
i
i

“proceedings” — 2017/8/24 — 12:20 — page 1537 — #1537 i
i

i
i

i
i

Maximilian Eibl, Martin Gaedke (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 11

Model-in-the-Loop and Software-in-the-Loop Testing of
Closed-Loop Automotive Software with Arttest

Norman Hansen1, Norbert Wiechowski1, Alexander Kugler1, Stefan Kowalewski1,
Thomas Rambow2 and Rainer Busch2

Abstract: In this paper, we present Arttest, a tool for functional testing of block diagrams developed
with MATLAB/Simulink. We introduce testing concepts for closed-loop tests of automotive software
on model and software level, the integration of the concepts into a signal speciĄcation language
and correspondent tool support. Furthermore, we show the applicability of the concepts and the test
execution automation based on an example for model-in-the-loop and software-in-the-loop tests.

Keywords: Software VeriĄcation, Software Testing, MIL, SIL

1 Introduction

In the automotive industry, major innovations are nowadays driven by software[Br07]. Over
the past years, functionality realized by software grew from basic headlight control to
advanced systems, such as Active Brake Assist (ABA) and Electronic Stability Control
(ESC), interacting with multiple sensors, actuators and other systems. Since software may
directly inĆuence the driving behavior by controlling actuators, e.g., brakes, software
failures may result in damage to passengers and to the environment. To increase the safety of
software controlled systems in the automotive domain, the ISO 26262[IS11] recommends
extensive testing for safety critical software. In particular, testing safety critical software
using the Ąnal hardware is highly recommended by the ISO 26262. However, removing a
software failure in late development phases implicates high costs[Jo12]. In order to detect
and remove software faults as early as possible in the development process and thus decrease
costs, software can be tested on model level[BK08, La04].

When performing tests, the model of the System Under Test (SUT) is often tested in
combination with a plant model, describing the behavior of the environment of the
SUT[Wi17, Na04]. By feeding the signals from the plant model to the SUT and the outputs
of the SUT to the plant model, a closed-loop system is created. For instance, the plant model
1 Lehrstuhl Informatik 11 - Embedded Software, Ahornstraße 55, 52074 Aachen

[hansen, wiechowski, akugler, kowalewski]@embedded.rwth-aachen.de
2 Ford Research and Innovation Center Aachen, Süsterfeldstraße 200, 52072 Aachen

[trambow, rbusch1]@ford.com

cbe doi:10.18420/in2017_154

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1537

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_154

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1538 — #1538 i
i

i
i

i
i

12 Norman Hansen et al.

of an ESC system could model the behavior of a car for a speciĄc driving scenario as shown
in Figure 1.

Depending on the SUT and its complexity, all input signals might be connected and fed back
to a plant model as shown in Figure 1. Consequently, there are no input signals to the closed-
loop system which could be stimulated by tests. When performing Hardware-in-the-Loop
(HIL) tests, signals of closed-loop systems generated by a plant model can be overridden
with signals speciĄed by a test engineer enabling the stimulation of the controller model
and fault injection tests[Na04]. To enable similar tests in early development stages, i.e., on
Model-in-the-Loop (MIL) and Software-in-the-Loop (SIL) level to save costs by early fault
removal, we target the replacement of plant model signals by speciĄed signals.

In1

In2

In3

Out1

Out2

Out3

Out4

ESC-Controller

In1

In2

In3

In4

Out1

Out2

Out3

Plant model

Fig. 1: Closed-loop system of an ESC controller with plant model

In Section 2, we present a signal speciĄcation language enabling closed-loop tests which
may dynamically react to conditions being satisĄed. In addition, the language enables
arbitrary internal signals of the closed-loop model being tested to be overridden, e.g., for
fault injection. The implementation of closed-loop tests using the presented speciĄcation
language is supported by Arttest, a tool for the creation and automated execution of
requirement based functional tests[Wi17]. In Section 3, we describe the test automation of
MIL and SIL tests and present an application of the concepts using an example in Section 4.
Related work is discussed in Section 5 while Section 6 concludes this work.

