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Abstract: The use of biometric systems is steadily increasing, which leads to het-
erogeneity and, thus, possibly interoperability issues. In order to address such issues,
standards are developed by ISO/IEC Joint Technical Committee 1. In the case of
minutiae-based fingerprint recognition, for instance, ISO/IEC 19794-2 defines bio-
metric data interchange records that vendors should adhere to. To validate adherence
to this standard, ISO/IEC 29109-2 specifies means to perform syntactic conformance
testing. Yet, a specification of semantic conformance testing is missing and is cur-
rently being discussed as a working draft amendment of ISO/IEC 29109-2. In order
to contribute to this development, this paper proposes a general semantic conformance
testing framework. Especially, a formal semantic conformance computation model
is proposed that can be used to assess a biometric systems vendor’s semantic con-
formance according to a ground-truth data set and to compare different testing ap-
proaches. Furthermore, an instance thereof is proposed that honors minutia quality
scores when computing semantic conformance rates. Initial evaluation shows, that
semantic conformance rates computed using this quality-honoring approach correlate
with inter-vendor performance measures we would expect in a real-world scenario.

1 Introduction

In order to avoid vendor lock-ins within large installations of biometric systems (e.g. in

border control and law enforcement) and to guarantee interoperability between different

vendors’ biometric systems, standardization of a biometric characteristic’s digital repre-

sentation, i.e. biometric samples or biometric templates, is elementary. Currently such

standardization is mainly driven by the International Organization for Standardization

(ISO) and the International Electrotechnical Commission (IEC) and especially their Joint

Technical Committee 1 (JTC1). In ISO/IEC 19794 family of standards, biometric data in-

terchange records (BDIRs) for different biometric characteristics are standardized. Specif-

ically, ISO/IEC 19794-2 [ISO05] specifies a biometric data interchange format for finger

minutiae data. Derived from the informal definition given in ISO/IEC 19794-2 [ISO05],

a minutia m ∈ M, with M denoting the set of all minutiae, can formally be defined as

5-tuple m = 〈x, y, θ, t, q〉, with (x, y) being coordinates of a cartesian coordinate-system

induced by a biometric sample, 0 ≤ θ ≤ 255 being the minutiae direction measured in

units of 360/256 degrees, t being a minutiae type (e.g. ridge line ending, ridge line bi-

furcation, or unknown), and 0 ≤ q ≤ 100 being a quality value expressing a confidence
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in minutia’s attributes. However, currently no standardized way of determining minutia

quality is defined.

To be able to verify the conformance of BDIRs produced by biometric systems to the base

standard, ISO/IEC 29109 family of standards specifies conformance testing methodologies

for biometric data interchange records as defined in ISO/IEC 19794 family. Among this

ISO/IEC 29109 family of standards, ISO/IEC 29109-1 [ISO09a] defines a general frame-

work for conformance testing and ISO/IEC 29109-2 [ISO09b] specifies a conformance

testing methodology for finger minutiae records according to ISO/IEC 19794-2 [ISO05].

ISO/IEC 29109-1 [ISO09a] currently defines three levels of conformance testing. Level

1 (data format conformance) and level 2 (internal consistency checking) types of tests

can roughly be categorized as being syntactic conformance tests which ensure that BDIRs

exported by one biometric system can be imported and interpreted by another biometric

system and vice versa. Level 3 conformance testing (content checking) on the other hand

can be regarded as semantic conformance testing which, after a BDIR has passed syntac-

tic testing, shall ensure that a BDIR created by an implementation under test (IUT) is a

faithful representation of the input biometric data record (IBDR). Syntactic conformance

testing for finger minutiae records is currently covered in ISO/IEC 29109-2:2010. Yet,

a solid framework for semantic conformance testing is missing. To fill this gap, in this

paper a generic, i.e. modality independent, semantic conformance testing framework is

proposed and a specific modality dependent computation model to assess semantic confor-

mance of minutiae-based feature extractors is introduced. In contrast to other approaches

[BLT+09, LBT+09], the approach described herein honors minutiae quality attributes for

semantic conformance assessment. Initial evaluation of the approach presented in this

paper shows that it is outperforming existing ones by Busch and Lodrova et al. in that

semantic conformance rates achieved correlate with real-world inter-vendor performance

measures.

The remainder of this paper is structured as follows: After this section introduced the

topic, section 2 will give an overview on related work in this field. Section 3 will propose

a semantic conformance testing framework by introducing a semantic conformance com-

putation model. In section 4, a quality score honoring instance of this computation model

will be proposed that can be used to compute an IUT’s semantic conformance rate and its

evaluation will be discussed in section 5. Finally, section 6 summarizes the results and

concludes.

