::= <namie list> | <empty>

: . f = ~
<name list> iz <noned I 3 <n:zme>z

=%

dlock> 1:i= £( block body> §)

K o N K S : % - e
<bloclk body> ::=C 5 i C 2 | ‘. <dcclaration> ¢ ; C ?
<declaration> i:= let D § nd D ¢ | stotic <decl body>

monifest <decl body> | glebal  <decl body>

<deol body> ii= $( <C dof> §; <L defi §)

3]

<C def> - <name> : <constant> | '><n~'me> = <constani>

[ <progran> ::= <block body>

%

2/6 L 15/1/69
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2,2,
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Hardware Represcentations

8ince the hardware charaetsre sels for ifferent implementations

Qiffer, it is cnly practical to zive nn outline of the hardware

conventions which are commen Lo mest versions of BCPL.

b S & - . 1
Homes ond Syeten Vords

System words are sequencics of letters used to denote canonical
eyrivols for which there are no suiteble graphics. The set cof
rescerved system words is implasentation dependent.  Nomes are also

2,

to denote variables znd crunstants within his progranm. If the

availoble character set includes small letiers then system words and

names ove syntactically distinct.

Yor charocter sots vith canital ond small letters:

(1) A system werd is zny sequence of 2 cor more smadl letters,

.

(2) A name is either

. (a) a singlé small letter ‘ - ,

{(b) a capital letizz followed by any sccuence of letters,
digits and pessibly other suitable characters
e.g. /%/ ’ 7 |

k3

For character scts with only copital letters:

(1) An identifier is a crmpital letter fellswed by pny scaucace
o _of letters, digits and possibly other suitable cheracters
(Geﬁo ‘]91’ « ;:f‘:; )
A ; o
(2) Some identifier whick is not a system word.

(3) A name is an identifier which is not a system word.

x

»

2 o 15/1/69

- mainly composed of leiters and coy be coined and used by the progranzer

R



A2d *
i
* wiiie
.
] b ¥ »
i :
4.
.
.
A
]
.
.
¥

Thus on eoue drplementations det ang iogor are systew vords wihils

Let, IET, Logor cnd LOGCR wmoy be asc@ ce noames; tut with a nmore
estricted chavocter sot lﬁu ond LOCOR wonld bo rozorved systern words

end the p o;rnmmv“ would have to represent the nomes in soue ofhor woy,

perhans by

v,Scction brabkets are used tc,bracket’b10cxs 2nd CORMMIds.  Th -42
the readability of prograns, ssctien bracksts pay be togsed with gny
sequence of characters vhich iy occur in
section brka$v matches on cariior opcﬁ soct:cn tencket with tln snge

tag aad any outstonding seciions will be c’cs 25 antematically.

. For coxample: :
| 801wkl 30 Ao
o $(2 RG)
. 1=d4+1 $N
' Q* . is cquivalent to: . -
© . 801 until i=0 do
{‘f' ; ¢z -Rr(1) . , |
- . d=dan &0 8y .
N . v 2/8 : : 15/1/60
. o - .
o : .
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2.5.3

“hitonmatis Tuseriion of SEUICCTT

- The symbol SZUICOION is used as a separator for delimiting
commands, its i ho rever usually ogt10wa1 and may be omitted in
most circumstances. then two commands arc juxtaposed bolh the

, ' s
programicr and ccmpiler can alnost always deduce where the
first ends and the second starts; however, cases of ambiguity
can arisc as in the following:
G, y (B £,2)(, 23 '
Rix, y)(B—+£,g)(4, 2} // posssblc omission of befo e (13

A simple rulo Uhlch i5 guaranteed to be safe is:

only omit semicolons between command /%&“

el bt pritl.

if they are written ca different lines. /
| | » | pber Gog,
In order that this rule should alvays work the following
minor restriction was imposed:

a diadic operator may not be the

first symbol on a line. '

Example: the following two programs are equivalent

X t=x+1 X 1= X + 1
. ifx>ydoy:=0 il x> y do y = O;
R | R(x)

"2/9‘ . 9/10/69
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2.3.4 Automatic Insertion of DO _ S , .

As with SEMICOLOX the canonical symbol DO is optional
except in situations vhere ambipguity arise from its omicsion.
Bxample: the following programs

gplass 0 LT < Tmax reultis true

e e e s —

AL % =0 poto T

is equivalant to

unless O < T < T max do resultis true

if x = 0 do goto L

it  But beware of the very rare situations vhere DO may not
; .

be omitted as in the followirg

2.3.,5 Compments

User's comments may be included in a program between a double
slash '//' and the cnd of the line. Example:
let R() be // this is a routine whichwrefills Symb
%( for i = 1 to 200 do
Readch (INPUT, 1v Symb { i) $)

2/10° . ' 9/10/69
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CAnmplementayp

The YGet! Diroctive

& directive of the form

got  <specifier>
‘may occuy anyvhere in a IICPL pfogram on a line by itself;
it dirccts the compiler® te replace the characters of the
directive by tho‘t ¥t of the file referred to by the
spégifier, Iﬂé syntactic form of the specificr ig V ,I

4,

on dependent but is usually a string constant,

/”lff‘ J% /(’M[F& ‘M;‘ég;&{' ‘ ',‘

/105 . 9/10/69
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n Eanamnle Progranm

// This is an example of & hardware represcntation of DCPL using

 // both capital ond enall lettors.

// dcclares

get ‘HzAD2! //Thie ‘vets! the file called ¥E:D2 which presuninbly

J/Checkdistinet, Report :md Dvece

let Checkdistinet(E,S) be -

4(1 until B=8 do

(et p=8a+ 4
and N = Dveclp // ¢ represents the VECAD operator

while p 1a S do // Rote that 1s is &
// system word, p is a nane.
$( if Dvecip = N do Report{i42, N)
 pi=p+ b &)
E:=E+ 4 §)1 // Note that this closes

// two scctions.

(¢
\., s
2/11 ' 15/1/69
A\
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Funiamental Cencents of BCPL

Tiie Chicet Fochine

BCFL has a simple uwnderlying scemantic structure which is built
aroundygn idealised abj:ét reclhvine, This method gf design vwos
chosen in ofdér to nmale BCPL casy to define accurately and to
facilitate machine ind c“owdcnce which is one of the fundenental nins
of tﬂ° mun"UdGC.

The most importent feature of the cbject mzchine is its stere mng

this is represented diggrammnatically in fig. 1.

n n+4 1 n+2 n+3

Fig. 1 - The Machines ntore

It consists éf a éet’of numbered boxes (0: storagc cclls}larrnnged
50 that the nusbers l“b lling aiaoccnt cells diffcr,by one. ks
will be scen later,; this pf09crty is importaont.

Bach stcragc'cell hol%xlbirary vit patturn callcd an Rvalue
(or Right hand value); ' ALl storage cclls are of the same size and

the length of Rvalues is a congtant of the implementation which is

usually between 24 and 36 bits. An Rvalue is the only kind of chject

which can be manipulated dircctly in BCFL and the value of c¢very

varinble nnd expression in the language will always be an Rvalue.

31 : . 15/1/69
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Rvaluces are used by the prosrasmor to nodel abstract cbjeets of

£
namy differeat kinds such as truih values, strings and functicns, eni
therc are a large number of basic snerations on Rvalues which have boen

provided in order tec help the prosrammer model the tronsfermatieon of his

cbstract objoects. In particular, there are ihe usual orithmetic

operations which operate on Rvalues in such o vy that they clesely

nodel integers. One cnn either think of these operations &s ones whic
interpret their operonds as integers, perform the integer arithmetic and
convert the result back into the Rvalue form, alternatively one may

think of them as operations which weork dircetly on bit patteras and just
hoppen to be uscful for repres noing integers.  This latier approach is
closer to the BCEL philcsonhy. Although the BCPL progrommer has dircet

access to the bits of an Rvalue, the details of the binary represcntoticn

used to represent integers is not defined and he would be losing nnchine
independence if he perforned nernunmerical operstions on Rvalues he knows

to represent integers.

£y

An operation of fundamental imnertance in the object mechine is

ey o

thet of Indirecction. This operaiion has one operand which is interpr

2tk

as an integer ond it locates the storsge cell which is labelled by this

integer. This coperation is assumed to be efficient and, as will be

seen later, the progromider may invoke it from within BCPL using the

rv coperator.

L 3 o ~ 15/1/69
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Vorichles and Manifest Conutants ~ -

L vericble iv BCPL is lefinced te be a nzmie which has boen

Y

assceiated with a storage cell. It has a value which is the Real

£

3
contlained in the ceil and it is called a variable since this Zvalue
2y be chenged by an assipgnment command during cexecution. Alnicst

>

every form of definition in BCPL (includinz funciicn and routine
B 1%} -

»

definition and labei declorations) introduce varisbles. Tao cnly

exception is the manifest deélaration which is used to introduce

manifist constants, /
h menifect constant is tae dircet agsociation of a name with e

Rvaluo; this as

(%}

ociation takes place at compile time and romains the

same throughout cxoeution. Thore are many situations where monifost

constants con be used to dnwrove readability with no cost in runtico
cfficicney.

