André Greubel, Sven Strickroth und Michael Striewe (Hrsg.):
6. Workshop ,,Automatische Bewertung von Programmieraufgaben (ABP2023) 43

A Grammar and Parameterization-Based Generator for
Python Programming Exercises

Philipp Peess! Annabell Brocker? Rene Roepke? and Ulrik Schroeder?

Abstract: As the importance of programming education grows, the demand for a sufficient number
of practical exercises in courses also increases. To accommodate this need without significantly
increasing the instructors’ workload, a programming exercise generator capable of generating
exercises for independent practice is considered. This research mainly focuses on determining suitable
generation methods and creating a modular and extensible generator structure. The current generator
implementation uses parameterization and a grammar-based generation approach in order to provide
generated exercises directly to students in their programming environment. Furthermore, the generator
can act as a foundation for further research and be extended with additional generation methods,
creating the possibility of exploring artificial intelligence for the generation of programming exercises.

Keywords: Automatic Generation; Programming Exercises; Python; JupyterLab

1 Introduction

An important aspect of programming education is the provision of practical exercises, which
can improve both the students’ theoretical and practical knowledge [BE15], tailored to
varying skill levels, possibly through personalization [Of17]. Programming courses often
require a substantial number of practice tasks, but manual creation demands considerable
time and expertise and may not meet individual learning needs, such as the need for
numerous tasks related to a specific programming concept. The work aims to design and
develop pygenaizx, an automatic generator for programming exercises. Importantly, students
must be able to self-evaluate their solutions to these exercises to enable independent practice.

For the design and development of the system, an introductory programming course at a
German university, in which Python is introduced to a wide variety of non-CS students, was
choses as a reference. In this paper, the following two research questions are addressed as
part of the design and development of the exercise generator: (RQ1) “Which task generation
methods are suitable for exercises used in an introductory programming course?” and (RQ2)
“How can the generator implementation be extensible and easy to use in the course’s learning
environment?”. For future developments and further research, the resulting source code of
the exercise generator was made openly available.3

I RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany, philipp.peess @rwth-aachen.de

2RWTH Aachen University, Learning Technologies Research Group, Ahornstr. 55, 52074 Aachen, Germany,
{a.brocker, roepke, schroeder} @cs.rwth-aachen.de, https://orcid.org/{0009-0007-6708-0892, 0000-0003-0250-
8521, 0000-0002-5178-8497}

3 pygenaix, https://doi.org/10.17605/0SF.I0/TKHR3, last accessed 15.09.2023

©@@®®@ doi:10.18420/abp2023-6

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/abp2023-6
mailto:philipp.peess@rwth-aachen.de
https://doi.org/10.17605/OSF.IO/TKHR3

44 Philipp Peess, Annabell Brocker, Rene Roepke and Ulrik Schroeder

2 Related Work and Approaches to Automatic Generation

When reviewing related work on the automatic generation of programming exercises,
it was found that so far only little research was conducted in this field, and among the
existing works, a range of different generation methods is addressed. As such, [ROS10]
employed parameterization by developing a generator which replaces placeholders in both
the task description and an example solution to create new tasks with small but intentional
variations. In other works, models were transformed to programming exercises, ranging
from mathematical formulas to decision trees and complex graph structures (e. g. [So21;
TS18]). Similarly, [Ad19] used a context-free grammar (CFG) to generate a large number
of example programs by defining a grammar covering the core structure of select Python
programming concepts. Importantly, this grammar does not yet allow for the generation of a
task description, but was nonetheless capable of generating suitable code fragments focused
on specific topics. In [Sa22], an artificial intelligence (Al), OpenAl Codex*, was primed
using example exercises consisting of a task description, a solution, tests and keywords,
which describe the scenario and used programming concepts. When also providing new
keywords, a new task could be generated. Lastly, [WM15] and [Hal8] used fault injection
to modify a sample solution to a task description by introducing errors and then providing
this faulty solution to students, which would have to find all errors. Consequently, this
method is not suited for generating free programming exercises for the considered course.

Besides these works, the use of content generation methods in other domains was investigated,
e. g. for the generation of block-based programming exercises [Bal7] and quizzes [Ku20] in
an educational context, or the generation of unit tests [Se19] as a more general application
domain. As these generation approaches usually only focus on one specific aspect, they are
unsuitable for the generation of whole programming exercises.

