Declarative Workflow Modeling with UML class diagrams
and OCL

Jens Briining

University of Rostock, Department of Computer Science,
A.-Einstein-Str. 21, 18059 Rostock, Germany
jens.bruening @uni-rostock.de

Abstract: This paper describes an approach of modeling workflows with UML
class diagrams and OCL constraints [OCLO6] in a declarative way. These are
modeled in the UML tool USE [USEO08] that can generate object diagrams
(snapshots) out of UML class diagrams. USE checks specified OCL constraints
against the generated snapshots. With the declarative workflow modeling approach
presented here, activity model states are integrated in the object model states. By
analyzing these snapshots the model is validated against requirements.

In figure 1 a UML class diagram for modeling flat workflows is presented. The class
Process has an attribute name and contains a set of activities which is described by the
association belongs between Process and Activity. Atomic actions in the process that are
executed in the workflow are expressed by the class Activity. Activities have also names
that describe the actions and a state in which the activity is just in the time, the snapshot
of the system is taken. Possible states for the activities are described in the enumeration
State. A derived state of the process depends on the states of the included activities and
is delivered by the operation getState in the class Process. Further on, the operation
getActivity is needed by the subsequent OCL constraints and returns the requested
activity instance. The described operations are specified in OCL expressions and will be
interpreted by USE.

-".E"I‘-'Ii
Paiamis fuem | Slring
fime . g b "—'ﬂ::'| slms
DEtlae] ) | el 1 . ;I-H'I.I_l
| petactivivin: Sxing): Acthy ot

tresbled | LioGdaan
Figure 1: UML model for flat workflow specifications modeled in USE
Actual states of an activity instance can be changed by invoking the methods skip(),
start() or done().The functionality of the operations are expressed by OCL pre- and post-
conditions. Operation enabled() proves on basis of the current object model state and the

inner state of the activity itself, if it is enabled and thus can be started. This method is
also coded in an OCL expression.

227



Without constraints, the model of figure 1 is insufficient to express concrete workflow
definitions. OCL invariants are used to get process definitions with its containing
activities. For example, the following invariant guarantees that the process “processing”

LRI

consists of the activities “generate invoice”, “send invoice”, “debit” and “send goods”.

context Process inv OrderProcessing:
self.name="processing' implies
self.activity.name = Bag{'generate invoice', 'send invoice','debit’,'send goods'}

Declarative workflow models are flexible because all execution paths of the modelled
activities are allowed if they are not forbidden explicitly [PAO7]. All activities are in an
interleaved relationship by default. Other classical temporal relations like sequences or
alternatives can be modelled by constraints. In the example presented above there should
be a sequence relation between “generate invoice” and “send invoice” and an alternative
between “debit” and “generate invoice”. These relationships can be expressed by the
following OCL invariants.

context Process inv Accounting_Generate_Send_Sequence:
self.name='processing' implies
(self.getActivity('send invoice').state=#running implies self.getActivity('generate invoice').state=#done)

context Process inv Accounting_Invoice_Debit_Alternative:
self.name='"processing' implies
((self.getActivity('generate invoice').state=#running implies self.getActivity('debit’).state=#skipped) and
(self.getActivity('debit').state=#running implies self.getActivity('generate invoice').state=#skipped))

Further on, declarative workflow models can express additional relations between
activities that are not possible to model in the traditional workflow modelling languages
like BPMN or UML Activity Diagrams. For example, simply expressing that two
activities must not occur at the same time [PAO7]. This is modelled in the next OCL
invariant where the activities “send goods” and “debit” are not allowed to be both in the
state running at the same time.

context Process inv Debit_SendGoods_Entangled:
self.name='"processing' implies
not (self.getActivity('generate invoice').state=#running and self.getActivity('send goods').state=#running)

The next working step for this modelling approach is, to express additional temporal
relations in the declarative way on basis of the workflow patterns. Furthermore, it can be
extended to hierarchical workflow models.

References

[OCLO06] Object Constraint Language (OCL) Specification 2.0, OMG,
http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

[PAO7] Pesic, M., Aalst, W, et.al.: Constraint-Based Workflow Models: Change Made Easy. In:
LNCS 4103, pp. 77-94, Berlin, Springer, 2007.

[USEO8] A UML-based Specification Environment, University of Bremen,
http://www.db.informatik.uni-bremen.de/projects/use/, Bremen, 2008.

228