Ivalucs ond iModes of Evalustion

As provicusly stated each storage cell is labelled by on

integer; this integer is called the Ivalue (or Left hond value)

of the cell, Since a varizhble is associated with a storage cell,

.

it must alse be associated with an Ivalue and onc can usefully
reprecsent a variable diagrommatically as in fig. 2.

Name .

Y . - ‘ . ~
. g\\\\stopagc Cell
N, b -

N, 3

", :

Lvawe  Favawe | * o :
’ - : of

Firo 2. - The form of novaricole

35 | - 15/1/59



Within the machine~an Lvalue is represented by a binary bit patﬁéfn,
of the same size as an Ryaiuc, ar:l ©o on Rvadue con fepresent an Lvalue
dirvectly. The processes of fihding the Lvalue and Rvalue of a varizble
are called Lowde.and Roode cvaluntion réspéctivcly, Tac ideaé of mede
of evaluatioﬁ is useful since it coplics to expressions in’general and

can be uced to clarify the somantics of the assignment command and other

features in the langunge.

A 3.4 siomle Assignment

i

The syntactic ferm of a simple assignnment command is:

E'] . =1 }32

. PN
RN N
QIINAIC

~ 2

wvhere 51 ad 2 are CX?TCSS“CES‘ Loosely, the meoning of the assi

o5

is to evalunic E2 and store its value in the storaze cell rcferred to

by Z1. It is clear that the eyressions Bl and E2 are evaluated in

. different ways and hence there is the classificotion into the two modcs

%

of cvaluation. 'he left hand expression E1 is evaluated in Imode to

¥Yield the Iwvclue of some storage cell =ond the rijht b-nd side 22 is

C' ‘ ":eqaluntc&‘in Baisde to yi<ld ~n Reoluz; the cont.omts of the storoze

o3

ccll is then replaced by the Rvnlue., This process is shown =

. Qiagrameaticelily in fiz, 2, : ° :

<Ay o e g

. - - 15/1/69
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Identical /

bit patterns >

-

oy

e

i

Inmode
valuotion

e

LV( U

Invalue:

LD N

Storage- ¢

" //.'.n
i »L;': /'.'
{ B

o

© Rnmode

-} eovalusntion

Rvalue :
K

e

el

The Rvalue is placed
in the cell

7

(“ 2 E'?[';' ~5‘ i Tho ‘Pi”‘c ag of nasa f: She Ve «,t .
K ‘:‘
. The only exnres sions which may mecningiully appear ¢ the left kol
side of an ossignnernt sore those vhich ore associated with storage cells,
and they arc called Liyoe cxmreasions,
The terns Lvalue md Rvalte derive from consideraticn of the
assifnment comnand and were first used by Strachey in the CPL reforcence

namal [2].

The Tv Op":r..‘,

As ﬁro

pattern whi

LB

vhere B i

s}

provides the

vicusly stated

ch is the sanc

an Iva

sizc as

uz is represented by a binary bit

an Rvolue. The 1v expression

facilitv of ccess 5 the Lvalue of a storcge cell.
- The pyntactic form of an lv cxpressions'is{
v E | '
an Lﬂype cxgr:ssioﬁ. The}QValuati on proco‘s is ohox in

,fig.vh.

PRSPREERNERIHOUIG SRS

15/1 /69
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X 1 e
) * ¥
* ¥
, ,
v 5
i |
: I 1diode
‘ eveloation
4
Lvalue

-~ Ilenticzl
bit patterng

i P e i el
- s

~ V&
Rvslue

Fig, b - The cvalustion of an 1v cxvression

i

The operand is evaluated in Inode to yield an Ivalue md the

A
H

result is a hit pattern icdentisal to this ILvalue.  Tho v operator i

- exceptional in that it is the only expression operator to involke

han

Imode evaluation, nnd indeed in all other contexts, >xcept the left

side of the assignuoent, expressions ore evaluated in Ruode.

The Ry Oporntor

The rv cperator is impoertant in BCPL since it prevides the

un@erlying mechanism for manipulating vectors and data structurecs; its

operaticn is one of taking the contents (or Rvalue) of a -stornge cell

vhose address (or Lvalue)

-

is given.

‘The syntactic form of an rv cxpression is as follows: :

xv B

and its process of evaluation is shown diagrammatically infig. 5.

al

15/1/69



D A AT TS

3
rv =
L //
J.“.: Ve
}Rvaluc o Lvalue
i

Fipg. 5. .- The evaluation of on rv cypression
v The operand is evaluated in Rwode =nd then the storaze cell

vhose Lvalue is the idcnticgl bit péttern is fbund. I$ the rv
eiprcssicn is being evaluated in Rnoég, tﬁén the contonts cf the cell
is the fcsnlﬁ; however, it is also‘meaningfui\to'evaluate it in
Imode, in yhichxcase the Lvalue of the cell is the result. An

v expressicn is thus an Liype expression and so may appear on the

left hand side of an assignment cormand, as in:

>

v p = ¢

. and one con deduce that this command will update the storage cell

pointed to by p with the Rval&e;of t.

»

300 ' : 15/1/69
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3.7 . Data Structurcs

*

The congiderable power and ucefulness of the rv operacor can be

seen by considering fiz. 6.

v + 3
| { |
? »
: :
i :
] |
E L 1
. g
Rvalue Rvalug _
A e L
{ £ S
! "\-‘\;’n\ .v"_",p’r i
T " ) s !
] : S . *
7
A  Rvalug ; [
sdentical - e ~ Identical
bit patterns ) . e bit patterns
‘\,.~~‘~_ ’...
- Ivalue \ _ : - Inalue .
NS
— e : —~ e
i i
H i
| bt AR nd - L . ” i .l

Fig,.6. - hn intervretation of V & 3

. \

'y

This disgram shows a pessible interpretation of the cxpression

SV + 3, Some adjacent storage cclls are shown and the left hand ons has

an Ivaluc which is the sanc bit‘pattern as the Rvalue of V. One éill
recell that an Lvaluo’is really én intoger end that Ivalues of andjzcent
cc}ls\diifcr by §ﬁe, 2nd thﬁs'thé Rvalue of V + 3 is the same bit
<pattern as the imalue of.%hc riéhtmost box shown in the diagran. If

the oPcraéor rv is opplicd Lo V + 3, then the contents of that cell will

» | 15/1/69



Thus the exprcssion:

. rv (V4 4) ' ..
ancts very like a v;ctar cvplicntion, since, aé i varies from zero to
threc, the exprcssion refers to thc.éifferent cicnents bf the set of
four cells pointed fo be' V.  V can be thpﬁght ¢f as the vector ond

i as the integer subscript.

~ Since this focilily is s2 vseful, the following syntactic

- sugoring is provided:
. g S . :
: . E1E2 is cquivalent to »v (B1 + E2)

3

Arls

A simple example of ils vez iz the fellewing comnnnd:

<

i
v

|

VEE + 1) i= vii +

R
-

One cen sce how the rv ovsration cen be used in data structurcs

by considering the following:

V{3 = oxv (V+3) by detinition

. o= xv (3 + V) since + is commutative :
i 3%V .

¥

Thus Vi3 znd 31V arc semantically eguivalent; however, it is useful

to attach different interpretations to them. We have already scen
en interpretaticn of VI3 sc let us consider the other oxpression.

If we rewrite %4V as XpartiV vhere Xpert has value 3, we con now

conveniently think cof this expression as a selector (¥part) applied to

- . a structure (V). This interorctation is shown ‘in fig. 7.
3/9 . | - 15/1/69
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L
R

{

. &

) 3
3
Vv
e |
. , The cell referred to
Xpart {7 by Ypart iV
G | ;

¥ig. 7. - An interpretation of Usart ¥

By letting the clements of structures thomsclves be structures

it is possible to construct compound data structurcs cf arbitrary

complexity. TFig. 8. shows a structure coupesed of integers and pointer

x ‘ X | Ly Vf /2? (x*\i'&)

N

v
b

[T /
3:‘ 13 H &
| 5 ! Mo

. :
310 . - 15/1/69
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3.8  Data Types

It is useful to introduce 4> classos:
(a) Cbﬁccptual‘tvbes . L .
() Internal,typesi
iﬁeVCOnceytual type of on exgression is the kingd of gbstractU

object the programper had in mind when he wrote the expressicn.