2 Signal Specification Language

To implement tests for closed-loop systems, a language is required which is able to express,
that internal signals of a model are overridden with speciĄed values for a given duration.
Overriding internal signals may further be triggered by events, e.g., a condition containing
signals of the model being satisĄed. We designed a signal speciĄcation language with
formal syntax and semantics that fulĄlls these requirements. The language is designed to
resemble natural language so that tests can be easily understood, even without extensive
prior knowledge of the language.

1538 Norman Hansen et al.

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1539 — #1539 i
i

i
i

i
i

Model-in-the-Loop and Software-in-the-Loop Testing of Closed-Loop Automotive Software 13

2.1 Syntax

A simpliĄed excerpt of the languageŠs grammar for a selection of basic language constructs
used to describe signals is given in Table 1 using EBNF[Sc96] notation.
〈TC〉 = 〈actions〉
〈actions〉 = { 〈action〉 }
〈action〉 = 〈wait〉 | 〈setto〉 | 〈simultaneously〉 | 〈rampto〉 | 〈when〉 | 〈override〉
〈wait〉 = Şwait forŞ{〈number〉} Şseconds Ş
〈signal〉 = Ş<Ş〈string〉 Ş>Ş
〈setto〉 = 〈signal〉 Şset to [Ş〈number〉 Ş]Ş
〈rampto〉 = 〈signal〉 Şramps to [Ş〈number〉 Ş] within {Ş〈number〉 Ş} secondsŞ
〈when〉 = Şwhen [Ş〈condition〉 Ş] during {Ş〈number〉 Ş} seconds (Ş〈actions〉 Ş)Ş
〈override〉 = ŞoverrideŞ〈signal〉 (ŞonŞ| ŞofŞ)
〈condition〉 = 〈string〉

Tab. 1: Excerpt of the signal speciĄcation language grammar in EBNF
The signal speciĄcation language is organized in actions which compose a test case (TC).
Table 1 shows the syntax for wait, setto, rampto, when and override actions. The non-terminal
symbol 〈number〉 deĄnes arbitrary integer or decimal values and the non-terminal symbol
〈string〉 is restricted to valid MATLAB expressions. The 〈condition〉 symbol allows the
speciĄcation of conditions in MATLAB syntax, i.e., expressions evaluating to true or f alse
including signal names or function calls to MATLAB functions. Signal names are restricted
to valid MATLAB variable names. Based on the syntax, we deĄne the formal semantics of
the signal speciĄcation language.

2.2 Semantics

A speciĄcation of signals spec is a n-tupel of actions a1, ..., an with ai,i∈{1...n} ∈ A, A
being the set of all actions and n ∈ N≥0. Actions can be classiĄed in three categories,
actions inĆuencing signal values directly, e.g., by changing signal values, actions activating
or deactivating the overriding of internal signals and actions which are hierarchically
composed of other actions. Actions modifying signal values are for instance setto and rampto
actions. Override actions are of the second category and when actions are hierarchically
composed of other actions. A when action awhen may be hierarchically composed such that
child(awhen) : A→ Am,m ∈ N≥0. For instance, child(awhen) = (′wait f or {2} seconds′,
′ < signal_b > set to [4]′) for when action awhen as given in Listing 1.
when [signal_a > 0] during {4} seconds then (

wait for {2} seconds

<signal_b > set to [4]

)

List. 1: Hierarchical composition of a when action

MIL and SIL Testing of Closed-Loop Automotive Software with Arttest 1539

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1540 — #1540 i
i

i
i

i
i

14 Norman Hansen et al.

Consider τ to be the sampling time of the SUT and ω ∈ N≥0 to be the number of time
steps τ for the worst case duration of spec. Let Sspec be the set of signals s : string → Rω
deĄned by spec and signal(a) : A→ S the function as given in Table 2, deĄning the signals
whose values are inĆuenced by action a.