2 Related Work

Semantic conformance testing of minutiae-based feature extractors is a rather new field

of research with limited amount of earlier work. In [BLT+09], Busch et al. propose a

semantic conformance testing methodology and especially highlight the importance of a

reference data set, i.e. ground-truth data, in order to perform semantic conformance test-

ing. In this work, reference data is manually assembled by dactyloscopic experts from the

german federal criminal police office (BKA). Further, two measures, crgtm and cragm, are

proposed which can be used to assess per-sample semantic conformance by measuring the
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ratio of ground-truth minutiae, i.e. minutiae marked by human experts, for which a mate

was found and the ratio of automatically extracted minutiae, i.e. extracted using a specific

vendor’s feature extractor, placed within the fingerprint area, respectively. Based on this

initial work, in [LBT+09] Lodrova et al. enhance the measures proposed in [BLT+09] by

further adding a score cramf measuring the ratio of mated automatically extracted minu-

tiae within the fingerprint area. Additionally, a hierarchical clustering algorithm to compile

ground-truth minutiae from scattered expert markup is proposed in [LBT+09]. Using this

clustering algorithm a ground-truth data set consisting of pairs (Pi, Ri) of biometric sam-

ples Pi, i.e. fingerprint images, and corresponding biometric references Ri is compiled

from the scattered expert data. An alternative minutiae-clustering algorithm based on the

DBSCAN clustering algorithm has been proposed in [ABN10].

3 Semantic Conformance Testing Framework

In ISO/IEC 29109-1, semantic conformance testing – or content checking – is currently

defined modality independent and informally as “a conformance testing methodology that

tests that a BDIR produced by an IUT is a faithful representation of the IBDR subject to

the constraints of the parameters in the metadata records” [ISO09a]. While this type of

definition is precise enough at an intuitive level on the one hand, from an algorithm devel-

oper’s and a modality dependent point of view a more precise refinement of faithfulness is

necessary, that can be used to describe a generic semantic conformance testing framework.

3.1 A Minutiae-specific Definition of Faithfulness

Intuitively, a faithful representation of a biometric characteristic can be understood as any

kind of biometric template or biometric data interchange record that contains exactly the

same kind and amount of features that as well can be found on the true biometric character-

istic. Unfortunately, however, transforming each and every feature of a specific biometric

characteristic into a biometric template usually is not possible in an unbiased way as this

at least is influenced by varying, usually non-linear, physical effects during data capture

(e.g. moisture of skin, pressure, temporary scars, noise and dust on the capture plate, etc.).

Hence, we define a faithful representation as a biometric template resulting from a noise-

free and linear transformation applied to the input biometric sample’s traits.

In the above proposed definition, a faithful representation is defined by the transformation

of the input biometric sample’s traits into a biometric template. We require this transfor-

mation to be both, noise-free and linear, which we explain using the concept of minutiae

as features. Let M be the set of all minutiae, Pi = {m1, . . . ,mj} ⊆ M denote an input

biometric data record consisting of j minutiae and Tk,i = Ak(Pi) = {m′
1, . . . ,m

′
n} ⊆ M

denote an biometric data interchange record, or template, produced by vendor k’s feature

extraction process Ak upon input of Pi. Then, for a feature extraction process to create a

faithful representation of IBDR Pi we require that
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rates CR(Ak) as follows:

∀Ak ∈ A : CR(Ak) =
1

NGTM

NGTM∑
i=1

ωi · F(Ri, Ak(Pi)). (1)

Put informally, the resulting conformance rates CR(Ak) as computed according to

SCM = (A, GTM,F , CRmax) are the average of the faithfulness fk,i of the biomet-

ric data interchange records Tk,i as produced by Ak for the input biometric data records

Pi and reference records Ri, weighted according to ωi.

The model defined in equation (1) is generic in that different functions F can be developed

to assess semantic conformance of different biometric modalities. In order to be able

to compare different instances of this computation model SCM for the same biometric

modality and in order to obtain reasonable results we require instances of this model to

have the following properties:

1. The output values CR(Ak) of the model, i.e. a semantic conformance rate belong-

ing to vendor k’s feature extractor, must fall within the interval [0, CRmax], i.e.

0 ≤ CR(Ak) ≤ CRmax. A higher value CR(Ak) indicates a higher semantic

conformance, while a value of 0 indicates no semantic conformance at all.