It might be, for instance, a time in rillisccends, a weight ir zro-s,

a functicn to transfors feet per sceend to miles per hour, or it

might be a data structvre represeating a parse tree. It is, o2

X

course; impossible to enumerate 21l the possible concevtual tyvos
and it is equally impossible t3 provide for zll of them individunlliy
within a programning lanzunce. Tee usual practice when designing

e longuage is to select from the conceptual types a few basic ona:

and provide a suiteble dinternal represcntation together with za

adequate set of basic operations. The term internal type refzrs
to enyone of these basic typss and the intentiun is that 211 the
conceptual types can be modelled cifectively using the internzi tiypes.

A few of the interrnal types pr.vided in a typical language, suca

‘as‘CPL, are Jisted below . ;"‘ L

-renl

£ 3 : i3
intoger : . g . o
D - . +

intezar

T
{real, boslemn) vector

. o ¥ . . 15/4/69
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Buch of the flavour of BC2L is the result of the censcicus
design decision to provide only cne internzl type, nanely: the
binary bit pattern (or Rvaluc).  In order to allow the prozraszer

to model any conceptual type a Zarge set of useful primitive cpersticns

have ‘been provided.  For instence, the cordincry arithoetic operators

+, -, * and / have been defined for Rvalues in such a way as to mcdcl
the intcger operaticns directly. The six standard relational

operators have been defined and a complete sct of bit manipulating
operations provided. In additicon, there are scme stranzer bit

f

pattern overations which provide ways of representing functions,

Lok B
3

v

K}

labels and, as wé have alrcedy seen, vectors and structures. A1) tho
operations provided are uniforily cfficient znd they have not been

overdefined,  For instance, the effcect of 2dding a number to a lebel,

or a vector to a function is nct defined even though it is possidle

for a progrommer te cause it to iake place.
The most important effects of designing a languege in this wey

can be summarised as follows:

1 Therc is no nced for type ceclaraticns in the lenmuiasge, since iho

type of every variable is alroady known. This helps to make
prograns concise end also simplifies such linguisiic problens os

the handling of actual paramcters and scparate compilation,

. e T
1’
. i i"’
Y 1
' 3



2,

3.

It gives BCYL much of the power as a 1anguﬂge vith dynozicaily
varying types and yet ret”:ns the cfficieﬁcy of a lansurza
(13ke TORTRAN [3]ith nanifest types; for, although th:
internal type of an cxoression iso always lmown by~tﬁe cé:;iler,

its

the values of variables within the

the concopﬁual type of Véi nay dep
One shculd note.that, in languages
wﬁere the elements of vectors muét
needs scne otﬁcr‘linguistic device

general cdata structures.

Since-there is cnly one internzl type therc can be no sutsmstic

conceptual type can nsver be ond, indeed, it may dexond

on
cxpressicn. For dnsitnce,

end on the value of

i'
(such as ALGOL [4] a-2 o21)

all have the same tyre,

H

in order to handle riors

type checking and it is possible to write nensensical 3 sEaiel niober

which the compiler will translate without cormplaint.

03

slight disadvantege is easily outw

~power and efficicncy thut

this treatment of types

=

el

egighed by the simpliciiy,

nekes ¢

15/1/59
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4.0 Luxpressions
LAPTESSIONG

AllyBCPL cxpraessions arc described in‘this section.  They
arc grouped into syntactic claaées ¢l decreasing binding pover as
follows: |

(a) Pp@mary expressions

These are the most binding andgmést‘primiﬁive'exprcssioné,
they ave:

Hames; numbers; truéh values, string constants, charactser
._  ’ . constants, bracketted expressions, rcsult_biocks, lv CXPrecsions,

rv eipf'ssions,~vector apnlicaticns anﬁ~functiqn applications.“

(b) Arithme£ic exér¢ssions.

These expressions provide the sténﬁafd inteser operations of
multiplicatioﬁ, division, remqigdef, eddition and subtrzetion.,  They
are less binding than the-primary exfrcsgiénr.

(¢) Relational expressicns.

’Ayéelatibnal eﬁﬁressinn takes iniogcr argumeuts andkyiclds a
boolean value depending on the truth of the re}ation.

(fﬁg - . . (@) shift expressions.
. ﬁThe shift operations allow onouﬁo chift a binary bit ﬁattcrﬁ
to1thc left or right by‘a spcbificd number of places.
(e) logical cxpression.

?hose;cxpfeésions allow onc to manipulate bits of‘an Rvalue
dircctly. They may be uscd in conjuncticn with the shift oporato;s'
to pack and urnpack dafa. The standord BCPL representaticns of
true énd false are éhosén s0 that the logical operators may also

.. | 1569
(e
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»
be used on boolemn cata, . .

(£) Conditional ex?rcssi$nn.
A conditional oxpression cllows for cencitional cv;?uétion of
cne of two cxpressicns.
() Tables.
A table is a sﬁétic vector vhose elencnts are preset with
specificd values. . .

L.1 Prinary Bmroessions

All the primary cxpressions are described in this scction.

it

L.1.1 Nones . A .
Syntactic form:

A nane is a cgnonicé_ symbol of BCPL =nd its hardware rcprescnt;ti
is imploméntéticn dependent., If there are sufficient hardware
charﬁéters available it‘conéiéls of ény sequence of letters, digits
angd undcrlin@s‘starting with a-capital letter, A‘singlc small,‘
létter maj‘alﬁo be used as a name,

Bxamples:

J. o H3 Tax rate F i
(~~ o ' Yigth Stackp

Semantics:

A naime may be éssociatéd &irectiy withran Rvalue‘by means of‘a
manifest declarat;on or it may be associated with a storaze cell to
‘férm a variable usinéVany other kind of deélaraticn. A variasble |

or manifest.constant can be referred to by its name throughcut the

.

/2 L 15/1/69
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|

- Exarples: . 132 43179 8277

scope of its declaration (soe czetion 6.0 cn eccnes and extents

of gcfinitions).

A manifest constoant con only be evalucted in Faode ond its

.result is the hvelue which wos asscciated with it by its declarction.

A variable is the assiciaticn of a naze with a storage cell
and it may be represented os follows:

Hame

Lmode evaluation

N
Lvalue

Rvalue

It may be ovaluated in Lusde to yicld the Lvzlue <f the storage
cell, or it may be evaluated 3n Rmcde to yiell the contents of the

cell; in cither case the result is a bit pattore of standard Rvalue

length.

umbrers

Syntactic form: <dipgit> i:= of1

<Gizit> ¢ |
8 <aizit> | <LZigit> ?‘
4 e

Senantics:

A number is on Rtype expressicn nnd moy cnly be evalusoted in

Racde.  The symbol 8 introduces an octal constant whose Rvalue is

the right justificd bit pattern specificd by ths cequence of digite.

N - s
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& deccimal number is a sequenco of digits not preceded by 8
its Rvalue is o bit pattern represonting the integer in a way
vhich depends on the implementation,

Strinr Constonts

; L o : : ‘:-".
Syntactic form: " L <string character> i‘“
. ‘ le

A string constent is a canonical symbol of BCPL ond its

hardvare representntion is implementation dependent. there

possible it is a sequence of characters onclosed in double guotes

£

("), . The character (*) is used as an escape character with the

~following conventions:

*n represents ’newline
%8 represents space
*b réprcscpts backspacé
¢t rcpresonts tab |
et reﬁr&éents '
« represents !
e trepresenﬁs ok
Ex&mpies:
. ' “Eﬂd of tQGt” e : ST ‘
HepsfMpase]qentt 1N ‘ ‘ ; E .
Scnontics: | - ' '

The Rvaluc of a string constent is a pointer to a sct of
, , - .

consceutive storage cells containing the lenglh and charocters of

i

the string in some packed form.  The number of bits per cheracter

A/ : L 15/1,/69
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hoth

and the nomber of chqr eters por storase cell are not defined.

For =

string

Yibe10n!!

wight be represented as follows:

1 dmplementaticn wl Lch paciis feur character

s per word, the

e Ii6

i

H

P1qe 1ot ta 0

Characteor Constants

Syntac tic form:

‘<Cstring charactors>!
(8

The sane escape conventions that are uscd in string constants

pey de used in character constants.

Exonples: Tyt tot o tap Ty

tesl (A!

Scrantica:

Every sbring alphabet character has an integer code and the

Rvaluc of a character censtant is the Rvalue of its corresponding

dntezoer code.

.

Iruth values

The character code is implementation dependent.

Syntactic fornm: . truc er false

uO'?"g,‘n‘i," Cn.\ .

TLXC ?’J&lue Qf f l e lu a 13.Li_ I\‘lt nrn cntl}?'\l‘\v an’njocc(} of

zmﬁsﬂmlﬂm}wwucoftmwj.Lm,m

£y

A
L

bli pattern LntlTOly composcd of ones.

u/s

N

plenient of fulse, nomely a

15/1/69
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4,1.6

41,7

: : {.}.‘.

