B. Konig-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2023 815

Enabling Integrated Data Analysis Pipelines on
Heterogeneous Hardware through Holistic Extensibility

Extended Abstract (New Idea)

Patrick Damme! Matthias Boehm?

1 Introduction

Integrated data analysis (IDA) pipelines, that combine data management/query processing,
high-performance computing, and machine learning training/scoring, become increasingly
common in practice. Systems of these areas share many compilation and runtime techniques,
and stress every hardware aspect of storage, computation, and networking. Accordingly,
these systems are strongly impacted by hardware challenges such as the end of Dennard
scaling and the end of Moore’s law, which ultimately lead to dark silicon and increasing
specialization at device level (CPUs, GPUs, FPGAs, ASICs), storage level (computational
memory/storage, storage hierarchies), and workload level (data types and sparsity).

While this makes research on novel and heterogeneous hardware more exciting than ever,
researchers are increasingly confronted with the question of how to integrate their prototypes
to evaluate their impact on end-to-end IDA pipelines. Building yet another dedicated system
offers a lot of flexibility, but requires substantial infrastructure efforts. However, enhancing
an established system requires deep knowledge of the system internals and can be very hard.
Thus, already in the 1980/90s, there was a wave of research on extensible DBMSs [CH90].
One of the most famous systems developed at that time is Postgres, which allows adding
user-defined data types, functions, and access methods [SAH87]. Since then, concepts for
extensibility and variability have been proposed for various system components, at different
abstraction levels, and in different kinds of data systems. Recently, extensibility has also
gained traction in the context of component-based systems [HD23]. However, to the best of
our knowledge, there is no system infrastructure that holistically supports user extensions for
all components relevant to the efficient execution of IDA pipelines on today’s heterogeneous
compute/storage hardware. To overcome this problem, we propose holistic extensibility.

In this talk, we present the concept of holistic extensibility for IDA pipelines, sketch how
we approach this concept in DAPHNE, and provide an overview of our ongoing work.

! Technische Universitit Berlin, Germany, patrick.damme @tu-berlin.de
2 Technische Universitiit Berlin, Germany, matthias.boehm @tu-berlin.de

©©®O® doi:10.18420/BTW2023-52

mailto:patrick.damme@tu-berlin.de
mailto:matthias.boehm@tu-berlin.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-52

816 Patrick Damme, Matthias Boehm

2 Holistic Extensibility for IDA Pipelines

Holistic extensibility means that every aspect of a data processing system for IDA pipelines
should be easily extensible by users without a deep understanding of the system internals.
This concept can be seen as an ideal, since it is hard to define a provably complete set
of aspects requiring extensibility, and the need can evolve over time (e.g., integrating
heterogeneous hardware was not a focus in the 1980s). However, we identify the following
extensibility aspects relevant to the integration of novel computing or storage hardware:

Operators. Supporting different hardware accelerators typically requires dedicated operator
code for each device. For instance, a CPU operator may be written in C++ employing SIMD
intrinsics while a GPU operator may be written in CUDA. An extensible system should
enable the integration of different physical operators, targeting different devices, for the
same logical operator. Moreover, it should allow the definition of new (e.g., composite)
operators in cases where this facilitates the execution on a particular device.

Data Representation. Operators targeted at specific hardware often require or enable
specific data representations in terms of the overall storage layout (data types) and individual
values (value types). E.g., in linear algebra for ML and simulations, different dense and sparse
matrix data types were proposed. Furthermore, new value types for certain accelerators are
emerging, e.g., t£32 (GPUs) or b£16 (TPUs). Moreover, specialized hardware often addresses
specific applications, requiring the extension by domain-specific data representations.

Optimization & Scheduling. To make effective use of extensions, the system’s optimizer
must be able to reason about them, which requires an extensible internal representation (IR).
The crucial decisions include when to use which custom operator and data representation,
and how to place operators and data on the available (heterogeneous) computation and
storage devices. For this purpose, it must be possible to add specific optimization passes to
statically decide based on inferred data properties and system architecture, as well as to add
specific runtime schedulers to make dynamic decisions which take the current execution
behavior and system load into account. Both of these can benefit from custom cost models.

Typically, all of these extensibility aspects need to interact to fully integrate a novel hardware
device. However, a low barrier of entry is crucial to achieve adoption and to facilitate
exploratory specialization. For instance, it should be possible to add a physical operator for
an accelerator without building an entire new processing engine. Moreover, existing operator
implementations should be reusable for a custom data representation with acceptable
out-of-the-box performance, to allow the user to focus on specializing and optimizing
heavy-hitter operators for this representation. Finally, a deep integration into the optimizer
should be optional by supporting hints on which physical variant and accelerator to use for
an operator and which representation and storage device to use for an intermediate result.

The crucial aspects of holistic extensibility include: (1) how to balance expressiveness and
additional complexity of the extensible system, and (2) how to achieve superb performance
underneath the newly introduced abstractions.