a signal(a)
< s > set to [y] s
wait for {x} seconds ∅
< s > ramps to [y] within {x} seconds s
when [cnd] during {x} seconds (a1,...,am) (signal(a1), ..., signal(am))
override < s > on s
override < s > of s

Tab. 2: DeĄnition of signal(a) with a, ai ∈ A and s ∈ Sspec
The function start(a) : A→ N≥0 assigns a starting time to all actions a with start(a1) := 0,
a1 Ąrst action of the speciĄcation and start(ai) = start(ai−1) + length(a) for all actions of
the same hierarchy level. If there is no preceding action ai−1 on the same hierarchy level,
then start(ai) = κ + 1, κ being the Ąrst sampling time satisfying the condition of the when
action containing ai .

Let length(a) : A → N≥0 be the function deĄning the length, in number of equidistant
sampling points, of each action according to Table 3.

a length(a)
< s > set to [y] 0
wait for {x} seconds ⌈ xτ ⌉
< s > ramps to [y] within {x} seconds ⌈ xτ ⌉
when [cnd] during {x} seconds (aw1 ,...,awm) ⌈ xτ ⌉ if cnd |=start(a),start(a)+ ⌈ xτ ⌉ f alse,

else κ − start(a) + Σm
i=1length(ai)

override < s > on 0
override < s > of 0

Tab. 3: DeĄnition of length(a) with a ∈ A, x, y ∈ R, κ ∈ N≥0 and s ∈ Sspec
⌈value⌉ denotes the rounding of value to the next value inN in direction of+∞ if value < N.
cnd |=b,e with b, e ∈ N≥0 denotes the evaluation of cnd to either f alse or true within
the time interval starting at sampling point b and ending at sampling point e such that
cnd |=b,e true if ∃k ∈ [b, e] cnd(k) |= true with κ = in f ({k ∈ [b, e]|cnd(k) |= true}).
For instance, assume the condition cnd := signal_a + signal_b > 1 with signal_a and
signal_b sampled at rate 0.01 as shown in Figure 2. a + b > 1 |=0,400 f alse since the sum
of signal_a and signal_b is not greater than one for the Ąrst 400 sampling times. However,
a + b > 1 |=300,700 true, since the sum of both signals is greater than one for at least one
sampling point within the interval [300; 700], with sampling point κ = 600 being the Ąrst
sampling point causing condition cnd to be true.

1540 Norman Hansen et al.

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1541 — #1541 i
i

i
i

i
i

Model-in-the-Loop and Software-in-the-Loop Testing of Closed-Loop Automotive Software 15

0 2 4 6 8 10
0

0.5

1
signal_a

0 2 4 6 8 10
0

0.5

1
signal_b

Fig. 2: Example for two signals signal_a and signal_b being used within a condition

a val(a)
< s > set to [y] s(start(a)) = y

wait for {x} seconds ∀s ∈ Sspec, ∀i ∈ {1, 2, ..., length(a)},
s(start(a) + i) = s(start(a))

< s > ramps to [y] within {x} seconds ∀i ∈ {1, 2, ...⌈ xτ ⌉},
s(start(a) + i) = s(start(a)) + i ∗ (y−s(start(a))

length(a))
∀s′ ∈ Sspec\{s}, ∀i ∈ {1, 2, ..., length(a)},
s′(start(a) + i) = s(start(a))

when [cnd] during {x} seconds (a1,...,am) if cnd |=start(a), ⌈ xτ ⌉ true then
val(′wait f or{′ τ ∗ κ ′}′) ◦ val(child(a))
κ being the sampling time satisfying cnd
else val(′wait f or{′x′}seconds′)