Braclketted Fxnressions

(E)

Syntactic fori

((eny)/GeAy) + 2/2)
(B~ A, B)}(i+1)

- T rem

l‘ - v
Exonples:

L]

Semontics:

Parenthesis nay enclese any expression without changing

fre
et
u

node of cvaluaticn or its value and Lhwir sole jurecse is to

speeify grouping.

‘Reouldt blecks

Syntactic form: valef <block> .
Fxanple: valof &( for i=1 ton do
C . E if P(i,x) resultis fal=e

resultis true §)

-Senmantics:
A result block is a form of BCPL expression in which cotnminnds
can be executed befere the value of the expression is found.

*

It is cvoluzted by executing the block until a resuitis statensnt

is cnccuntered;  this causes exccution of the bleck to cense
the Rvalue c¢f the expression in the rQSultis comnand dis the result,

See section 5.14.,

4/6 15/1/69
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L.1.8 Iv Pvrresaions

Syntoctic fornm:

Bxaoplesi:

Semantics:

W ik i

v E

vhere E is a primary expression

Readch (INPUT, lv Ch)

U i= v Vi

The Rvalue cof an lv expressions is the bit pattern cbtained

»

by cvaluating the operand (which rust be an Ltype espression) in-

i

~ Imode, See the discussion of left and right hand values in

scction 3.3; and of the lv operator in section 3.5.

L.1.9 Rv Exmressions

Syntactic fornm:
Example:

Semantics:

»

/n rv expression

»

is

xv B where ¥ is primary exprescsion,

wox = v f(3) + 2

an Liype expression and may be evaluated

to yicld cither an Ivalue or an Rvalue. It is cvaluated by

evaluating its operand -in Raode to yield a bit pattcern which is

interpreted as the Lvalue of a storage cell, In Inmode evaluation

this bit pattern is the recult, but for Rmode evaluation the

contents of the storage cell is the resulft.. The IV expression

in section 3.6,

b ‘f ‘,ii'

15/1/69



4,1.10 Vector and Structure Annlicoaticors

Syntactic form:

b3

E1 and ¥2 arc primary cxprecsions.

associative and thus

x{yyz rmeans (xgy)iz

BExouples:

Semmntics:

nye ]

The operator is left

Vi o+ Xpartip
Trans( H2ix)
Trans( H3lx)

retu:n

The oxpression E1{E2 is defined to be cquivalent to rv (29 = 2

Its purposc is explained in scction 3,7.

4.1.11 Function Avplicaticns

Syntactié¢ formn:

 Excipless

Semantics:

- The evaluation of a function opplicaticn is

B

BU(Eiy B2, ... En)

.where O is a primavy axrressicn and T to T

are any expressions. The list ©f cuproscsi:

may be empty.

£(x)

H@1, 2%t)

(=0 £, P3)(1, “2T%, y+2)

Rextpatax 0)

* *

explained in section 6.3.3.

e
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ey

Arithmetic Exprou,lnn

Syntactic form: E*E l E/E | & ren E |
- E + B f E-L |
+E | -E

The operators * / and rom are equally binding and assosiate
to the left; they 4‘aimore binding than + of - which also associate
to the left.
Thus |

X *yremz means (x * y) rem z

Xty -2/t npeans  (xty) - (2/t)

Exambles:

| 24:‘*)‘_ + 61;){#),- + 7*3"{31‘ : : :
VE(e(x) rem 13) + G(x) - ’
.Semantics:

The orithmetic expreaolono evalunte their oper nds in Fmodg{
the operator then 1ntcrprcts the Rvaluss as 1n,egcr and yields an
Rvalue réprescnting the integer result of the arithmeéic;

Thé operator * and / denotes integer mutiglicatioﬁ and
di;is'an rruyuﬁtmvoly_

. The opurﬁtor ren yields the remainder after a1v1u;uw +he left

hand operand by the right hond cne. Ifkboth operands are

pOSitive the result will be positive, it is otherwise iwmplementatiecn

depcn&cnt,

14

Thc cxpression E1 + E2 yleldu an Rvaluﬁ rcproocntlng the inteser

summation of E1 and EE..

The Rvaluc of +E1 is the Rva 1ue of Ele

“The cxpresslon\BW - K2 ylelda an Rva3ue representing the
A 15/4/69
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- 5 !. ’ R 2 .
B3 2 . |
reéuit of suﬁtréc%ing r2 framvET.
The expression -E1 has th same meaning ag 0-E1.
4.3  Relational Tuvressicns : ,
'Syntéctic form: | : IJ§<melop> E iﬁe wvhere = .
‘. ; ; bt : - : H
.. - i <relop> t:= = | £ | 2o lax | 2e ]z
Thé relational oper&térs gre just less binding than the
. , arithmotic operétcrs‘ |
Bxamples: ’:ii~‘o lg x 1s y .gggg' L
AVi = f0o)=g(x) ‘
'Semanticé:
: A1l the operands‘of a relaticnal expression are cvaluzted in
Rmode; tﬁé Rvalucs obtained are then interpreted as integers =nd i
all the cindic rciatiﬂns arc true then tlie result of the vhole
expression‘is true; otherwise the result if false. The co‘resp::ié:;
. : ;

between the operctors and their meanings is given below.

Onorator ~ : Meaning;
y ‘ ‘
i «‘
B \ equnl to
5 > 7

notfoqual to

less thaﬁk

=

ls .

gr greater then
lc " less than or cgual to
EC

_greater then or cqual to

1&210’; © T 15/1/69
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Shift Eoressions

Syntactic Torm:

B2 is ony primary or arithoc stic eXpressicn

‘rczlat:i.crxal‘, arithrj.. tic er primzry cxnro

.

[}

.
ssicn;

1.

and B1 is oy shifl,

‘are thus lcss binding than the relations on the left and more

binding on the right,
. Exemples:

LAy i
x lsnift bytebl'

The operands are cevaluated

Yeft hand ene is interpreted dircctly as a bit pattern end the right

hend one as an

The result of u1 lvhl’f EZ is the bit pao

shifting E1 to the left by X2 places,

similar to Ishift only 1f it shifis
poesi

3s n,uutlve or greater thon the numbor of bits

Icoical Exnrcssions

" Syntactic form:

in Dmode to yicl

Thc [Geichy

t6 the i sht.

let P(t) = té5,§qhift 10183577

Rvalues. Tne

P Bt |

integer to 1nu1cate the nusber of places to =hift.

wttern produced by

ator rshift is

3

‘rcl ated

tions arc fillcd,with zoros end the resul» is undefinc? if 2

in an Rvaluec,

-



The operator net is mest binding; . then, in decreasing order

of binding power, there ave:

A’V"E'i&!

All the lopical operators are less binding than the shift

opcraters. o ;
Examples: Bi=notB -
' if %20 v y=0 resultss £(t)

x = xAB 770077 vya 8 7700

: i
Scacntics:

The cperands of all the logical operators arc interpreted as
binary bit patterns of ones ond zeros,
The application of the operater nel yields the logical

negation of its operand.  The recult of any other logical cperator

. ; th , . ~ th .
is a bit pattern whese n @ bit depends only on the n bils of the

-

opcrends and can be determined from

%

the following tablo,

nth bits Operater
of oporands A v =

IH

both ones 1 |
both zeros 0 0 1
1

otherwise 0

oy

- O O

h/12 ' | - 15/1/69
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L.6 Conditi~nz) Frmressions :
yilactic form: Bi1- B2, T3

E1, E2 and B3 amay be any logicel exmressions or expressicns
of greater binding power. - E2 nnd T3 may in addition be conditioconal

expressions. Thus:

‘Bl-x, B2>y, 2 ' means Blwx, (B2-y, z)
) ‘ .
.3 ; _ and Bl - B2 - x,y,7 . means B’l. - (B2 - ng) 1 2

Exarnle: et £(») = x<0 —+ 0,
10 = 10,

X

“Senantics:

The Rvoalue of a conditicnal exvression is cbtained by evaluatio

2 Ad ."1 . / ~ : » - : : o i 5
“either E2 or E3 in Rmcde depending on whether the volue of 31 is tru
or folse,
true —+ B2, E3 means Ip
S : : 5 ! :
\~. . - .  false - 32, B3 meons B3
If the vealue of B1 is neither truc nor false the result of the
conditional expression is undefinazd,
A conditional expressicn is on Liype expression if both its |
\ : ik e 2 » ~ *
alternntives are Ltype cxpressicns.
- W3 | - 15/1/69
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Il o ? Tab .1;'(;'}‘
§ . i 3
Symtnctic forni: t~%]o <eons aﬂt> ;. <eonstaont> |
SRt 91
Example: - - et T = toble '0', '4t, (2!, 31, Wt gt 16t 1o

