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Abstract: METAtarget is a new method for reverse engineering of metabolic

networks and the detection of targets enzymes from high-throughput metabolomics

data. Using KEGG REACTION, reactant partners are identified and the ratio of

product to substrate metabolite concentrations is employed as surrogate for the

reaction activity. A test statistics is introduced to assess changes in the activity of

reactions between different disease states. In an application of METAtarget to

breast cancer, we investigate the dependence of tumor metabolism on hormone

receptor status. To this end, we analyze metabolomics data that were generated

within the METAcancer project and compare the identified reactions with data on

enzyme expression that are obtained from publicly available breast cancer gene

expression series. As result, deregulation of key enzymes and reactions of

glycolysis, glutaminolysis and other metabolic pathways are detected.

1 Introduction

In recent years, techniques for metabolic profiling based on mass spectrometry (MS) and

nuclear magnetic resonance spectrometry (NMR) advanced and now allow the

simultaneous monitoring of hundreds of metabolites [Fi01, GS04]. Metabolomics

emerged as an additional high-throughput technology complementary to other -omics

approaches like genomics, transcriptomics and proteomics. In cancer research, liquid and

gas chromatography-based MS have been successfully applied to the analysis of body

fluids and tissues [De08, De09, Sr09].

Uncovering of the biochemical pathways that constitute the human metabolism

represents one of the major achievements of biochemical research over the past 100

years [GHW05]. This knowledge has been an invaluable information source to improve

human health by providing new insights into nutrition, disease mechanisms and the

effect of drugs. In the postgenomic era metabolic pathway knowledge has been

integrated with information from sequencing of genomes and is publicly available from

databases like KEGG [Ka10], Reactome [Ma09] and BioCarta (www.biocarta.com).
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Consequently, suitable tools for the integration of metabolomics data together with

pathway knowledge are urgently needed and will facilitate and accelerate the

interpretation of experimental data. Currently, several tools are available for the

visualization of metabolomics data in context of biochemical networks. Metscape

[Ga10] and MetaNetter [Jo08] are plugins for cytoscape, a powerful and widely-used

software environment for models of biomolecular interaction networks [Sh03]. Web-

based metabolic network explorers include the KEGG atlas [Ok08] and iPath [Le08].

Going beyond a network visualization, PROFILE clustering orders metabolites

according to their distance in KEGG pathways and visualizes metabolic changes in

context of the functional clustering [De08]. TICL is a tool for network generation from

metabolite lists that includes a significance assessment for the relevance of the generated

networks [An09].

Here we present METAtarget, a method for quantitative analysis of metabolomics data

in context of biochemical pathways. METAtarget employs the ratio of product to

substrate concentrations as surrogate for the activity of metabolic reactions. A suitable

test statistic is defined in order to measure changes of reaction activities between two

disease states. METAtarget delivers a list significantly changed reactions and the

associated enzymes that are possible targets for a therapeutic intervention.

As an application of METAtarget, we analyze GC-MS data that were generated in the

framework of METAcancer, a European collaboration on the metabolism of breast

cancer. Comparing metabolic profiles of estrogen receptor positive (ER+) and receptor

negative (ER-) breast cancer, METAtarget delivers a list of metabolic reactions that are

regulated depending on hormone receptor status. Using an independent gene expression

data set on breast cancer, we evaluate the hypothesis that the detected changes in

metabolism are associated with transcriptional regulation of enzymes.

2 Material and Methods

2.1 Assessing the activity of metabolic reactions

The simplest design of a metabolomics experiment deals with the comparison of

diseased and healthy tissue or of different tissues types in disease states a and b. Let us

denote the concentration of a metabolite Z in two tissue types by Za and Zb. As it is

commonpraxis for the analysis of –omics data, we assume that the variables Z are

transformed to the log-scale. For the log-scale concentrations of the product X and the

substrate Y of a metabolic reaction we define the statistics� Ò ®]�:<�®]�7<�®]�:<¡ ®]�7<×�³�]�:��:<, ¥:¡�³�]�7��7<, ¥7,
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wherein Na and Nb are the numbers of tissues in disease states a and b. The numerator of

t can be interpreted in two ways: (i) as a different effect of the disease state on the

product compared to the substrate and (ii) as a measure how the product-substrate ratio

changes when comparing the two disease states a and b. The statistics defined above can

be read as Welch’s t-statistics in the difference variable X –Y. Significance is assessed by

Welch’s t-test.

METAtarget extracts information about reactions and enzymes from the KEGG database

(www.genome.jp/kegg). Only metabolites annotated as “main” reaction partners in

KEGG RPAIR are considered as pair of substrate and product. For each pair of substrate

and product, the regulation of the reaction is assessed by the statistics t and Welch’s t-

test. P-values < 0.05 after Bonferroni correction for the number of tested reactions are

considered statistically significant.

