Model Synchronization for Mechatronic Systems

Jan Rieke*

Heinz Nixdorf Institute & Department of Computer Science
University of Paderborn, Paderborn, Germany
jrieke@upb.de

Abstract: The development of complex mechatronic systems requires the close col-
laboration of different disciplines on models of the system under development. Dur-
ing such a model-based development, inconsistencies between the different discipline-
specific models are likely to occur, which could lead to increased development time
and costs if they remain unresolved. Model transformation and synchronization are
promising techniques to detect and resolve such inconsistencies. However, existing
model synchronization solutions are not yet powerful enough to support such an appli-
cation scenario. My goal is to extend and improve model synchronization techniques
so that they allow for synchronized models with multiple views and abstraction levels,
as required by this development process.

1 Introduction and Problem Description

From home appliances to transportation systems, modern mechatronic systems become
more and more complex and incorporate an increasing amount of software. This increasing
complexity poses challenges to the development of such advanced mechatronic systems.

The design guidelines for mechatronic systems, like the VDI 2206 [Ver04], or the devel-
opment methods elaborated in the Collaborative Research Center (CRC) 614 “Self-Opti-
mizing Concepts and Structures in Mechanical Engineering” in Paderborn, propose that
experts from all disciplines collaborate in a first development phase, called the conceptual
design. Especially, they work out the so called principle solution, a system model that is
supposed to capture all interdisciplinary concerns, but does usually not contain information
relevant only to one discipline. However, in practice, the principle solution rarely captures
all interdisciplinary concerns. Additionally, changes to the overall system design may be-
come necessary later, e.g., due to changing requirements. Therefore, cross-disciplinary
changes may become necessary during the discipline-specific refinement phase.

As an example, consider the construction of a vehicle. The systems engineer attaches a
new sensor, because without it the vehicle is unsafe. This change must be propagated to
the software engineer, because the sensor’s data needs to be processed. Otherwise, the
vehicle would not break in time, causing the risk of crashing into a preceding vehicle.

*supported by the International Graduate School Dynamic Intelligent Systems.

309

Model transformation and synchronization techniques are a promising approach for such
synchronization scenarios. Languages and algorithms for bidirectional model synchro-
nization are an intensively researched topic today. However, existing model synchroniza-
tion techniques mainly focus on basic application scenarios where models of the same or
similar expressiveness have to be kept consistent. If, like in our case, models of differ-
ent abstraction levels, different scopes, or of different domains have to be synchronized,
these techniques are often insufficient. Similar issues arise for many model-based devel-
opment processes (e.g., MDA), too. My goal is to improve existing model synchronization
techniques to be able to support such advanced requirements.

I use Triple Graph Grammars (TGG) [Sch94], a declarative transformation language sim-
ilar to the OMG QVT-R standard [GK10], because we made good experiences with it dur-
ing the last years and have good tool support for it. TGGs can be applied bidirectionally
and allow an intuitive, graphical transformation rule specification.

2 Example and Challenges

Fig. 1 shows an exemplary process, where a cross-disciplinary change occurs. The princi-
ple solution is transformed into the different discipline-specific models (1.). The engineers
from the different disciplines now start refining their models. E.g., the electrical engineers
model the power supply and distribution (2.). Then, the software engineer runs a hazard
analysis [GT06] and detects a flaw in the system design: A single distance sensor is not
sufficiently reliable, so that a safe distance cannot be guaranteed. Therefore, he proposes
to add another sensor to increase the reliability (3.). This change is relevant to other dis-
ciplines: E.g., the mechanical engineer has to attach the sensor to the chassis, and the
electrical engineer has to connect it to the power supply. Thus, the principle solution has
to be updated, because it should reflect all discipline-spanning concerns (4a.). Finally,

1.1 System Model
me | Mechanical Eng. Models

£ Electrical Engineering Models

S5l S][<

<&] Control Engineering Models

=N

vi.

Software Engineering Models

Si

\-{ Principle Solution]
Initial Transformation and Mapping ?D

of Corresponding Design Artifacts

Derived Discipline-Specific Models]
= _[Discipline-Specific Refinement

(e.g., model power supply)

Discipline-specific
Refinement

_[Discipline-Spanning Change @

(e.g., add new sensor component)
Update of Models through 4,
System Integration Existing Correspondences

Figure 1: Possible development process with model transformation and synchronization

310

this updated principle solution is used to update to other discipline-specific models (4b.),
preserving manual changes that occurred in the meantime.