Among the presented methods found in related work, parameterization-, model-, grammar-
and Al-based approaches were the most promising candidates for further exploration. To
determine the suitability of the generation methods in the context of the considered course,
a requirement analysis was conducted, focusing on the needs of tutors (i. e. instructors) and
students. As such, interviews with tutors were conducted to collect insights into the current
task creation process as well as their perception of students’ knowledge levels and common
problems when dealing with programming exercises. Additionally, the course materials and
exercises were analysed to identify suitable task types for automatic generation.

Firstly, parameterization provides a comparably low-complexity solution for generating
programming tasks. It can easily be implemented on existing tasks by introducing placehold-
ers and sets of values, thus creating task templates. Additionally, the process of replacing
placeholder values is commonly used, even in other generation methods, and should therefore
be implemented in any case as a possible post-processing step for the outputs of other
generation methods. However, it also has major disadvantages, as the variability of the
generatable tasks is strongly restricted by the fact that only specific sections of the input,

4 OpenAl Codex, https://openai.com/blog/openai-codex, last accessed 30.05.2023.

A Grammar and Parameterization-Based Generator for Python Programming Exercises 45

i. e. the placeholders, can be changed. As such, another generation method offering more
variability should be considered.

The remaining approaches offer a higher degree of variability, but also a high level of
complexity. For model-based generation approaches, this may be controllable based on the
specific model that is chosen for the generation process. More flexibility can be achieved
using a grammar-based approach, as a grammar could also be used to generate different
kinds of models. Additionally, a study showed that 93.1 % of students strongly agreed that
the programs generated using a grammar-based approach can help them in practice and
improve programming skills [Ad19]. Consequently, a grammar-based generation method
was chosen as the second generation method the programming exercise generator offers.

Al-based generation methods were also considered, but due to the problems that occurred
in the study presented in [Sa22], the reliability of the approach was questioned. In [Sa22],
a sample set of 240 exercises generated by an Al was analysed and it was found that
an example solution was missing in about 15 % of the cases and tests were missing in
almost 30 % of the cases. Additionally, the sample solution passed the tests in less than
a third of the cases it was generated with a solution, indicating that one of the two was
faulty. Furthermore, it should be noted that Als are generally black boxes, which makes it
impossible to predict the next output for any given input. This makes it difficult to use Al
as a direct source for programming exercises and makes an intermediate (human) control
instance almost mandatory, which would likely introduce additional manual work. Also,
when using a third-party solution, the training data is mostly unknown, making it hard to
predict what the Al is capable of generating and may subsequently require manual rework
to verify the usefulness of the task. Similar findings have been shown in another study
where a purely Al-based approach with a large language model and prompts was chosen
[SMB23]. While training an Al for programming exercise generation would generally be
possible, it would be a complex problem and require sufficient training data. As such, we
decided against implementing an Al-based generation approach in the initial version of
the generator. However, with the recent advancements in large language models in Al that
occurred during the research process of this work, this should be reevaluated. Additional
research in this area should be conducted to investigate whether new Al-based tools are
more capable of generating suitable and correct programming exercises.

3 Generator Design and Structure

The generator primarily focuses on creating exercises for novice programmers, emphasizing
algorithm-oriented input-output tasks rather than complex software architecture challenges.
Lecturers should be able to control the task topics themselves by specifying templates, so
that, for example, tasks only focus on the topics of variable declaration and initialisation. A
central goal in the design and implementation of a generator for programming exercises
was to establish an extensible and modular software structure. Consequently, the generator
was implemented in a plugin-based architecture, visualised in Figure 1.

46 Philipp Peess, Annabell Brocker, Rene Roepke and Ulrik Schroeder

As a first step, all external data was separated from the implementation of the generator
itself. This includes the definition of the generation capabilities, such as data for replacing
placeholders and the grammar definitions, as well as task blueprints, which act as templates
for the generation process. These blueprints define the generation steps and additional
metadata, such as topics a task may cover or potential filtering criteria like the task’s difficulty.
The resulting separation of the generator implementation and external data enables adding
new content to the generator without modifying its implementation directly.

The generator itself is split into the main generator and multiple task generators. The main
generator acts solely as a management component focused on loading and providing external
data as well as controlling the generation process. When tasked with the generation of a new
exercise, the main generator selects a blueprint and delegates the generation to the respective
task generators. Each task generator implements a generation method, currently for both
a parameterization- and a grammar-based generation approach. During the generation,
multiple task generators can be used in sequence by using the output of one task generator as
input for another task generator. This allows for the generation of more complex tasks while
reducing the functionality each task generator has to provide, facilitating the introduction of
new generation methods.