2.2 Breast cancer metabolomics data

METAcancer (www.metacancer-fp7.eu) is an EU-funded project aiming at the analysis

of the breast cancer metabolome and the discovery of new molecular markers. A series

of more than 200 breast cancers was investigated using three different metabolic

platforms, GC-MS, LC-MS and NMC. Here, we analyze the METAcancer GC-MS data

that include measurements of 124 KEGG annotated metabolites in 188 ER+ and 58 ER-

breast cancers. Estrogene receptor status of the METAcancer samples was determined

immunohistologically, tumors with ½ 10% ER positive cells were considered as ER

positive. Prior to analysis, metabolomics data were transformed to the log2-scale.

2.3 Breast cancer transcriptomics data

Three publicly available breast cancer gene expression series GSE2034, GSE7390 and

GSE11121 were downloaded from the GEO repository (www.ncbi.nlm.nih.gov/geo). All

data sets were generated using the same kind of microarrays (Affymetrix HG-U133A

GeneChips). The expression series were merged to a large expression data set of 684

nodal negative breast cancers. Microarray data were preprocessed with the standard

mas5 method and transformed to the log2-scale. As immunohistological data for

estrogen receptor (ER) status were not available for all samples, ER status was derived

from gene expression data. Samples with ESR1 absolute expression ½ 10 (measured by

probe set 205225_at) were considered as ER positive, samples with ESR1 expression <

10 as ER negative. 176 of the 684 breast cancers were ER negative, 508 ER positive.

Significance of differential expression between ER+ and ER- tumors was assessed by

Welch’s t-test. P-values < 0.05 after Bonferroni correction for the number of genes were

considered statistically significant.

3 Results

GC-MS profiling of 246 breast cancers within the METAcancer project led to the

identification of 468 metabolites. 162 out of these could be mapped to known chemical

structures and metabolite names, 124 could be found in the KEGG database. Using

KEGG RPAIR we identified 91 substrate-product pairs that were main reactants in

metabolic reactions.
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Next, we analyzed the substrate-product pairs for differential regulation between ER+

and ER- breast cancers. Using the statistics t (cf. material and methods section) we

detected 13 differentially regulated pairs of reactants. Bar plots show the differential

expression between ER+ and ER- breast cancer for substrates and products (Fig. 1A) and

the substrate / product ratio for ER+ and ER- breast cancer (Fig. 1B).

Using KEGG REACTION the 13 reactant pairs could be mapped to 51 metabolic

reactions (Tab. 1). In KEGG REACTION, the reactant pairs are stored with the EC

numbers of the catalysing reactions. This information, together with the information on

the human genome was used to map the reactant pairs to 29 human genes.

Fig. 1: Substrate-product pairs that are differently regulated in ER+ compared to ER- breast

cancer. Significance was assessed by the statistics t (cf. material and methods). A Fold change

between ER+ and ER- breast cancer in pairs of substrates and products. B Fold change between

substrates and products in ER+ and ER- breast cancer.

A

B
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Tab. 1: Differently regulated metabolic reactions between ER+ and ER- breast cancer. After

mapping of metabolites to reactions using KEGG RPAIR, differently regulated substrate-product

pairs were detected by the analysis of metabolomics data. For each substrate-product pair the

numerator of the statistics t, a difference of differences (dd), is reported. Catalyzing enzymes were

identified using KEGG ENZYME. Enzymes were investigated for differential expression between

ER+ and ER- tumors using an independent breast cancer genes expression data set. Meaning of the

check marks behind the gene symbols: “+” = significant up-regulation, “-“ = significant down-

regulation, “~” = no differential regulation, no check mark = not represented by the microarray.
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To evaluate the hypothesis that metabolic changes are associated with transcriptional

regulation of enzymes, we analyzed an independent gene expression data set of 684

breast cancers. 27 of the 29 enzymes identified before were represented on the

microarray, 16 were differentially expressed between ER+ and ER- breast cancer. As

shown in Tab. 1, six enzymes were up-regulated in ER+ breast cancer, while ten

enzymes were down-regulated.

Examples for the detected reactions are conversion of glucose to glucose-6-phosphate

being the first step of glycolysis and conversion of glutamine to glutamate being the first

step of glutaminolysis. Both reactions belong to catabolic pathways that can be used for

the production of energy and have been described as up-regulated in cancer cells

[VCT09]. Fig. 2 shows the differential expression of the human enzymes catalysing

these reactions.

Fig. 2: Differentially expressed enzymes between ER+ and ER- breast cancer. A Enzymes

catalyzing the first step of glycolysis, glucose -> glucose-6-phosphate. B Enzymes catalyzing the

first step of glutaminolysis, glutamine -> glutamate. Green bars indicate significant differential

expression (after Bonforroni correction for testing 27 genes).