Tab. 4: DeĄnition of val(a) with x, y ∈ R and s ∈ Sspec
As shown in Table 3, the length of when actions depends on whether and at which
point in time the condition cnd is satisĄed during the test execution. If the condition
of awhen is never satisĄed within the time interval [start(a), start(a) + ⌈ xτ ⌉], the child-
actions child(awhen) = (aw1, ..., awm) of awhen are not considered. Otherwise, the actions
(aw1, ..., awm) are interpreted sequentially with start(aw1) being the simulation time, denoted
by κ ∈ [start(a), start(a)+ ⌈ xτ ⌉]where cnd evaluates to true for the Ąrst time. Consequently,
the length of a test may vary depending on conditions being satisĄed or not during test
execution.

The semantics of signal speciĄcation spec = (a1, ..., an) is given by sequential application,
denoted ◦, of valuation function val(a) to the actions of spec, i.e., val(spec) = val(a1) ◦
... ◦ val(an). Valuation function val(a) is described in Table 4 for actions a having an
inĆuence on the speciĄed signals of the test and s(0) = 0, ∀s ∈ S, zero being the initial
value for every signal s.

As Table 4 shows, there is no valuation inĆuencing signal values for override actions.
Override actions determine the time and duration when internal signals are to be overridden
with the values speciĄed by actions which inĆuence the signal to be overridden and follow the
action enabling the override. Switching from the simulated to the speciĄed values for a signal
s is triggered by the action override < s > on. When interpreting override < s > o f f ,
the test execution switches back to the simulated values of signal s.

MIL and SIL Testing of Closed-Loop Automotive Software with Arttest 1541

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1542 — #1542 i
i

i
i

i
i

16 Norman Hansen et al.

We distinguish between two diferent signal categories, reference signals and stimulus
signals. Reference signals are compared with simulated signals and based on the comparison
results, a test either passes or fails. Thus, reference signals do not inĆuence the simulation.
In contrast, stimulus signals are fed into the model, either as direct inputs to a model or
to override internal signals.The language enforces a strict diferentiation between both
categories and correspondent signal speciĄcations by dividing the test into two sections as
shown in Listing 2.
Test:

Step 1:

Step 2:

Acceptance:

Criterion 1:

Criterion 2:

List. 2: Sections for stimulus and reference signal speciĄcation

The Ąrst section is the Test section, structured into sequentially executed Steps which use the
introduced language for stimulus signal speciĄcation. Note, that the Step keyword followed
by an identiĄer is only a structural element and has no impact on the semantics of the
presented signal speciĄcation.

The second section is the Acceptance section, structured into Criterions using the introduced
language for reference signal speciĄcation. A Criterion matches exactly one Step with
start(ac1) = start(as1), ac1 being the Ąrst action of the Criterion and as1 the Ąrst action of
the matching Step. If a Criterion has a longer duration than the matched Step, the speciĄed
reference signals are cut to the length of the step. Using when actions, reference signals may
be speciĄed depending on occuring events. However, since reference signals inĆuence only
the acceptance of a test and not the test execution, override actions may not be used within
Criterions.

3 Closed-Loop Test Automation with Arttest

Arttest is a stand-alone application created with the intent to ease and automate test related
activities such as test speciĄcation, test execution and generation of a test report. Arttest
tests are based on the language presented in Section 2 with Arttest providing features such as
content completion, syntax highlighting and visual previews of the speciĄed signals. Since
Arttest focuses on MIL and SIL tests in the automotive domain where Simulink is widely
used for model-based software development, MATLAB/Simulink is the test execution
platform supported by Arttest. Figure 3 depicts the test process in Arttest. After project
creation and setup, a test harness is generated automatically based on the chosen model to
test, before tests are speciĄed in Arttest by a tester. Subsequently, when test execution is
triggered, tests are executed, evaluated and test reports are generated fully automatically.