Parameterization: Fundamentally, the parameterization-based task generator replaces
placeholder values with randomly selected entries from predefined data sets. These place-
holders contain identifiers, making it possible to link related placeholders. Additionally, the
data set entries are not single words or values, but instead take on the form of dictionaries to
provide data as key-value pairs. This way, different grammatical forms and metadata provid-
ing further information on the entry, like associated topics, can be grouped. Conditions may
then be used to select only specific entries matching certain criteria, allowing the creation
of consistent and complex tasks. To facilitate the process of defining templates, additional
predefined commands were added to the generator, supporting operations for grammatical
adjustments, e. g. choosing a and an, or common operations like randomly generating

External Data Generator
accesses < €duest e request) b
Task Blueprints < Main Generator ™ € upyter. a
API > Extension
task task
A
delegates task or
Generator Data generation processing
step
\ 4

Task Generator
(Implements Generation
Content Method)

Fig. 1: System architecture visualising the different components and their interactions.

A Grammar and Parameterization-Based Generator for Python Programming Exercises 47

numbers. Furthermore, the parameterization-based generator supports the definition of any
verification method, allowing for the automatic generation of tests and example solutions
the students can then use to verify their solution.

Grammar-Based Generation: The foundation of the grammar-based generator is a modified
version of a CFG (similar to [Si12]), which provides additional symbol types: Meta symbols
may be defined to provide information for the post-processing steps and are not translated to
an output value when evaluating the resulting symbols after the grammar evaluation; by using
direct symbols, it is possible to define new content directly in the textual input instead of
creating new grammar symbols, allowing for the creation of content for single tasks without
bloating the grammar. During processing, both symbol types behave the same way a terminal
symbol would and after resolving all non-terminal symbols, only terminals, meta symbols
and direct symbols remain. Next, post-processing steps introduce variables and ensure newly
generated functions and classes can be instantiated and called. This is done by analysing the
current symbol sequence and searching for specific patterns that indicate the definition of
functions and classes and determining their parameters and attributes. Any references to
newly defined functions, e. g. function calls or class instantiations, may then be replaced
with one of the generated elements. The processed grammatical representation of a Python
program is then directly translated to source code. Importantly, the grammar also defines
text values from which a task description can be derived, ensuring that the example solution
matches the task description. Contrary to parameterization, the grammar-based approach
allows only for the generation of an example solution and a matching task description.
As such, an automatic verification is currently not possible. However, since practice tasks
generally only encompass short tasks and code fragments, tools for generating unit tests
from code, e. g. Pynguin®, could potentially be used to generate tests automatically.

4 Available Interfaces for Stakeholders

To make the generator available for requests (e. g. from a learning environment), a web API
was implemented using a Flask® server. It provides routes for all central functionality of the
generator. Importantly, this includes a route for requesting new tasks from the generator
which allows for configurations regarding the topic, the output format, requesting a download
of the file as well as filtering criteria for the blueprint selection process. Additionally, it is
possible to request information regarding the existing blueprints.

To simplify the process of generating exercises for students, a graphical user interface (GUI)
in the form of a JupyterLab extension” was implemented. It groups different blueprints
under topics and groups of topics under overarching categories corresponding to the course
structure to guide students through choosing adequate tasks for their current knowledge

5 Pynguin, https://pynguin.readthedocs.io/en/latest/index.html, last accessed 14.06.2023.

¢ Flask, https://flask.palletsprojects.com/en/2.3.x/, last accessed 31.05.2023.

7 JupyterLab Extensions, https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.html, last accessed
05.06.2023.

48 Philipp Peess, Annabell Brocker, Rene Roepke and Ulrik Schroeder

level. For more control, attributes like the preferred difficulty of the task can be specified.
Upon submission, a request is sent to the web API, which returns an ad-hoc-generated task
matching the specification and opens it as a Jupyter Notebook in the lab environment.

Lastly, to facilitate the development and the addition of new blueprints, a testing interface
for instructors (particularly tutors) was needed. In this context, a command line interface
was implemented, simplifying access to the generator functionality with additional options.

This way, generation can be done in bulk and can be restricted to specific blueprints. As
such, the interface facilitates testing new blueprints locally instead of having to move them
to the server first. It also supports the management of additional blueprints for exam task
generation which are usually not shared with students for preparation.