2. The weighting parameters ωi specified by the ground-truth data set GTM have to

be from the interval [0, 1], i.e. 0 ≤ wi ≤ 1.

3. Derived from requirements one and two, the values fk,i computed by the helper

function F must fall within the interval [0, CRmax] as well, i.e. 0 ≤ fk,i ≤ CRmax.

4. The helper function F used to quantify the faithfulness of a BDIR Tk,i according to

the given GTM has to be continuous.

The notion of semantic conformance rates according to the above given formal definition

of a semantic conformance computation model deviates from the one given in Busch and

Lodrova’s work. Busch, Lodrova et al. [BLT+09, LBT+09] define semantic conformance

rates for a specific input biometric data record and as a means to calculate semantic con-

formance rates propose three different measures, crgtm, cragm, cramf . In contrast, we

define semantic conformance rates for a specific biometric systems vendor’s implementa-

tion under test and for its computation make use of a function F measuring the faithfulness

of a biometric template Tk,i created by vendor k’s algorithms upon input of a biometric

sample Pi according to a provided reference Ri. Hence, semantic conformance rates in

the sense of Busch, Lodrova et al. relate to what in this work is introduced as measures of

faithfulness. The reason for this difference in notion is that we believe that an IUT specific

conformance rate seems to be more useful. Having a semantic conformance rate indicat-

ing the vendor’s implementation under test capabilities to generate faithful representations

of the input biometric data record enables the possibility to certify IUTs according to a

conformance rate specific threshold CR0. In other words, using the notion of IUT spe-

cific conformance rates introduced in this paper we can attest a vendor k’s conformance if

CR(Ak) > CR0 holds.
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In order to map the notion and formulae proposed in [BLT+09, LBT+09] to the proposed

computation model, we can define a helper function FBL as follows:

FBL(Ri, Tk,i) = λgtmcrgtm(Ri, Tk,i)+λagmcragm(Tk,i)+λamfcramf (Ri, Tk,i), (2)

with λgtm, λagm, λamf being conformance rate, in the sense of Busch et al., specific

weights and λgtm + λagm + λamf = 1. Using this function, for a given ground-truth

data set GTM and a set of vendor implementations under test A, we derive an instance

SCMBL = (A, GTM,FBL, 1) of the semantic conformance computation model pro-

posed above. Unfortunately, score fusion is not discussed in [BLT+09, LBT+09] and

hence reasonable values for λgtm, λagm, λamf yet have to be determined.

4 Quality-honoring Conformance Rate Computation

In the preceding section a general semantic conformance computation model SCM =
(A, GTM,F , CRmax) has been introduced, which heavily depends on a ground-truth

data set GTM and a function F : M × M → R in order to compute semantic confor-

mance rates CR(Ak) for implementations under test Ak ∈ A. What is still missing to

be able to compute conformance rates is the discussion of a function F(Ri, Tk,i) that can

be used to quantify the faithfulness of a biometric template Tk,i = Ak(Pi) generated by

Ak upon input of Pi according to reference Ri. Ideally, this function should be able to

quantify effects due to the following misbehavior as identified in the MINEX [Nat06] and

MTIT [NPL07] projects:

1. Misplacement of minutiae, i.e. incorrect minutia attributes (x, y, θ, t). Assessment

of minutia quality q is excluded in MINEX and MTIT as there’s currently no stan-

dardized process defined which can be used for quality determination.

2. Placement of spurious minutiae, i.e. false addition of artificial minutiae.

As mentioned earlier, semantic conformance testing fundamentally bases on the notion of

faithfulness. In section 3.1, faithfulness has been defined using minutiae attributes. Hence,

this section develops a semantic conformance computation model that quantifies minutiae

misplacement as well as placement of spurious minutiae in order to determine faithfulness

of a biometric template Tk,i with regard to biometric reference Ri. Additionally, this

instance of SCM leverages minutiae quality scores, which are currently being neglected

by other approaches. As this model is inspired by SCMBL and basically is a quality-

honoring version of it, this model is further called SCMQBL = (A, GTM,FQBL, 1).