1542 Norman Hansen et al.

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1543 — #1543 i
i

i
i

i
i

Model-in-the-Loop and Software-in-the-Loop Testing of Closed-Loop Automotive Software 17

Fig. 3: Arttest Test Process

1

In1

1

Out1

2

In2

internal signal 1

In1

1

Out1

2

In2

Original Signal Test Signal
internal signal

Fig. 4: Internal signal of the harness (left) being enriched by an Arttest block (right) to switch between
simulated and speciĄed signals during test execution

The automated harness generation extends the model or subsystem to be tested with Simu-
link blocks required by Arttest to feed speciĄed signals to the model. When considering
open-loop tests which do not react to events by adapting stimulus signals dynamically, it is
suicient to feed signals to the inputs of the SUT using From Workspace blocks and to log the
output signals created by the simulation of the SUT. However, when executing closed-loop
tests, further changes to the generated harness are required to enable the evaluation and
overriding of arbitrary internal signals. Thus, when starting the test execution, the generated
harness is enriched, as described below, depending on the executed tests and correspondent
use of override actions, internal signals to be evaluated and when actions.

Overriding internal signals is realized by adding an override block from the Arttest
block library to the harness for every signal which might be overridden according to the
speciĄcation. Figure 4 shows an internal signal of a model on the left side, which is assumed
to be overridden by a test. On the right side of the Ągure, the result of the automated
enrichment of the harness, performed before test execution, is shown. The enriched override
block allows Arttest to switch between the simulated signal (original signal) and a speciĄed
signal according to the executed test.

Evaluating internal signals requires a similar harness enrichment as for overriding
signals. Internal signals which are only evaluated and thus not modiĄed need to be recorded,
such that Arttest may retrieve the signal data after simulation and perform an evaluation
to decide whether the test passed or failed. To record the signal, a block from the Arttest
library is added with the signal to be recorded being the input to the added block.

MIL and SIL Testing of Closed-Loop Automotive Software with Arttest 1543

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1544 — #1544 i
i

i
i

i
i

18 Norman Hansen et al.

When actions require harness enrichments to access signals used in conditions. The
enrichment is identical to the enrichment for the evaluation of internal signals. Furthermore,
the use of when actions within a test may change the length of the test, whether signals are
overridden or not and which values are used to override signals, depending on the condition
evaluating to true or f alse and the time when the condition evaluates to true. Thus, an
Arttest block is added to the harness, which evaluates the conditions of when actions during
test execution and decides whether the conditions evaluate to true within the speciĄed time.
In case the condition evaluates to true within the speciĄed time frame, the simulation is
paused, the state of the model is communicated to Arttest and new signal values based on
the retrieved information are calculated and fed to the harness. Finally, before continuing
the simulation, the updated values for the internal signals to be overridden, if there are
any, are updated within the Arttest blocks which were added during harness enrichment.
Figure 5 illustrates this process.

Fig. 5: Arttest process to execute tests containing when actions

When enriching the harness model with Arttest library blocks, properties of the model and
signals may not be changed. For instance, changing sampling times of blocks and data
types of signals would inĆuence the modelŠs semantics in unintended ways. The Arttest
library blocks are conĄgured such that the model and signal properties remain unchanged.
Furthermore, the Arttest library is designed to be compatible with the Simulink ert system
target Ąle for code generation. Consequently, code can be generated and compiled based on
the enriched harness to perform closed-loop SIL tests. The generation and compilation of
code for the enriched SUT is automated by Arttest, enabling the reuse of implemented tests
on software level without the need to adapt existing MIL tests manually.

4 Example

To show how the presented concepts for closed-loop MIL and SIL tests work, we test a
window control system with a plant model as shown in Figure 6. In order to keep the
example as simple as possible, we will assume that a certain driver behavior is hard-coded
into the environment model.

The window control model has six input signals being described in Table 5 with driver
commands having priority over passenger commands and up commands overriding down
commands.