5 Evaluation and Future Work

To determine the generator’s suitability, a preliminary user evaluation was conducted with
tutors that already participated in the initial interviews. In a second round of interviews,
the tutors provided feedback regarding both the generatable content as well as the process
of defining new task types as blueprints. Regarding the former, the evaluation focused on
five criteria: (1) the possibilities for personalization, (2) the support of storytelling, (3) the
variability of the generated content and their fit regarding (4) foundational topics (e. g.,
loops, recursion) and (5) advanced problems (e. g., sorting algorithms). The tasks were
generally received favourably regarding these criteria, but in some cases, especially (4),
the tutors had vastly different opinions, which underlines the need for a comprehensive
evaluation with students and particularly novice programmers.

The evaluation also uncovered some problems of the implementation that still have to be
addressed. On the one hand, task descriptions should be improved in two central ways:
Firstly, the storytelling provided in the tasks was problematic, as the generated code did
not necessarily make sense in the described scenario and therefore could be perceived as
confusing or misleading by the students. Secondly, task descriptions were, at least in the case
of the grammar-based generation method, largely very direct descriptions of the solution.
However, with a growing knowledge level as well as task difficulty, more abstraction of task
descriptions regarding the sample solutions would be favourable. An additional limitation
of the grammar-based approach is the imperative nature of the task descriptions derived
directly from the imperative code, which does not match natural language well in many
cases. On the other hand, the generation can currently lead to unfavourable results, e. g.
unnecessary conditions like the comparison of a variable with itself. To counteract this,
static code analysis should be introduced to automatically detect and prevent these cases.

Furthermore, the interviewed tutors generally agreed that the task definition process is
understandable, but noted the need for documentation to simplify the blueprint creation
process. Especially the grammar-based approach requires sufficient knowledge of the existing

A Grammar and Parameterization-Based Generator for Python Programming Exercises 49

symbols in order to provide valuable blueprints. Consequently, the improved documentation
now contains an extensive overview of all allowed symbols. However, there could be more
assistance for defining tasks, e. g. in the form of a GUL

Finally, the generator provides a foundation for follow-up research and the introduction of
further generation methods due to its modular and plugin-based architecture. The capabilities
of different generation methods should be explored further, especially with regard to the
potential benefits of Al. Another benefit of Al would be for post-processing generated tasks
and task descriptions, e. g. to improve current problems with storytelling. Further, it would
be interesting to investigate the benefits of Al for the generation of blueprints to facilitate
the process of defining new task types. Also, Al could be used to generate test cases for
generated tasks. Lastly, another application of Al would be the translation of generated task
descriptions into different languages, as the generator currently only supports English tasks.

Regarding the general capabilities of the generator, the number of generated instances
depends on the definition of the task blueprints, the parameterization data and the grammar
definition. The number tasks directly correlates to the number of key-value pairs available
and the number of values per key. The grammar may contain rules with infinite recursions,
although this was limited to prevent overly long tasks. Additionally, the generator already
provides a sample solution to the task, allowing learners to independently compare their
solution with the sample solution. Automated feedback could be included by extending
the static test or unit test interface. Existing packages, such as Pynguin3, pycheckmate® or
PyTA?, could be used to generate static as well as unit tests.

6 Conclusion

This work presents the design and implementation of pygenaix, a programming exercise
generator supporting parameterization and a grammar-based approach, and provides answers
to the formulated research questions. To determine suitable generation methods (RQ1),
related works were analysed and evaluated, leading to the selection of parameterization
and a grammar-based generation approach. With regards to an extensible and easy to use
implementation (RQ2), a structure was developed which allows for the addition of new
generation methods as well as new generatable content. Furthermore, a web-based API for
requests was developed, which is used to connect the generator to a JupyterLab extension
providing a GUI for the generator, enabling the students to access the generator easily.
Future work entails improvements to the implemented generation methods before moving
on to exploring further methods, like Al for refining storytelling, generating programming
exercises or deriving programming exercise blueprints from available exercises.

8 pycheckmate, https://doi.org/10.17605/0SF.I0/BR68W, last accessed 28.08.2023
° PyTA, https://github.com/pyta-uoft/pyta, Last accessed: 28.08.2023

https://doi.org/10.17605/OSF.IO/BR68W
https://github.com/pyta-uoft/pyta

50 Philipp Peess, Annabell Brocker, Rene Roepke and Ulrik Schroeder

Bibliography

[Ad19]

[Bal7]

[BE15]

[Hal8]

[Ku20]

[Of17]

[ROS10]

[Sa22]

[Sel9]

[Si12]

[SMB23]

[S021]

[TS18]

[WM15]

Ade-Ibijola, A.: Syntactic Generation of Practice Novice Programs in Python. In (Ka-
banda, S.; Suleman, H.; Gruner, S., eds.): ICT Education. Springer, Cham, pp. 158-172,
2019, 1sBN: 978-3-030-05813-5.