B

A
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For glycolysis, only hexokinase 3 (HK3) turns out to be differentially expressed between

ER+ and ER- breast cancer (down-regulated in ER+ tumors with fold change 1.6). For

glutaminolysis, a number of enzymes are differentially expressed between ER+ and ER-

tumors (4 up-regulated, 7 down-regulated). Many of these enzymes catalyse several

reactions, for example the asparagine synthetase (ASNS) and the tri-functional

carbamoyl-phosphate synthetase 2, aspartate tracarbamylase, and dihydroorotase (CAD)

that use glutamine as amide-N-donor.

Fig. 3: Differential expression of glutaminase (GLS) and glutaminase 2 (GLS2) between ER+ and

ER- breast cancer. Histograms show the distribution of GLS and GLS2 expression as they are

measured by the microarrays (log-2 scale).

A

B
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Among human genes, only the two isoenzymes glutaminase (GLS, also termed kidney

type glutaminase) and glutaminase 2 (GLS2, also termed liver type glutaminase)

exclusively convert glutamine to glutamate. Fig. 3 shows the expression of GLS (down-

regulated in ER+ tumors, fold change 1.7) and the expression of GLS2 (up-regulated in

ER+ tumors, fold change 1.7) in ER+ and ER- breast cancer.

4 Discussion

Changes in metabolite concentrations are the final response of a cell to genetic or

environmental changes. Metabolite concentrations reflect the outcome of regulation at

many molecular levels that takes place in living cells. Indeed, to monitor the final

outcome of many regulatory layers is one of the strengths of the metabolomics approach.

Regulation of metabolite concentrations can take place at the following levels:

- DNA level: loss of function mutations of enzymes

- RNA level: regulation of enzyme expression (epigenetic, transcriptional or

post-transcriptional)

- Protein level: phosphorylation or other post-translational modifications of

enzymes

- Interaction level: allosteric regulation of enzymes

A difficulty in the analysis of metabolomics data is connected with backward analysis of

the causal chain, in order to understand the mechanism of metabolic regulation and to

detect targets for a possible therapeutic intervention. METAtarget implements a reverse

engineering step for metabolic networks by using the ratio of product to substrate

concentrations as surrogate for the activity of enzymes. METAtarget is based on

information on reactant pairs and enzymes that is obtained from the KEGG REACTION

database.

In this paper we have assessed the significance metabolic changes by Welch’s t-test.

Validity of this approach depends on at least approximate normal distribution of the

difference variables X –Y. As a more conservative alternative, but with costs of losing

power, a rank statistics based approach (Mann-Whitney test) can be applied. As

unimportant for significance assessment, we did not take into account reversibility or the

direction of reactions. Denotation of a reactant as substrate or product is arbitrary.

Using METAtarget, we have analyzed the metabolism of breast cancer cells in

dependence of hormone receptor status. Worldwide, immunohistological determination

of estrogene receptor status is part of the breast cancer routine diagnostics. Patients with

ER+ tumors are known to benefit from hormone therapy (for example treatment with

tamoxifen), while ER- breast cancer is known to be a more aggressive breast cancer

subtype. Most of the ER- tumors are highly proliferating and have tumor grades 2 or 3

[DRL07]. Furthermore, these tumors include the triple-negative subtype that is difficult

to treat and has a poor prognosis.
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Analyzing metabolomics data generated within the METAcancer project, we have

identified 13 reactant pairs with a shifted equilibrium depending on ER status. The

expression pattern of the corresponding 29 enzymes was analyzed in three publicly

available gene expression series. 7 enzymes turned out to be significantly up-regulated,

10 enzymes significantly down-regulated in ER+ tumors compared to ER- tumors, while

12 enzymes remained unchanged. All 29 enzymes are interesting as targets, because

manipulation of enzyme activity could restore the metabolism towards a less aggressive

type. On the other side, differential expression of the 17 regulated enzymes is expected

to contribute to the regulation of breast cancer metabolism in dependence of hormone

receptor status.

In particular, we detected an up-regulation of glycolysis and glutaminolysis in ER-

tumors, compatible with a higher demand on energy of a more aggressive cancer.

Targeting these pathways could be an opportunity for treatment. More inside in the

regulation processes has been provided by analyzing the gene expression of enzymes

that catalyze the entry reaction of glycolysis and of glutaminolysis (Fig. 2).

The expression of glutaminases has been extensively studied before und shown to

exhibit tissue-specific expression profiles [SO09]. Co-expression of GLS and GLS2 is a

frequent event in human cancer [Pé05]. Furthermore, high GLS expression has been

described as being associated with high proliferation rates, whereas repression of GLS

and prevalence of GLS2 has been described to be related to quiescent or resting states

[LKM69]. This observation is compatible with high expression of GLS in the strong

proliferation ER- tumors and higher average expression GLS2 in ER+ tumors, an entity

that also contains weak proliferating G1 tumors.

In summary, METAtarget is a new method for reverse engineering of metabolic

networks and the detection of targets enzymes from high-throughput metabolomics data.

In an application to METAcancer, deregulation of key reactions of glycolysis,

glutaminolysis and other pathways could be detected between ER+ and ER- breast

cancer.
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