181, 19, At 131 Gt apr tps R

Semantics:

M1 the cxpressicns in the list rust have Rvalucs which
con be dctcfmincﬁ #t caﬁpile  tiﬁe; They may consist of manifest
constants, numbors,&charac£cr conatants oxr arithnietic cxpressians
wvith constont cperends. Thé ®value of @ table is o pointer to a sei

of ccnszceulbive storage cells vhose 1n1t*ul values are piven by the

. , 1
list of constont exyressions the allcecative cf tho storage co*lu
and the initialization are performcd prior to Lxccutlon cf the

¥ + .
program.
A'table may be used as a vector; for ins tu“ce, T 15 1sﬁcoual tz
AR, The elements of o toble mny be up aated
{:. . = K.8 Constant Bpressicns
Syntaci@c fOrm? , . <censtontd> 1= E
Ewwﬁe. . :35%3*fkaﬁMb
‘ 5 Scmantics :
:A constnnt‘cxpféssion is cﬁc vinose Rvalue cén be defermiuod
at compilc‘timé.‘ It ma 'be ahnﬁmber, a charactcr constant, d‘
manifc t constant, or and expression cenposed of these, brackets
1{/’11; - o e e 15/1/69
(2 . . ‘



and the cpefators * /. + ond -, L L

Constent exprecsicns are uscd in

()

(c)
and  (d)

L
;

case labeols

“voctor definitions

monifest, static and global declorations
tebles. ‘

L/15 ' . "45/1/69‘
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Conmpnds ;

Sinnle Assimimt Comnrnds

Syntnctic form: S0} H e

-y

EBuaeles: X =
L A Vii 1= Ui + Wii
Senontics:

The assignment operatieon has already been discussed in sccticn
2.4, E1 must be on Ltype expression ond it is evaluated 3n Irmode t:
. RN veg-m * 3 N

yicld an Ivalue and E2 is evaluated in Roode to yield an Rvalue.

i

The contents of the stornge coll referrad to by the Lealue is then

reploaced by the Rvalue,

%3

An Ltype oxpression may be of one of the following four kinde:

(a) A nane fcferringﬂ?o a stornge cell.

(b) An xv expression. ' '

(c) & vcctor‘applicaticn .

(@) A condiiional cypression whose elternatives are both Liype

oxpressions.

Assirnnent Coneonds

- Syntzetic form: 11, 12, ... 1n :=P1, B2, ... W
Exanple: ©ox, Wi =1, UL+ W
~ Semontics:

The assignnent conmend dis scimantically equivalent to a seguence

Lo}
o
o

of simzle assipgnment comunnds. The general form given oboy

cquivalent to the following set. of simple assignments:

sa . 15/1/69



b L} \ H
& £
1]
~ v x
£ ] * " -
.
. 3
*
LT 1= R1
12 = R2
»
.
In = R

The orxder of cxceution of thie assignmonts is not defined
although in proctice almost all implementions will work from
left to right. Rote that the cssignment:

>

o - - X, ¥ =y, X%

|

e

will not interchange the ?alucs of # and y{4 The main
‘aﬁvantage of the‘gcncrdl as;ignmoﬁt comménd‘is the syntactic
one of élimingtion the need for psection brackois in certain
circunstances. For instanceqthe‘following cé@maﬁd

if x - yado &(vis = 0

B = true )
: may be written
if x =y do VI3 B := 6, true

L

Since the order of evaluztion is not defincd, some commands

arce strictly incorrcct., For example, the commund:

: f Symbfi, 4 := Reh(), i+ 1

may have different effects on different implementaticnss

5/2 o 15/1/69

¢



~ b “
k4 s Wi
. 3 + . : .
: 5.3 Routine Comnonds
] i . 3
Symtactic form: EO(1, B2, ..c.vve. IEn)
. vhere 0 is any primary exprescics ond Ei
to En are any expressions. The list of
expressiens nay be enply,
Examples: R(x) ‘
Compjump (I2¢x, false, L)
(€d1)0)
Semantics:
. The execution of a routine application is explained in scction
6&3#3! / :
. Solt Iabelled Commands
Syntactic form: <name> : C
Bxamples: Next: Rech()
‘L:- Chkind := Kind(Ch)
Semantics:
* : : :

A labelled command is o form of declaration which declares the
name as a static variable with a defined initinl value. The scope
of the name is the smallest textually enclosing
. bogdy of a block,

: o , .

body of a routine,

body of a result block,

body of a for loop,
or program.
The Rvaluc of a label may be the operand of a goto command, see the
next seetion.  For an ewplunation of the terns static varighble and
- scope see section 6.2.

-5/3 15/1/69
. :
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5.6

Goto Commﬂnuo o

Syntoctic form: poto I

where B is ony exnyvession.
Examples: goelto Noxt
. . pete Sdi
goto x = 0 - L, £(x)
Semantics: : : ' ‘ :

E is cvaluated to yield on Rvalue, and then excsutionjumps

to the comaznd whose labul hod (initially) the same value, The

point whera cxocution is resune

as that of the pgoto ccumand, c¢r, in other words, the labol ani the

a

goto com.anu rmust both h in the same functicn . or rcutine becdy.

hs a guncral rule, it is a good policy to try

PR H
o Einind vitE

numbor of labels in a program as this will tend to driprove its

readability.

£ Conmands

', ,- i : e §/I+ o

(7

xomples:

Syntactic form: if B ¢

reups

! 5

¥

unless £ do @

 if x=0 do x := 10
unless Symb=5 CCMMA do  Report(30)

resultis false

¥

unless Shi=Wwli

Hote Lhc uutomqtlc 1n°crt1~n of dn b5 ibe comnwler in the
thxrd ﬁfqmglc. Sce section 2,3¢b,
Senantlc

The con”"wd if B co C is cx;cutcd by cv qluatlng E to "lbld

1 5/1 /69.

4 must be at qu uarc nciﬂv“dl-“ l'"‘



5.7

truth valug, then, if the result is false coxecution is complete, if
1 $ £

the recultis true the command C is execcuted, ond if the result is

-neither true nor folse the offcet is undefined.

Examples: - ' “ while H

PO Arasianone

The commond unlers B do € s cquivalent to 3f not (E) fo C.

While Comisingds

Syntoctic form: ' vhile E do C

until ¥ do C

do  LoadT(s_ICCsL, S5P)

until

~Senanticst

The command while B do € is eguivalent to:

: goto L
c

if E poto U

M
.

s

whnere L and M are identiliers which Qo notl occur elscwhere in Lhe
prograit.
The commend until B do € is equivalent to while not () ao C.

Test Cormionis

~Syntactic form: test E then C or C

Ixamples: . test 2 > (CaseKin ~ CaseK i 1)/2 + 7

- then Lswitch(1, n, D)

or Bswiteh(4, n, D)

5. . 15/1/59
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Scriantics:

s s

The commond if D then C1 or C2 is oqu1v~lent to:

if nzt (2) pota L

goto ¥
L c2

M

»e

*ew

0y

L

uh ru L ond M arce identifiers which are not uscd elsowhers in the

: , ‘program.

. 5,9  Reront Comnnnds

Syntactic form: C repeatunile E
[aS SLRY -3

C reyentuntil
C repest

Exaomples: Reb() ropentuntil Ch = t¥n!

’ G WP = WP+ 1 '
S LWP := Ch (
& Reh() £) repeatwhile (& < Ch g 2!

Sementics:
The repeat conmonds are defin 4 in terms of cther cog iVQlcnt

coninands, as follovs:

-C’ rencntwhile”E is equivalent to L: C; if B poto L
C renbdbvﬁtll i i5 cquwv dent to € repentyhile not (=
C repont is equl alent to C resmectvhile true
~where L is an 1dont1110r \1ich is not used elscvherc in the progros.
B ‘ ‘ :
5/6 - - 15/1/69
N
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5.10

5611

7

{7

. b L
Fer Commands .

IExample:

Syntactic form: Jor N=511to doC

vhere N ois o nnne.

for i = 010 122 do VUi 3= i

Senontics:

'ffhe for command can be defincd by the fcllowing cquivalent
form: \ i k
$( ,}_C_f:; ‘*’s’ 2 =5, I2

il ¥> 3

$( ¢

vhere 2 is on ddentifier not used elscwhere in the progran.  Note

that the initinl valuc and end linit oxpressicns E1 and E2 are
¢valuated only once, and that the control varizble N moves in stoyz

of plus one,

Y, Ph
‘Breals Commanids

; 1
Syntactic form: break
until j = 0 do ' ‘ -

Example: ‘
. $( if A > CaseK &3 bresk
CaseK ! (§41) :=
Casel +(j+1)

P

j o= i-1 &

~
[ateies

L3
Cazel L3

H

e

Scmentics:
. o _ , ;
Brecution of the breck commond causcs the—eause a jump to the.

point just after the smullest textually enclesing loop coimand.