Bart, A. C. et al.: BlockPy: An Open Access Data-Science Environment for Introductory
Programmers. Computer 50/5, pp. 18-26, 2017, 1ssn: 1558-0814.

Berglund, A.; Eckerdal, A.: Learning Practice and Theory in Programming Education:
Students’ Lived Experience. In: Int. Conf. on Learning and Teaching in Computing and
Engineering. LaTiCE’15, IEEE, New York, pp. 180-186, 2015.

Habibi, B. et al.: Using Fault Injection for Programming Task Generation. In (Auer, M. E.;
Guralnick, D.; Simonics, 1., eds.): Teaching and Learning in a Digital World. ICL'17,
Springer, Cham, pp. 559-566, 2018, 1sBN: 978-3-319-73204-6.

Kurdi, G. et al.: A Systematic Review of Automatic Question Generation for Educational
Purposes. en, Artificial Intelligence in Education 30/1, pp. 121-204, 2020, 1ssN: 1560-
4306, URL: https://doi.org/10.1007/s40593-019-00186-y, visited on: 04/05/2023.

Offutt, J. et al.: A Novel Self-Paced Model for Teaching Programming. In: 4th ACM
Conf. on Learning @ Scale. L@S 17, ACM, New York, pp. 177-180, 2017, 1sBN:
978-1-4503-4450-0, URL: https://doi.org/10.1145/3051457.3053978, visited on:
10/03/2022.

Radosevié, D.; Orehovacki, T.; Stapi¢, Z.: Automatic On-Line Generation of Student’s
Exercises in Teaching Programming. In: Central European Conf. on Information and
Intelligent Systems. CECIIS’ 10, Varazdin, 2010, urL: https://papers. ssrn.com/
abstract=2505722, visited on: 09/27/2022.

Sarsa, S. et al.: Automatic Generation of Programming Exercises and Code Explanations
Using Large Language Models. In: 18th ACM Conf. on Int. Computing Education
Research. ICER °22, ACM, New York, pp. 2743, 2022, 1sBN: 978-1-4503-9194-8, urL:
https://doi.org/10.1145/3501385.3543957, visited on: 09/27/2022.

Serra, D. et al.: On the Effectiveness of Manual and Automatic Unit Test Generation: Ten
Years Later. In: IEEE/ACM 16th Int. Conf. on Mining Software Repositories. MSR’19,
IEEE, New York, pp. 121-125, 2019.

Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, 2012, 1sBN:
978-1-133-18779-0.

Speth, S.; MeiBiner, N.; Becker, S.: Investigating the Use of Al-Generated Exercises
for Beginner and Intermediate Programming Courses: A ChatGPT Case Study. 2023
IEEE 35th International Conference on Software Engineering Education and Training
(CSEE&T)/, pp. 142-146, 2023, urL: https://api.semanticscholar.org/CorpusID:
261433946.

Sovietov, P.: Automatic Generation of Programming Exercises. In: 1st Int. Conf. on
Technology Enhanced Learning in Higher Education. TELE’21, pp. 111-114, 2021.

Tiam-Lee, T.J.; Sumi, K.: Procedural Generation of Programming Exercises with Guides
Based on the Student’s Emotion. In: IEEE Int. Conf. on Systems, Man, and Cybernetics.
SMC’18, IEEE, New York, pp. 1465-1470, 2018.

Wakatani, A.; Maeda, T.: Automatic generation of programming exercises for learning
programming language. In: IEEE/ACIS 14th Int. Conf. on Computer and Information
Science. ICIS’ 15, IEEE, New York, pp. 461-465, 2015.

https://doi.org/10.1007/s40593-019-00186-y
https://doi.org/10.1145/3051457.3053978
https://papers.ssrn.com/abstract=2505722
https://papers.ssrn.com/abstract=2505722
https://doi.org/10.1145/3501385.3543957
https://api.semanticscholar.org/CorpusID:261433946
https://api.semanticscholar.org/CorpusID:261433946

	Introduction
	Related Work and Approaches to Automatic Generation
	Generator Design and Structure
	Available Interfaces for Stakeholders
	Evaluation and Future Work
	Conclusion