1544 Norman Hansen et al.

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1545 — #1545 i
i

i
i

i
i

Model-in-the-Loop and Software-in-the-Loop Testing of Closed-Loop Automotive Software 19

driver_up

driver_down

passenger_up

passenger_down

obstacle_detected

vehicle_speed

move_up

move_down

error_counter

current_position

driver_information

window_control

move_up

move_down

error_counter

current_position

driver_information

driver_up

driver_down

passenger_up

passenger_down

obstacle_detected

vehicle_speed

Plant Model

Fig. 6: Window control and plant model

Input Signal Description

driver_up true if the driver gives the command to close the window
driver_down true if the driver gives the command to open the window
passenger_up similar to driver_up with the passenger giving the command
passenger_down similar to driver_down with the passenger giving the command
obstacle_detected true if an obstacle is detected preventing the window from being closed
vehicle_speed speed of the vehicle in km/h

Tab. 5: Description of the input signals to the window controller

The output signal move_up is true in case the window is in the process of being closed. The
signal move_down indicates similarly that the window is being opened. In case an obstacle
is detected and commands indicate that the window shall close, the window is not lifted any
further and the error counter increases. To save energy while driving fast, an information
is shown, indicated by boolean signal driver_information, to the driver in case the vehicle
speed exceeds 35 km/h and the window is open. The decision to save energy by closing the
window is left to the driver.

The plant model describes the scenario that the driver enters a vehicle, the window being
open. The driver needs 1.5 seconds to start the engine and subsequently accelerate the
vehicle to 50 km/h. When the driver information is shown, it takes the driver one second to
notice the information and press the correspondent button until the window is closed.

When simulating the closed-loop system shown in Figure 6 and monitoring the input and
output signals of the window_control subsystem, the described behavior as shown in Figure 7
can be observed. Comparing the signals generated by the closed-loop model, we notice that
vehicle_speed reaches the threshold of 35km/h after 19 seconds and driver_information
switches from zero (f alse) to one (true). At second 20, the driver_up signal switches from
zero to one and consequently, the window starts to close, which is indicated by the linear
rise of signal current_position and move_up being true.

Using Arttest and the presented signal speciĄcation language, we intend to test if the
window_control model closes the window as soon as the driver gives the command.

MIL and SIL Testing of Closed-Loop Automotive Software with Arttest 1545

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1546 — #1546 i
i

i
i

i
i

20 Norman Hansen et al.

0 5 10 15 20 25 30
0

50

100
vehicle_speed

0 5 10 15 20 25 30
0

0.5

1
driver_information

0 5 10 15 20 25 30
0

0.5

1
driver_up

0 5 10 15 20 25 30
0

50

100
current_position

0 5 10 15 20 25 30
0

0.5

1
move_up

0 5 10 15 20 25 30
−1

0

1
obstacle_detected

Fig. 7: Signals generated during execution of the model in Figure 6

Moreover, the test shall override the obstacle_detected signal of the plant model such that
an obstacle is detected while the window is being closed and ensure that the window is
not further lifted. Listing 3 shows the correspondent test based on the signal speciĄcation
language presented in Section 2.
Test:

Step 1:

when [current_position >= 50] during {40} seconds then (

override <obstacle_detected > on

<obstacle_detected > set to [TRUE]

)

wait for {5} seconds

Acceptance:

Criterion 1:

when [driver_up == TRUE] during {40} seconds then (

<current_position > ramps to [50] within {2} seconds

)

List. 3: Test implementation with overridden internal signal and dynamically adapted reference signal
current_position

We execute the test from Listing 3 using Arttest and MATLAB R2014a on model and
software level. The signals logged during execution of the MIL and SIL test are identical
and shown in Figure 8. Since the test does not inĆuence the vehicle speed, the signal
vehicle_speed remains unchanged compared to the signal from Figure 7. This holds for the
other signals until second 22, too.