In order to assess faithfulness of a biometric template Tk,i with regard to a reference Ri,
SCMQBL makes use of the following measures:

Minutiae misplacement Let M denote the set of all minutiae, Tk,i ⊆ M, Ri ⊆ M,

mj = (xj , yj , θj , tj , qj) ∈ Ri denote the j-th minutiae in Ri and m′
j =

(x′j , y
′
j , θ

′
j , t

′
j , q

′
j) ∈ Tk,i denote an automatically extracted minutia, according to
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euclidean distance, spatially closest tomj . If multiple equally distant pairs of minu-

tiae (mj ,m
′
j) for a given pair (Ri, Tk,i) exist, minutiae pairings have to be chosen

such that the total number of minutiae pairs reaches its maximum. Then minutiae

misplacement is quantified using a helper function γ1(Ri, Tk,i) that is defined as

γ1(Ri, Tk,i) =
1

|Ri|

|Ri|∑
j=1

(1− (1− faith(mj ,m
′
j))e

−(1−
q
′

j

100
))2, (3)

with 0 ≤ faith(mj ,m
′
j) ≤ 1 being a helper function used to quantify the faithful-

ness of minutia m′
j with respect to ground-truth minutia mj defined as

faith(mj ,m
′
j) =

{
0, if d2(mj ,m

′
j) > told

fj , otherwise
, (4)

and fj being the faithfulness score of minutiae m′
j that is closest to mj and with

euclidean distance d2(mj ,m
′
j) ≤ told. We choose told = W/2, with W denoting

the average ridge width in analogy to [LBT+09]. fj is composed of three scores

sΔdj , sΔθj , sΔtj as follows:

fj =
sΔdj + sΔθj + sΔtj

3
. (5)

The scores sΔdj , sΔθj , sΔtj are computed as follows:

sΔdj =
told − d2(mj ,m

′
j)

told
, (6)

sΔθj =
π −min{2π − |θj − θ′j |, |θj − θ′j |}

π
, and (7)

sΔtj =




1, if tj = t′j
0, 25, if tj ?= t′j and tj is unknown

0, otherwise

. (8)

In order to determine γ1(Ri, Tk,i), i.e. to quantify minutiae misplacement, three

scores are computed that assess spatial differences (sΔdj ), deviations in minutiae

angles (sΔθj ) and differences in minutiae types (sΔtj ). All those scores fall within

the interval [0; 1], with the extrema 0 denoting maximum difference and 1 denoting

no difference. Besides sΔtj , all scores are continuous. sΔtj measures differences

in minutiae types. If type t of a ground-truth minutiae m equals the type t′ of an

automatically generated minutia m′, i.e. if t = t′, then sΔtj reaches maximum. If

the type value of the ground-truth minutia m is set to unknown, or other, then sΔtj
is set to 0,25. The rationale behind this is that if dactyloscopic experts, or other

reference feature extractors, are not able to correctly determine a minutia’s type, the

implementation under test should not be penalized rigorously as there’s no reference.

In any other case, sΔtj is set to 0.
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(a) (b)

Figure 2: This figure illustrates the impact of quality scores and minutia faithfulness on the resulting
quality-weighted faithfulness score. Part (a) illustrates scores without dilation due to the raise by
power of two, part (b) depicts results using the formula given in equation (3).

The score fj basically is an unweighted measure of minutiae faithfulness, i.e. sim-

ilarity of two minutiae mj ,m
′
j . It is composed of the above mentioned scores

sΔdj , sΔθj , sΔtj . For determining this measure, the average of those three scores is

computed, i.e. all three scores influence fj in the same manner. This decision was

made by purpose as while according to experts from the german federal criminal

police office, cartesian coordinates of minutiae are more distinctive than minutiae

angles, which are more distinctive than minutiae type, their influence on the faith-

fulness according to the definition introduced in section 3.1 should be the same.

However, if further research may suggest to assign different weights to the scores

sΔdj , sΔθj , sΔtj , equation (5) can easily be adapted.

Further, to compute γ1(Ri, Tk,i), the penalty imposed due to differences in minutiae

attributes, i.e. (1 − faith(mj ,m
′
j)), is weighted according to the mated automat-

ically generated minutiae’s quality scores. This is done by using the weight factor

e−(1−
q
′

j

100
). Further on, the thus resulting weighted penalty is subtracted from 1, i.e.

to derive a minutia’s quality-weighted faithfulness, and the the result is raised to

the power of 2. The reason for this is that the non-linearity induced by the use of

the exponential function and the raise to the power of 2 is used to dilate the final

quality-weighted faithfulness scores. This especially leads to a higher resolution of

low-valued scores. The resulting score distribution for varying quality and minu-

tia faithfulness parameters is depicted in figure 2. Especially, figure 2 (a) illustrates

minutia faithfulness if the scores would not have been raised to the power of 2, while

figure 2 (b) shows the dilated result according to the formula given in equation (3).