5/7
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* o
* 2 3 ' )
: ! : it
: Py
The loop commands are these with the fcilovlng key words
until, wvhile, rowent, reneatuhils, repeatuntil a?, foxr.
5.12 Finich Cormonds ' :
Syntoctic form: finish
cariple! if Repertcount > Poportmnx do
$( Virites('*n Too rony errers*n')
Endwrite (OUTPUT)
finish $)
i .
- Scmantics:
The finish ccmman? causcs exccution of the program to cease,
Tts oxact effcct is implencnbation Qependent.
5413 Return Conmionds
-Syntactic form: : retggn
Exauanle: " let MepB{¥, x) be
< ' . $01 if x=0 rotum

if Hix = § _COMMA 60
. . . : $( MapB( F iz x)
' | - P12 = x)

return )

( . o . , F(x) $N1
Scrmzntics:

The return ccmménd causes the excecution of the gnﬁllest

enclesing routine quy tn ce s5e and so control returns to the
A . 3
point juc~ after the rvutmnv call. that invcked the current melV“tl-ﬁ
S : x
of the Lody,
. 5/8 G 15/1/69
N
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5.1k Resultia Comnnnds . S ; .
Syntactic form: rereliis @
Excimle: valof S( for i =0 ton do
if ViR AU LD yomidtis fols
s ' resultis tme &)
. Semontics:
. ‘The execcution of resultis B couses the exccuticon eof the
smallest cnclesing result block to cease and yieldsenf value which
is the Rvalue of E.
5.15 Switchon Commonds
Syntactic fTorm: ; swilchon E into <block>
. : vhere the blcocik ccontains labels of the
form:
: case <constant>:  or
defonlt: :
* .

- Exammles let Trons(x) be . .
: : $(1 if x = O return
-switchen H1lx into

$(  defoult: Report(100); roturn

- case S LET: - = -
rceturn

: case S SZ9: Trens(l2 )

' . L Trans(H3 * x)
- A .rcizuig ) :
5/9 ' . 15/1/69
! \
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Semantics:
The expressicn after swilchin is evaluated to yield an Rvalue

ana then, if a case dabel exists which has a case constont of the

P

; - same value then exccutic on jumps to that peint, oth*r“.sa if there

is a @e ault label exccution resumes there.  If the swilch has no

default label and if no case coenstant matches the switch cexprossicn

then contrel passes to the point just aftor the switchon commond,

.
I

Note that the names S LET ond § SEQ in the exarple above mast

have “cen declarca to be manifest constonts.

The switch is implemented by any one of a number of methods

)

(e.g. h.rcct switch, scguentinl searclhi; hash table, binary tree)

depending on the mumboer and ranze of the cose constants.

5.16 Blocks

. e < » e 7 ?
Syatactic form: $(-z <docl*“~t10n>_§ %; Cz S)
. 1 =0

s

$(C : jtx‘a)

hd
Example: o $( let t List2(x, y) = valof
$( let P = Newvee (1)
PLO, PL1 i= vy
[« , o . ‘ resultis P §)
: : L finish $)
/Scnnntnc"'
A block is cxecuted by first performing the declarations (if oy
and then exceubing the commcnds of the body in sequence.
- . o o Tae names declared by the declarations are locel to the blqu
and the storage co cllccated often only remain in existence as
5/10 | 15/1/6
: ; 2/1/0
. .
: S
RS ey S . L i . =
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e,

7
{
i
*

ong as execcution is Qyn:amically within the block.  For
O < o g

o detailed discu

6.1 and 6021}

3 g~
(8G

5/11

ion of scopes and extents see scetions
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6.0
6.1
o
L

Gimnp e e aioey

)

Definiticons and Declorations

Before a name nay be used in a BCPL »rogrom it must be
declarcd by the »rogrammer in order to specify its scope, extent
and, nossibly, its initial velue. o

Scong and Secope Rules

The SCOPE of a name N is the toextual region of progranm
througzheut which N refers to the so ame varlablo or manlfcst constznt.
The scone of a name depends on its declaration as follews:

(a) A formal p“rwmbtcr list of a functlon or rcutine defindtion
_dCCl"rvo a list cf names whose scepe is the body of the ‘
function or routine defined.

(b) & declaration in the declaration sequence of a blopk mnclarc
a name or sct cf names whose scope is the succeeding
declarations (if wny) and the command $cquance'of the bleclc.

If the declaration is a let declaration the seope also
includes the dccleration itself. )

(¢) A name labelling a cemmand is a form of declaration

and it declores a varicble vhose scope is the smallest

enclesing bleck body, function body, »ro utine boly,

result blccP body, for locp budy or pregrar

(a) The sccpe of the contrel variable of a for commond is the

_boéy of the cormand.
If two varisbles have ilentical scopes then they mmst have
distinct noames and so, for instance, the nomes in o formal

“porameler 110t cr Lhe 1 bels 1n a bleck rust be different.

3

en | - 15/1/69
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6.2 Extent and Sonce Allocation

The extent of a varichble is ﬁhe time through which it oxists and

SE : “has a storage cell (with iésraSSﬂciatcd.Zvaluc).v Tnroughout the
cxtcn£ of a variablc it remains asgociated wi?h the same storage ceil

and so‘fho ivalue remaing constent; however, the contents of the

cell (or Rvalue) may be replaced by the execution of en assignment

comnand., In BCPL, variables can be divided into two classes:

(a) Static variadbles ; .

3 e ' ( Thoéo arce varvinbles thse extents last as long as
thc_pfagram is runniﬁg. ~ The étorage cell of a static
variable is allccnted prior to execution and continues'

to exist until the progran has finished.

(b)  Dynomic variables
The extent of a dynamic variable starts whén its

declaration is exceuted and continues until excoution
,lcavés its scope.  Dynamic voriables are useful vien :
onc nceds some working space fer a short perioed (perhops
Quring the exccution of a routine) and it is too
wasteful to usc static storare. Dynomic variables are
particularly uscful when using‘functicns ond routines

: )
recursively.

The class of a variaoble depends only on its declaration.
Static variables are declarcd by

function or routine definitions,
static declarations,
global declarations, ' ' .

and  labels sot by colon.

6/2 i o o  15/1/69
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Dynamic variables arc dcelared by

simple variable definiticns,
for commends, ‘
veetor defindtions,

ond formal paramcters.
During the exccution of a program there are three separate
arcas of storage in which variables may reside; these are:

@ ' - (a)  the global vector,
. ’ (b)  the stack,

(¢). miscellancous static cells.
The global vector provides a facility rather similar to
. COMHON in FORTRﬂN’and is used as a means of ccmﬁunicaticn betwesn
4 peparafaly compiled scgnents of progrdm. The prbgrammcr ma§ use
a gloﬁal acclaratécn to associate nﬁmes witﬁ‘particular cells in the

global veeter.  The variables so declared con hold functions and

s
routines ﬂcclarca jn other segments, but By of course, hold Rvalucs
. o of any other éonccptﬁal type. |
L‘f The stack is nceded for the implementation of recursion and is
[.:_; . V.< | used,té hold dyhamic variablesv(such as‘vectérs ant fﬁncticn arpusnents

and anonymcus results necded during the evaluaticon of exmressicns.
1% ;

2

The miscellancous static gells‘hsld non~global static
variables which ore local the scgment in which they arc declared.
N = » . St -

65
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6.3

6.3.1

“effectively cxecuted si

declaration may be used to declare

It Declaratiens

Syntactlc form:

ot

. Dxample: et x,y' =0, 1
and f(t) = 2°t - 1
o and TternV = vec 22

Semantics:
A lct declaration may occur in the Re»~- ation scquence of

o block and may be uoué to declare sxmple vallﬂblea, vcctovs,

RO A WAt TP

functions and routines.  The scope cf the voriables declared is

o o et B e o kool

the tcxtuul regicn of progren consistinzg of the let decloration -

itself, the succeeding declaraticns and the

he Qefinitions between the aonds nre at the

szme lovel mad are

mltancously, and this means a let

a set ¢f mutually recursive

functions 2nd rautinecs.:

" The varicus hinﬂs of basic Qefiniticn are described below.