1546 Norman Hansen et al.

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1547 — #1547 i
i

i
i

i
i

Model-in-the-Loop and Software-in-the-Loop Testing of Closed-Loop Automotive Software 21

0 5 10 15 20 25 30
0

50

100
vehicle_speed

0 5 10 15 20 25 30
0

0.5

1
driver_information

0 5 10 15 20 25 30
0

0.5

1
driver_up

0 5 10 15 20 25 30
0

50

100
current_position

0 5 10 15 20 25 30
0

0.5

1
move_up

0 5 10 15 20 25 30
0

0.5

1
obstacle_detected

Fig. 8: Signals generated during execution of the test from Listing 3 for the model in Figure 6

According to the executed test case, when current_position reaches 50%, the signal
obstacle_detected of the plant model is overridden and its value switches from f alse to
true. The window_control model reacts to the detected obstacle causing the window to be
halted and thus move_up to be f alse and current_position to hold the current value as long
as the obstacle remains detected.

For evaluation purpose, the logged values for current_position shown in Figure 8 are
compared to the speciĄed reference signal. Since the condition driver_up == T RUE was
satisĄed during test execution at second 20, the speciĄed reference signal is zero until
second 20 and then ramps to the value 50 within two seconds. Since the reference signal
matches the simulated signal, the test passes.

5 Related Work

There are many approaches from industry and academia available addressing functional test
speciĄcation and automation on diferent test levels[La04]. For instance, MTest3, developed
by Model Engineering Solutions, supports the speciĄcation of functional tests using a
domain speciĄc language. MTest is integrated into MATLAB and supports MIL, SIL
and Processor-in-the-Loop (PIL) test executions such as regression/back-to-back tests and
coverage analyses.

Simulink Test4, developed by The Mathworks, is natively integrated into Simulink providing
3 http://www.model-engineers.com/de/mtest.html

4 https://www.mathworks.com/products/simulink-test.html

MIL and SIL Testing of Closed-Loop Automotive Software with Arttest 1547

http://www.model-engineers.com/de/mtest.html
https://www.mathworks.com/products/simulink-test.html

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1548 — #1548 i
i

i
i

i
i

22 Norman Hansen et al.

support for MIL, SIL, PIL, HIL and back-to-back tests. Tests are created using speciĄc
Simulink blocks provided by Simulink Test, which additionally automates tasks such as test
harness generation.

Another commercial solution for functional testing of model-based developed systems is
TPT5, a tool developed by Piketec[BK08]. TPT supports the test execution of MIL, SIL,
PIL and HIL tests. Tests can be either speciĄed graphically using automatons, by importing
measured data or by test generation techniques.

ECU-Test6 is a software developed by tracetronic to create and execute tests by interaction
with various software and hardware test environments from diferent vendors[Re03]. ECU-
Test features MIL and SIL tests besides HIL test execution.

With focus on HIL tests, dSpace ofers solutions such as Automation Desk7, a software
solution for test implementation and automation[Na04]. Tests and evaluation criteria are
speciĄed using a graphical speciĄcation.

Another approach, targeting the automation of tests for model-based systems is SIMOTEST,
developed at Fraunhofer-IESE[BE11]. SIMOTEST supports the IEEE 1641[IE10] standard
for signal and test speciĄcation enabling signals to be described as a composition of
frequently used signal patterns. Similar to MTest, SIMOTEST is integrated into MATLAB
and automates test executions and evaluations.

Besides the IEEE 1641 standard, there are other approaches to describe signals, such as the
Testing and Test Control Notation (TTCN-3), a well-deĄned formal language developed to
describe tests[Gr03]. Apart from a textual and a table based description, the third version
of TTCN introduces a graphical format (GFT) to describe test sequences using a similar
notation to UML sequence charts. With Continuous TTCN3[SBG06], extensions to TTCN3
are presented allowing test speciĄcations for reactive embedded systems.

