Jan Jiirjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2017 93

Exchanging Verification Witnesses between Verifiers *

Dirk Beyer !, Matthias Dangl 2, Daniel Dietsch ®, Matthias Heizmann 3

L LMU Munich, Germany 2 University of Passau, Germany 3 University of Freiburg, Germany

http://www.sosy-lab.org/research/correctness-witnesses/

Abstract: Standard verification tools provide a counterexample to witness a specifica-
tion violation. Since a few years, such a witness can be validated by an independent
validator using an exchangeable witness format. This way, information about the viola-
tion can be shared across verifiers and the user can use standard tools to visualize and
explore witnesses. This technique is not yet established for the correctness case, where
a program fulfills a specification. Even for simple programs, users often struggle to
comprehend why a program is correct, and there is no way to independently check the
verification result. We recently closed this gap by complementing our earlier work on
violation witnesses with correctness witnesses. The overall goal to make proofs avail-
able to engineers is probably as old as programming itself, and proof-carrying code was
proposed two decades ago — our goal is to make it practical: We consider witnesses
as first-class exchangeable objects, stored independently from the source code and
checked independently from the verifier that produced them, respecting the principle
of separation of concerns. At any time, the correctness witness can be used to recon-
struct a correctness proof to establish trust. We extended two state-of-the-art verifiers,
CPACHECKER and ULTIMATEAUTOMIZER, to produce and validate witnesses.

1 Introduction

The omnipresent dependency on software in society and industry makes it necessary to
ensure reliable and correct functioning of the software. This trend will continue and
become even more important in the future. During the last decade, various conceptual
breakthroughs in verification research were achieved, and, as showcased by the annual
TACAS International Competition on Software Verification (SV-COMP) ! [Bey16], many
successful software verifiers were developed.

Recently, the problem of false alarms that verification tools sometimes produce has been
addressed [BDD ™ 15]: Formerly, a verification tool reported found bugs as counterexample
traces in a tool-specific manner; those counterexamples were often not readable and there-
fore hardly usable. Determining whether the reported bug was a false alarm or described an
actual programming error that needed to be fixed was a tedious manual process for the user.
Exchangeable violation witnesses resolve this issue, because the general syntax allows new
tools for presentation to be developed and used [BD16]. Witnesses should be considered
as first-class objects that have much more value than the actual verification result TRUE

*This is a summary of a full article on this topic that appeared in Proc. FSE 2016 [BDDH16].
'Mttp://sv-comp.sosy-1lab.org/



94 Dirk Beyer et al.

validation is fully automatic.

Our recent work [BDDH16] complements the work on violation witnesses [BDD™15] with
a method for producing and validating correctness witnesses. The most recent edition of
the competition on software verification [Bey16] revealed that soundness is a big issue:
ten out of 13 participating verifiers in the category ‘Overall’ reported wrong correctness
claims for verification tasks with known specification violations. One of the submissions
was even claiming safety for 962 out of 2 348 verification tasks that were known to contain
a bug. This rather embarrassing situation of the state-of-the-art in software verification
can be fixed by producing correctness witnesses and letting a witness validator confirm the
result. A verification result should be trusted only if it can be confirmed by at least one
other verifier.

We propose that a verifier should be required to augment a verification result with a machine-
readable and exchangeable witness, such that both, bug alarms and claims of safety, may
be validated. With this technique, a trusted validator establishes trust in the verification
results produced by an untrusted verifier, and even in the absence of a trusted validator the
user’s confidence in a verification result can be increased by applying different validators to
a verification witness. Witnesses can be read by humans (perhaps using a visualization or
inspection tool) or by a witness validator.

We use the standard concept of (non-deterministic) finite automata to represent correctness
witnesses. A correctness-witness automaton observes the program locations (along the
control flow) that the verifier explores and provides invariants that hold at the locations
that the verifier visits. A correctness witness is valid if its predicates are invariants for the
program, and a validator should reject witnesses with incorrect invariants. The strength of
the invariants determines the quality of the witnesses, but no particular strength is required.
Witness validation can be more efficient than verification because it might be easier to
(re-) verify that invariants indeed hold, while the verification needs to come up with the
invariants. The task of finding useful invariants is in general considered one of the key
challenges in software verification. Generalizing this approach allows for a lot of flexibility,
because the more helpful the candidate invariants are, the less work has to be performed by
the validator.

References

[BD16] D. Beyer and M. Dangl. Verification-Aided Debugging: An Interactive Web-Service for
Exploring Error Witnesses. In Proc. CAV, pages 502-509. Springer, 2016.

[BDDT15] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness Validation
and Stepwise Testification across Software Verifiers. In Proc. ESEC/FSE, pages 721-733.
ACM, 2015.

[BDDH16] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness Witnesses: Exchanging
Verification Results between Verifiers. In Proc. FSE, pages 326-337. ACM, 2016.

[Beyl6] Dirk Beyer. Reliable and Reproducible Competition Results with BENCHEXEC and
Witnesses. In Proc. TACAS, LNCS 9636, pages 887-904. Springer, 2016.

[BHKW12] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional Model
Checking: A Technique to Pass Information between Verifiers. In FSE. ACM, 2012.