Snvnle Varinktle Definiticns
-Syntactic form: . N1, N2, .o Bn = 31, B2, ... En
“where H1 to Bn ore ﬁifierent noLes
and E1 to En are ony CYpTqulCﬁ
Example: lct =1 -
. coand  y, 7= £(E) + 3, H2lA

6/4 15/1/69
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—

-

Semantics:

23

Dy
arve first
following

N1,

Vector def

¥
v

amic variables with names N1, N2 ... Hn

declared but not initinlised, and then the
assignnent ceomznd is executed:

B2, ... Bn := B1, B2, ... En

.

initions

Syntactic

Exanplcs:

form: H = voc.<bonsﬁant>

vhere N ods a name

let V = vc Gb
and U

i

vee 10 i



6.3.3

Semoantics:

>

The conotant exprecsicon must inve 2 volue vhich con

determined at compilc time; dts value gives the mh\Jth allcwable

T

subscript e lac for tne veo tcr doelnred. Tae initial Rvalue of ti

ES

vector VerxulO is o podinter to the zeroth elcmcnt of set of cell

e .

allocated. The effoct uf the declaration: .

1et” V=veec 3 : . A . :

can be showm ig.\,l":u...wtl(} 11y as {cllows:

v I | " .
a ' 1 \
! ] The caemsnts
¢ of the veotor

ho

A1 thc st ace cells are allccaled from the stack .n4 so both ths

vcctor variable an2 the vector olements are Yamondc Cota itens.

.

The clembnto of the Vcctgr arc not 1n1t191i cd.

ERVS o

Function =n? Rsuidne Befinitions

‘Syntactic form:

- <function definition> :i= KQO) - F ‘
2 1‘1(1%1’ I}E‘ vse I‘!n) = E



» 2

<routine definition> ::= N() be C |

H(H1, N2, ... Hn) be C

vhore N and N1 to Kn are names. The 1ist of names din

SRS

porentheses is called the formal paramcter list. .
ample !

.. et Rede(x) = volef
$( et P = Freelist
~Freelist = P+ 3
P10, P11, PI2 = %, O, O

resultis P $)

G and Putlx, t) bhe |
$( 3if t10 = x retum .
ti=t0<x >t 4+, t+2
test xv t 2 0 |
then rv t i= Node(x)
or  Put(x, rvt) )
i . e ,
Scmantics: .
s The purpose of a function or reutine definiticn is to define
a variable'uithfan initial veluc which may be used in a functicn
or rcutine call. The heading of the definiticn consists of the
{%{ - - ~ name of the function or rcutine being defined, fellowed by a list

&

of formal parameters (pessibly empty) enclesed in parentheses.
The formzl parameter list is a form of decloration which Qcclares o

nanes and they 211 have the

ol

sct of variables with the spocifice

same scope, namely, the body of the function or routine. Formal

- parameters are dynomic varinbles whose storage cells are allocated

g e
at the mement of call.  The initial values are given by the actual
. 6/6 o | o 15/1/69
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pararcters of the call,
: 3
The pracess of calling o function or 1*out1ne is .shwn
dipgramnatica l]y in f;;; c.
10 ( D1, L2, = = =« Fn)
i ' ! : ]
/ i = {
;j : o o i frzzaweds  Evalunte the
/ U i arpuronts in ,
- . Rmede -
Rvalue walue Rvalue '
. .
. . ’
{ .7 L {
{ 4y vy - .
- H - il 2. Plree th: Zvolues
e / b . 1y in n new cinszeutive
{’% J L : N G G R AV .
! T . "Q’ oy stor age cellis
: 7/ .-c.f 4 N, i : ‘ }..--J g ‘
v | i | | ’
2 = e L. Associzte the forral
1 Ve : /'.:\w - 4 - o,
Rvatue s /,,...-—ﬂ;*/"“"/"w paranctors with the
B | } £ /,/ _ gtorage cells fron
~ T b A e left tc right
i \'>_! {»,_/ { . - ( o E \ =
?N(IM, N2, =-=--~=~-- )7 be C%
3, Find the function : : j ,
or routling 5. Evalunte or exccute ths
corresponding to . body of the functizca ¢r
’ the Rvalue of BO . . youtinre in the envairtoont
: 7 , ‘ ' ‘ of the definiticn cxtaonied
; - a ~ i by the new variables
6a. For a routine czll.
. return to the point V
just after the call .6b.,  TFor a function azplicatien,
: . L o yield ag result the Zvalue
- cf the b"ay cf the Junciicn
Fir. 9 - The Treoess o*" cz11inz a functisn cr routine
3 - -
» b -
6/7 15/1/569
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Vi

The number of fermal paramcters nced not cgual the number

actunl naranetors and so
tinc. Consider:

let K( b, ¢,

$C et

R(h, 32; -14

Within the body of R, th

¢ ]

C

63)

t is possible to define o voriadic

dy, ¢y, £} be

=lva

- \'\._)

.

Py

voriable v may be thcu*ﬁt c. as a vector

- whose clements arve the arguments of the call, and thus in tlis

example  vi0 cquals b and

however, it is

reference using the lv and rv

Note that the »arancte

Vi3

rs

equals 63,

let SCx, ) bo
det A, B=0,1

S(}V lﬁv B)

still pcssiblc1

of o BC L call are passcd by valua;

to achieve the effect of a call by

5

L
operaters, Censider:

The effect of the on 11 for S is to 33515n the current vaolue of

Y

B(nomely 1) to the variable pointed tc by leA (namely A), thus afic:

the

23

i1s

call A hr s value 1,
Note that the nonme

a static variable, se

declared by a functicn or routine definition

e

see

tien 6.2. To sitiplify the cenbination

of scparately cempiled scgnents of pregranm the utO;ﬂ"G cell allecostzd

for a function or rcutine may bLe in the ﬁlobal vectour, sce sccticn

6.6.

{" X

6/8

15/1/59
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AL fﬁnctions an& routineé may be defined aﬂd uged
rcéursivc1y¢

HThexe’is one importmmi restriction cn functions and
routines which hag becn<impo§cd in order to achieve‘a very
efficicent recursive call. This reatiiction is as follows:

Every name which is used in the body of a function or routine
but which is ndt declared there must be either a manifest constant
or a static yariable (sée section 6.2). |

In terms of theuiﬁplQMGnt&tion, this restriction stnteé that
either the Rvalue or the Lvalue of eﬁery7free variable of a functicn
~oxr routine is known pribr to execution.

Hote that the following program is illegal:

i
-
o

ot a, b =
let £(x) =

1
£
*
=
4
o

however, it may be corrected as follows:

n

static 4( a

15 b=2 §
let £(x) -

a'x + b

i

Manifeot Declarations

Syntactic form: monifest <decl body>
. - where
<dcel body> ii= $( <C def> 1}

<C def> <nouneD

oA

<C def> $)

<constant> | <name> = <constant>

\‘ ¥

2]

! B Sl
REIT
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*

Although both : and = are ollowed in manifest declarations,

by convention = should be preferred, .

Exenples: nanifest §( Wi=0; H2=1; H3=2 §)
manifest &( S LoT=p4 |
| S _SEQ=73

S_CoMa=38  §)

: A
Swmwus:lhwn&hﬂw/wﬂ%~

A manifest declaraticn asscciates Rvalues directly with

the declared names; the association trkes place at compile time

and connot thercafter be changed. The nomes so declared are not

variables and moay not appeor in a left hand context.

1

Stotic Declarations

Syntoctic Form: static <decl body>

where <cecl body> is defined in

7

section 6.4,  Although both : and = may be uscd in static

declaration, by convention = should be preferred.

- Deanple: 4 . static 4 P=0; Q=0 .
s ‘ Reportmax = 10 &)

Scemantics: iéq-ﬁ;Q@(kﬁJf:(5r%1 Vb(ﬁn'afc ,*h«i{iﬂwﬂféam«fL

_ A static decloration declares a set of static variables
(see section 6.2) whose initial valucs are piven. Both the
allocation of storage cells and the initiclisation are performed

prior to execution of the program.

*

6/10 < C15/1/69
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6.6 Global Doclavations

Syntoctic form: glo bl ‘<deciybody>

vhere.  <decl bodyris defined in secticn
: 6.4,
,Although both und = may be uscd in a glob11 declaration, by

convention ¢+ sheuld be preferrcd.