As can be seen, due to this dilation a higher resolution of low-quality values, i.e.

upper left corner of the images, is achieved.

Spurious minutiae Let M be the set of all minutiae, letRi ⊆ M be a biometric reference

belonging to biometric sample Pi, let Tk,i = Ak(Pi) denote a biometric template

generated by vendor k’s feature extraction algorithm upon input of biometric sample
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Pi and let m = (x, y, θ, t, q) ∈ Ri, m
′ = (x′, y′, θ′, t′, q′) ∈ Tk,i be ground-truth

and automatically extracted minutiae, respectively. Further, let Sk,i ⊆ Tk,i denote

the subset of automatically extracted minutiae that do not fall within a tolerance-

bound defined by told of any ground-truth minutiae, i.e. Sk,i = {m′ ∈ Tk,i|∄m ∈
Ri : d2(m,m

′) ≤ told}. In essence, Sk,i denotes the subset of spurious minutiae.

Then, spurious minutiae are quantified as follows:

γ2(Ri, Tk,i) = 1−
1

|Tk,i|

|Sk,i|∑
j=1

q′j
100

, (9)

with q′j specifying the quality score associated with j-th minutia m′
j ∈ Sk,i.

Using these measures, FQBL is computed according to

FQBL(Ri, Tk,i) = λ1γ1(Ri, Tk,i) + λ2γ2(Ri, Tk,i). (10)

Terms γ1(Ri, Tk,i) and γ2(Ri, Tk,i) are quality-honoring modifications of rates

crgtm(Ri, Tk,i) and cramf (Ri, Tk,i), respectively, with some further considerations. Most

significantly, both measures utilize minutiae quality scores to weight penalties induced by

misplaced or spurious minutiae. In order to achieve this, the automatically extracted minu-

tia’s quality value q′ is divided by 100, leading to penalty factors in the interval [0,01; 1].

Thus, a higher quality score, i.e. higher confidence, leads to a higher-weighted penalty or

a lower faithfulness score. If a specific minutia’s quality value is set to 0, indicating that

no quality information is available, the minutia is regarded to have a quality value of 100.

The reason for this choice is that if a vendor does not provide minutia quality information,

all minutiae have to be assumed to be of same high confidence. Hence, in these cases,

penalties will be weighted maximally. Furthermore, neither measure distinguishes be-

tween minutiae placed within the fingerprint area, at the border or in the background area

as this information is not available in minutiae-based templates and hence should neither

affect comparison scores, nor has impact on a biometric template’s faithfulness according

to our definition.

Finally, FQBL makes use of weight parameters λ1, λ2 which specify the influence of

γ1(Ri, Tk,i) and γ2(Ri, Tk,i), respectively, on the conformance rates CR(Ak). For the

time writing, we suggest assigning both a value λ1 = λ2 = 0.5 as the different measures’

impact on semantic conformance is yet unclear.

5 Evaluation

In order to draw conclusions on SCMQBL, first an impression of inter-vendor perfor-

mance has to be obtained, which will be discussed in the upcoming section. After that,

plausibility of SCMQBL will be assessed and its performance will be evaluated with re-

gard to SCMBL.
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avg. EER AVA
AVB

AVC

AVA
0.0415 0.0459 0.0493

AVB
0.0455 0.0428 0.0519

AVC
0.0495 0.0516 0.0376

IUT nnEER CRQBL(·) CRBL(·)

AVA
0.0476 0.6214 0.6285

AVB
0.0488 0.5133 0.6295

AVC
0.0506 0.4039 0.6192

(a) (b)

Table 1: (a) lists average EERs of feature extractors AV
A
, AV

B
, AV

C
over all comparators; rows

denote reference generators, columns denote probe generators. (b) lists nnEERs computed according
to equation (11) and conformance rates of IUTs AV

A
, AV

C
, AV

C
as computed according to SCMBL

and SCMQBL.

5.1 Inter-Vendor Performance

Three software development kits, AVA
, AVB

, AVC
from different biometric systems ven-

dors that claim conformance to ISO/IEC 19794-2 were available for testing. Using these

SDKs, ISO/IEC 19794-2 conforming biometric templates have been generated and equal

error rates have been computed for every comparator, reference extractor, probe extrac-

tor permutation using the FVC2000 DB11 data set. In order to approximate performance

achieved using a specific feature extractor’s templates in an heterogeneous environment

and to rank the feature extractors according to that, we compute average equal error rates

over all three comparators. The average EER values are comparator independent and listed

in table 1 (a). Based on these values, we calculate feature extractor specific average non-

native equal error rates (nnEER) as follows:

nnEERφ =
1

4

∑
ψ∈V\{φ}

(EERφ,ψ + EERψ,φ), (11)

with φ, ψ ∈ V = {VA, VB , VC}. The rationale of this is that nnEERs should give an im-

pression of equal error rates in heterogeneous environments – those scenarios we actually

are interested in. From a higher nnEER, we conclude lower performance and vice versa.