6 Conclusion

This paper presents a test speciĄcation language for closed-loop tests, able to express
dynamic reactions to events occurring during test execution and inĆuence simulations by
overriding signals, e.g., for fault injection. After introducing formal syntax and semantics of
the language, Arttest, a tool supporting the automated execution of the speciĄed tests with
MATLAB/Simulink, is presented. Using a closed-loop example, we show how the language
and the concepts can be used to create a test implementation. The example comprises the
overriding of an internal signal and is executed as a MIL and a SIL test with Arttest.

5 http://www.piketec.com/en/2/tpt.html

6 https://www.tracetronic.com/products/ecu-test

7 https://www.dspace.com/en/inc/home/products/sw/test_automation_software/automdesk.cfm

1548 Norman Hansen et al.

http://www.piketec.com/en/2/tpt.html
https://www.tracetronic.com/products/ecu-test
https://www.dspace.com/en/inc/home/products/sw/test_automation_software/automdesk.cfm

i
i

“proceedings” — 2017/8/24 — 12:20 — page 1549 — #1549 i
i

i
i

i
i

Model-in-the-Loop and Software-in-the-Loop Testing of Closed-Loop Automotive Software 23

References
[BE11] Böhr, Frank; Eschbach, Robert: SIMOTEST: A tool for automated testing of hybrid real-time

Simulink models. In: Emerging Technologies & Factory Automation (ETFA), 2011 IEEE
16th Conference on. IEEE, pp. 1Ű4, 2011.

[BK08] Bringmann, Eckard; Krämer, Andreas: Model-based testing of automotive systems. In:
Software Testing, VeriĄcation, and Validation, 2008 1st International Conference on. IEEE,
pp. 485Ű493, 2008.

[Br07] Broy, Manfred; Kruger, Ingolf H; Pretschner, Alexander; Salzmann, Christian: Engineering
automotive software. Proceedings of the IEEE, 95(2):356Ű373, 2007.

[Gr03] Grabowski, Jens; Hogrefe, Dieter; Réthy, György; Schieferdecker, Ina; Wiles, Anthony;
Willcock, Colin: An introduction to the testing and test control notation (TTCN-3). Computer
Networks, 42(3):375Ű403, 2003.

[IE10] IEEE 1641: Signal and Test DeĄnition. 2010.

[IS11] ISO 26262: Road vehicles - Functional safety - Part 6: Product development at the software
level. 2011.

[Jo12] Jones, Capers: Software defect origins and removal methods. Namcook Analytics, Tech. Rep.,
2012.

[La04] Lamberg, Klaus; Beine, Michael; Eschmann, Mario; Otterbach, Rainer; Conrad, Mirko;
Fey, Ines: Model-based Testing of Embedded Automotive Software Using Mtest. In: SAE
Technical Paper. SAE International, 2004.

[Na04] Nabi, Syed; Balike, Mahesh; Allen, Jace; Rzemien, Kevin: An overview of hardware-in-the-
loop testing systems at Visteon. Technical report, SAE Technical Paper, 2004.

[Re03] Reuss et al., BMW: Automatisierter Motorsteuergerätetest mit Hardware-in-the-Loop Prüf-
ständen. 2003.

[SBG06] Schieferdecker, Ina; Bringmann, Eckard; Grossmann, Jürgen: Continuous TTCN-3: Testing
of Embedded Control Systems. In: Proceedings of the 2006 International Workshop on
Software Engineering for Automotive Systems. SEAS, ACM, NY, USA, pp. 29Ű36, 2006.

[Sc96] Scowen, Roger: International standard(ISO 14977) Extended BNF. 1996.

[Wi17] Wiechowski, Norbert; Rambow, Thomas; Busch, Rainer; Kugler, Alexander; Hansen, Norman;
Kowalewski, Stefan: Arttest - a New Test Environment for Model-Based Software Development.
In: SAE Technical Paper. SAE International, 2017.

MIL and SIL Testing of Closed-Loop Automotive Software with Arttest 1549