Examples: flobal §( Charcode:127; Opticn:128 &)
global  $( Rablockbedy:140; Rdblock:1hd
Rexp:1ili; Rdef:1hS; Reom:ihS  §)

‘Semaﬁtics;
A global declaration doclares'éariablca whoée storage cells ;re
in the g%&?ﬁl voctor (uce section 6., 2) The main purpose of the
global vector is to provide a means of communication betweeﬁ
scp&raLCTy COWplLCd scgments of programe.  Each name in a global

> ' dec]arat;oq is a»soqutca with g con thnt eyprc331on vhese value

speciiies which storcge cnll in the global vector belongs to the

o Wi e s v A g i i S
Ry e s

Seimeying

name. Tho same globql utorage coll may be ussoc1atod with

e i
P

i " - variables in many scparate segments and hence may be used to gass

v%lues from one segment to andiher,‘ éome glo§a1 veriables are

ini é aliscd prlar to execcution of tha program as‘é'fesult of the

following rule: | 4
If;a'function or rcutine definitiocn bécurs withiﬁ'the'SCOpe‘ofﬂ

a global variable with the same name, then the function or routine

e

§7°



%

vardable defined shares the storage cell of the global varicble
and it is initialised to the value of the functicn or routine
prior to exccuticn of the program. . ‘
 For ermample, the folloving sezment will declare and
initialise the seventh global varicble to be a functiom,
slobal 4( T2 4) |
lct Flgyx) = glx) + glox)
The following program is a segment which uses the function defined
in the last example,
 pgloba) $( F:?; Write:5?  §$)

let  glt) =t +3 |
. for  i=0to10ads VUrite (F(g, 1))

3

The interface between BCPL and the operating system is provided

by a machine code segment of basic functicns and routines which

may be called by ordinary BCPL calls. This interface is nccessari

very implementaticn dependent.

. | 6/12 A : ‘15/1/69
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7.0 ExampLe PROGRAMS

OF THE REPRESENTATIONS MAY BL COMPARED.,

i
THE THRLL EXAMPLES. GIVEM HCRL ARE TAKEN FROM
THE BCPL COMPILLR, AND THUS GIVE A REALISTIC DEMOKSTRATION

OF THE LANGUAGE IN THE APPLICATION FOR WHICH 1T WAS DESIGKED,

" THL SECCOND- EXAMPLE USLS A HARDWARE REPRESENTATION WHICH

HAS NO SHALL LETTERS; (T IS5 INCLUDED SO THAT THE READABILITY

IT 1S NOT PRACTICAL TO GIVE AN EXPLA&&%{ON CF THE FUKRCTIONS
AND ROUTINLS DEFINED (N THE EXAMPLES AND; INDEED, 1T 1S KNOT
NECESSARY TO UNDERSTAND THEM IN DETAIL SINCE THEY ARCE ONLY

INTENDED TO GIVE A GENERAL IDEA OF WHAT BCPL PROGRAMS LODK LIKC,

U/ L e
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g it b e mn T he 3 h e ke

// TH{S 15 THE PART OF THC BCPL COMPILER THAT
COMPILES SWITCHES INTO ATLAS MACHINE CODE.

GEY 'HEAD3' // INSERT THE HEADING Fi{LE
static $( CAstK=D; Casel=0 $)

LET CGswiten() se

$(1 Ley A = vEC 20D
LEYT B = VEC 223
LET N = RzADN(; // Rer THE WUMBER OF CASES
LET D = Reaol(

// Rcabp THE DEFAULT LADLL
Casel, CAseEL = A, B

FOR 1 =1 Y0

N DO . S
LET K = RocaoN() ° // ReaD tHE cASES AnD
LET L = RrtaolL SORT [NTO ASCENDING ORDLCR
LEY J = {1 : : “

CURTIL J=Orbo // PLACT THE LATEST CASE (N
: // 115 PROPER POSITION
$C 1r Kk > CASEK!J Break ‘

Caseii{u+1), C§etL'(dz1) = CaseKtu, CAsel!ly
$

Jot= K 11
CASEK%(J%?);'CAsELS(J+i) t= ok, L $)

S!HPL!fa() ‘
» Store(0, S5P-2)

’MOVC?OP(ARLG, ARG?, ‘/ ComMPILE CODE TO PUT THE CONTROL
EXAPRESSION INTO THEZ A REGISICR

‘Tnsr 30> 7 + (CascKin-CascKi1)/2 // TeST WHETHER 10

; '/ couriLe
THEN Dswiten(1, N, O; - // A DIRECT SWITCH
orR Bswitcu(1, w, D / OR A TREE SWITCH

¥

CourS(F121, 127, 2, 9, D) // Conpaaa A JUMP TC DEFAULT

Inivsrack(SsSP-1) $)

/2 ’ o 29/1/62
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AnD Bswitcn(p, @, D) Be  // CoMPILE A TRCE SWIYCH

$( ir a-p < 6 00 o
- FOR | = P T0 @ 00 // COMPILE A SCQUENTIAL
/ SCARCH -
4 ( CQHP>$F1( Arcc, D, CastKii, 9)
,COL!P\J\I()B‘\‘; 187 Dy T, CASi 1*) S’)

RETURN
$( Ler L = Nexteamrau()
LET T = (P{Q)/E // FIND YHE CASE WITH AVERAGE VALUE

Compsé 172, ARreG, Oy CASEK!T, 0) // ComepiLe A
CoupS(Fa26, 127, 0, 2, L) [/ coxoivion sump

Bswiven{r, 1-1, D) // COMPILE SWITCH FOR THE SHALLER CASES
CourS(Fi121, 127, D, 9, D) // COMPILE A JUMP TO DEFAULT

'ComPLAn( ) -

Conps(rﬁzh 127, 29, 0, CAS{L’T)

Bswitcu(T+1, Q, D) // Cour:ite swiTCH FOR THE LARGER CASES
RETURN §) $) // ALt pone

ano Dsviten(e, a, D)‘B: // Comszs A DIRECT SWITCH -
$( Ler L = Nextearan() - // FOR THC TABLE OF LABELS.

CouprS(F172, Arte, O, CaseKir, 0)
CUMPSEFQQ?, 127, Ds 0D, D)
ConpS{F172, Artc, 0, CascKlaq, O)
CompS(F227, 127, 9, J, D) |

* CompS{F12L, Arce, AReG, O, O;
Cprsgrwgi AREG, AREG, D, D '
CompPS F?Oi, 127, Arec, -L*CaseKier, L)

COHPDATALAB(L) // Ve How ComMPiLE THE TA&LE
FOR K = CASCK!P Yo CASEK!Q DO
TEST CAsSERIP = K
THEN $( CourD(D, Cascelilr)
P t=pP +1 %)
OR COMPD(D, D).

ConoHw() ) // COHP!LC A HALF WORD IF NECESSARY

T/ . 28/1/69
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GET '/TRNHEAD! : , / THIS IS THE PART OF

- - / THE BCPL CCMPILER THAT
: / TRANSLATES CONDITIONAL

 LET JumPCORD(X, B, L) BE . / JUMIS |10 0CODE

S(JC LET SW = B .
SWITCHCN H11X ;moV

3( CASE S.FALSC: B 0T B
CASE S.TRUC: IF B DO COnPdU%P(L)
- RETURN

CASE S.NOT: JUHPCOND(H9‘k, NOT B, L)
* RETURN

 CASEC S.LCGAND: SW 1= NOT sw
CASE S.LOGOR: :
TEST SW THEN $( Juw CC’J(H Y, B,,L;
JUMP VC)\)\H X, B, L $)

COR $( LET M = NEXTPARAM()
JUMFCU: Q(H?‘X, NOT B, d)
JUMFCCIRO(H3IX, By L)
CO: ‘F,L‘/‘\D(") $) '

RETURN
, DEFAULT LOAD(%)
ouT2R2(B -> S.JT, S. JF, L)

SS5P ::= S§SP - 1
RETURN $)JC

s L esyosen

e v



GET 'HEAD2!'  // TH1S 1S THE PART OF THC BCPL cOMPILER
THAT COMPILES  THE ftSS!GNM; NT CO!U:}\ND

Lter Assten(x, v) st // X 1S THC LEFT SIDE, Y THE RIGHT

$(1 iF x=2 Locor ¥=9 po - ; .
UNLESS X=D * v=) 0o Rrrort(110, CURRCNTURANCH)
RETURN

sw;rcnan Hidx 1n70 SWITCH ON THE LEADING OPLRATOR
OF THE LLFT MAND SIDE

s,,( CASE COMMAS UNLESS MI1lY = COMVA Do ‘
REPORT(112, CURRENTBRANCH)
RETURN &)

Ass;cugHALx, H?!Y;
, AsSton{H3Ix, H2!
i RETUNY

{ » »  CASE NAME: '
- ( Ler T o= CEL(V'xHNAHE(X)
LET K, N = DVLC'gT%l), szc'(r+9)
IF =)D vo Rerort(115, x)
(HF T<DvecP v K=LOCAL oo Rzponr(lis, %)

LOAO(Y)
SSP = SSP . i

SHiTCHon K INTO - .

$( oerauLrs Reorort(117, x)
. N 1=
/ case LOCAL: Our?(d.,‘N), RETURN
| cAsE GLOBAL: Oout2(SG, N); RCTurn
- . ' - V  casE LABEL: outa(SL, N); Rc1unw} $)Vv$)

CASE RV:
cASE VECAP:
_CASE COND: Losan(y)
Loapl V(»)
OuT1(STIAD)
SS; = SQP - 2
RETURN '

DEFAULT: REPORT(1D2, CURREHMTORANCH). $)1
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