As these values are computed on comparator independent EERs, i.e. values listed in table

1 (a), the resulting nnEER values (cf. table 1 (b)) are assumed to give a rough ranking of

the feature extractors’ performances, independent of template comparators’ performances.

Thus, based on the given data, AVC
seems to be the worst feature extractor, while AVA

seems to be the best and AVB
the second best performing feature extractors.

5.2 SCMQBL Evaluation

In order to empirically assess the plausibility of semantic conformance rates computed ac-

cording to SCMQBL, the following specific tests were performed. In all cases, parameters

λ1 and λ2 (cf. equation (10)) were set to 0.5:

1. Equality test: Conformance rates were computed using the same set of biometric

1http://bias.csr.unibo.it/fvc2000/
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templates both, as reference and as probe. The result of this test is that for all

cases a maximum semantic conformance rate of 1 is computed. This is the expected

outcome as if biometric templates under test equal the references in ground-truth,

all biometric templates are faithful.

2. Empty template test: Conformance rates were computed using a modification of the

ground-truth data set as probe data set. In this modified probe data set, no biometric

template contains a single minutia. This results in a conformance rate of 0, which is

the expected outcome.

3. Single mate test: Again, a modification of the ground-truth data set is used as probe

data set. The probe data set is modified such that for each image all but one minutiae

are synthetically misplaced to not mating with any minutiae in the reference data

set. I.e., every biometric probe contains a single faithful minutia and many spurious

minutiae. All quality values were additionally set to 100. This resulted in a rather

small conformance rate (0.0163), which is expected for this type of test.

Based on these empirical analyses we argue that SCMQBL computes plausible seman-

tic conformance rates, such that higher similarity of biometric references and biometric

probes leads to higher semantic conformance rate and vice versa.

Further to this basic plausibility testing, we try to show that semantic conformance rates

computed by SCMQBL correlate with expected real-world inter-vendor performance. Es-

pecially, this means that we try to show that a vendor ranking induced by conformance

rates correlates with the nnEER-based ranking given in table 1 (b). For this, semantic

conformance rates are computed for all feature extractors using the data set described in

[BLT+09], with parameters λ1, λ2 being set to 0.5, each. The results of this computation

are given in table 1 (b). As can be seen, conformance rates resulting from SCMQBL

correlate with nnEER rates, i.e. CRQBL(AVA
) > CRQBL(AVB

) > CRQBL(AVC
).

In order to get an impression of the performance of SCMQBL in contrast to SCMBL,

the same computations have been performed for SCMBL. The results of this are listed in

column CRBL(·) of table 1 (b). Conformance rates CRBL(·) are derived by specifying

λgtm = λagm = λamf = 1/3. Based on these results SCMQBL seems to outperform

SCMBL for the given data set and feature extractors, as the ranking induced by SCMBL

does not correlate with nnEER values.

6 Summary and Conclusions

In this paper, a semantic conformance testing framework for minutiae-based feature ex-

tractors has been proposed. Especially, a formal and generic semantic conformance com-

putation model SCM = (A, GTM,F , CRmax) has been derived from informal descrip-

tions found in ISO/IEC 29109 family of standards, which can be used to develop and

compare different instances thereof. The basic underlying concept of this general model is

the notion of faithfulness, which has been formally defined for minutiae-based biometric

interchange records specified in ISO/IEC 19794-2 [ISO05]. This computation model has
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been used to derive a quality-honoring instance, which has been compared to an existing

approach. Initial results show that the quality-honoring approach SCMQBL proposed in

this paper outperforms SCMBL, as the first one correlates with inter-vendor performance

that would be expected in real-world scenarios which the latter does not. However, the

authors are aware that the number of SDKs available for testing was limited and further

analyses should be carried out. For future work, the author’s propose to perform in detail

analyses of the minutiae misplacement problem (MMP), i.e. the impact of minutiae mis-

placement on comparison scores, as this seems to be one of the most pre-dominant issues

with automatic feature extraction.
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