Enabling Integrated Data Analysis Pipelines on
Heterogeneous Hardware through Holistic Extensibility 817

DaphnelLib (API))

DaphneDSL script DaphneDSL (Domain-specific Language))

// Simple example: N
// matrix-vector multiply g MLIR DaphnelR (MLIR Dialect)

extension
catalog

STD Kernels

implementation

Optimization Passes

// automatically select automatically

MLIR-Based

// placement, devices, s New Runtime Abstractions STD Types S
// representations Compilation for Data, Devices, Operations arediib
// (default) (L o
Y=xev; N Hierarchical Scheduling

utilization TF32Type
// place v on GPUB Device Kernels Vectorized Sync/Async /0 ()
v = device(v, "/GPU:0"); (CPU, GPU, FPGA, || Execution Engine || Buffer/Memory ‘
// represent X as spars manually Storage) (Fused Op Pipelines) SelectGPUPass}| ‘
X = Sparsetn; ¥ T ‘ i)
// execute mult on GPU 0Ca embedded) and Distri ronments

standalone, HPC, data | DB) [MEEGAEEmE ‘

Y = X @gpuv; registration

Fig. 1: DAPHNE System Architecture with Three-step Extension Approach.

3 Towards Holistic Extensibility in DAPHNE

DAPHNES3 [Da22] is an open and extensible system infrastructure for IDA pipelines,
including language abstractions, compilation and runtime techniques, multi-level scheduling,
heterogeneous hardware accelerators, and computational storage for increasing productivity
and eliminating unnecessary overheads. IDA pipelines are expressed in DaphneDSL, a
domain-specific language for linear algebra and extended relational algebra over matrices
and frames. DaphneDSL is parsed into DaphnelR. In an MLIR-based [La21] compilation
chain, DaphnelR is optimized by domain-specific and traditional programming language
optimizations, lowered to LLVM with calls to pre-compiled operator kernels, JIT compiled,
and executed in a local or distributed runtime. DAPHNE’s vectorized engine fuses pipelines
of operators, serves as the central means for parallelism, and is the central component for
simultaneously utilizing heterogeneous hardware such as GPUs, FPGAs, and computational
storage. Next, we give an overview of our extensibility design and mention some interesting
research questions. To extend DAPHNE, users follow a three-step approach (Figure 1).

1. Implementation. The user implements the custom extensions for kernels, data/value
types, optimizer passes, or scheduling techniques outside the DAPHNE code base in C++
adhering to well-defined extension hooks, and compiles them as a shared library. This does
not require a deep understanding of the DAPHNE code base. Research questions include
defining the right interfaces to balance expressiveness and complexity, achieving efficiency
underneath these abstractions, and combining existing kernels and new data/value types.

2. Registration. The user registers the extension in DAPHNE’s extension catalog either
through configuration files or from DaphneDSL. This requires providing the name and
shared library as well as information specific to kernels (e.g., DaphnelR operation, expected
input/output data/value types, required interesting data properties), data types (logical data
type, preferred slicing axis for partitioning), and value types (bit width, semantics). More
information can optionally be provided, e.g., traits and cost models to be used by the
DAPHNE compiler. As the extension catalog can get large, its internal structure is decisive
to efficiently serve relevant access patterns like look-up by operation and hardware device.

3 https://github.com/daphne-eu/daphne

https://github.com/daphne-eu/daphne

818 Patrick Damme, Matthias Boehm

3. Utilization. By default, DAPHNE makes all decisions like the selection of kernels and
physical data types as well as placement automatically, to increase users’ productivity. To
support this behavior for custom extensions, one option is to provide traits and cost models
(e.g., for operator execution times or physical data size) in the extension catalog, which
can be used by built-in optimization passes. Another option is to add a new optimization
pass employing the extension where beneficial, which is simplified in DAPHNE due to the
modular nature of the optimizer pipeline in MLIR. Even entire third-party MLIR dialects
could be added, including operations, traits, and transforms. In fact, this is a promising
option for generating code for hardware accelerators. This approach allows integrating new
accelerators through dedicated dialects. Interesting questions include suitable abstractions
for cost models and the integration of custom traits and interesting properties into the existing
optimizer. To facilitate experimentation, DAPHNE also supports manual decisions. In
DaphneDSL, users can provide hints on which device, kernel, or physical data representation
to use for an operation or intermediate. These hints are treated as constraints by the optimizer.
Interesting questions include the propagation of hints through the IR.

4 Conclusions and Outlook

We proposed holistic extensibility for IDA pipelines to handle increasing specialization from
operators for heterogeneous hardware over the often co-designed data representations to the
corresponding optimization and scheduling techniques. We sketched the extensibility design
of DAPHNE, which offers users great benefits, while requiring low effort. We are currently
implementing this design with a focus on kernels and data/value types, including some
useful example extensions to showcase its simplicity. Our vision is to enable researchers to
easily integrate their prototypes into a full-fledged system for IDA pipelines with minimal
effort, thereby simplifying experimentation with and sharing of their work.

Acknowledgments. B The DAPHNE project has received funding from the European
Union’s Horizon 2020 research and innovation program under grant agreement No 957407.

Bibliography
[CH90] Carey, Michael J.; Haas, Laura M.: Extensible Database Management Systems. SIGMOD
Rec., 19(4):54-60, 1990.

[Da22] Damme, Patrick et al.: DAPHNE: An Open and Extensible System Infrastructure for Integrated
Data Analysis Pipelines. In: CIDR. 2022.

[HD23] Haffner, Immanuel; Dittrich, Jens: mutable: A Modern DBMS for Research and Fast
Prototyping. In: CIDR. 2023.

[La21] Lattner, Chris et al.: MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.
In: CGO. 2021.

[SAHS87] Stonebraker, Michael; Anton, Jeff; Hirohama, Michael: Extendability in POSTGRES. IEEE
Data Eng. Bull., 10(2):16-23, 1987.