Principle Solution

Abstract Model a a;, aca
Electrical f ot " e f Software
Engineering Model 1o 4 o %2 Engineering Model
Al

y)
Concrete Model ¢, | 91 G2 Concrete Model c,

Figure 2: Abstract view of the synchronization scenario

Fig.2 shows an abstract view of the synchronization scenario described above. There
is one abstract model a, the principle solution. Only some parts of a are relevant to a
specific discipline model. E.g., the part a; is relevant to the concrete model c;, where
as is relevant to co. The different parts of a are typically not disjoint, as there are shared
elements between the different disciplines. In the course of the development, all of these
models may be subject to change. This leads to several challenges in the context of model
synchronization, which will be described in the following.

2.1 Definition of abstraction and concretization functions

The abstract model a is used to initially generate the concrete models ¢;. E.g., its part a;
is transformed into c¢; by the transformation function f;. As a; is more abstract, there
is a semantic gap between this source and the target ¢; of the model transformation f.
Usually, the model transformation concretizes all elements of a; using defaults. However,
the engineers may decide not to stick to this default, but instead use another possible
concretization (or refine the default one). Hence, more formally speaking, f; is not single
concretization function, but a family of functions: one abstract model a; maps to several
concrete models c; ;. Therefore, the abstraction functions g; can not be bijective.

Today’s model transformation and synchronization techniques lack explicit support for the
specification of such families of transformation functions (or non-bijective transformation
functions) which are required for synchronizing models on different abstraction levels.
Therefore, it is often impossible or at least difficult and non-intuitive to model different
concretization rules and store these concretization decisions.

TGGs do not allow for such abstraction relations, either. Usually, TGGs only provide a
single rule that translates a specific model element. As we would like to define a family
of transformation functions, a first approach would be to specify additional, alternative
rules for the same element. However, having different rules for the same element causes
unpredictable transformation results in most existing transformation tools, because the
order of the rule application is not deterministic: The transformation tool simply selects
one of the rules and does not check alternatives.

Therefore, the idea is that, when applying a rule, we should also check for alternative rules
that might be applicable. These could then be selected manually by the user where nec-

311

essary. A critical pair analysis on the rule set could help identifying ambiguous situations
(and hiding confluent alternatives). However, in our scenario, transformations should often
run automatically, which means that (predefined) default concretizations should be used.
Afterwards, the user should be able to search for alternative concretizations on selected el-
ements, or even specify new concretizations which then could be used on other elements,
too. Thus, the rule set itself is subject to changes during the development.

2.2 Incrementally updating without changing unaffected target model parts

Both the abstract model a and the concrete models ¢; contain parts that are not subject to
every transformation. For example, the implementation details of a software component
are only contained in cp, because they are not relevant to other disciplines. In a, only
the part a; is covered by the transformation rules when translating it to ¢;. Therefore, the
models cannot be synchronized by running the whole transformation from scratch, because
such model-specific information would be lost. Instead, the idea is to incrementally update
the models by revoking invalid rule applications and applying new rules.

If a change occurs in a, we need to check whether this change has to be propagated to the
¢; models. If, for example, an element of c; is altered so that the applied rule is invalid,
existing model synchronization tools would update a; by deleting the corresponding ele-
ments (rule revocation), and then try to apply new rules. As there could be elements in a
that referenced the deleted elements, this deletion could result in dangling links, i.e., an
invalid model. Thus, such simple incremental updates are insufficient for our application
scenario.

The idea is to propagate the editing operations that took place on the source model. How-
ever, specifying a complete transformation on editing operations is a complex task, as there
might be a large number of possible editing operations, some of which cannot be antici-
pated during rule design. Thus, my idea is to emulate such editing operations by applying
traditional rules more “intelligent”. For example, this can be achieved by not deleting
model elements on rule revocation right away. Instead, they are marked for removal and
could later be reused (possibly with minor modifications), as elements created by new rule
application are often “equal” to some deleted elements. The challenge here is to identify
which elements to modify or reuse.

2.3 Concurrent modifications, conflict detection and resolution

In a distributed development environment, several engineers from different disciplines
work on their models independently. As it is well-known in software development with
source code, this can lead to conflicts. Some of these conflicts can be resolved automati-
cally, but user interaction is still necessary in many cases.

The problem even enlarges when working with interconnected models: The conflict could
be due to a change in another discipline. In such a case, manual conflict resolution is

312

ideally done by (a) the systems engineer using the principle solution, or (b) the discipline
expert using his own models. As the conflict affects several models, its resolution has to
be consistently applied to all models. Thus, the results from a model differencing and
merging tool should be included in the model synchronization process.

3 Related Work

Due to lack of space, I focus on the most related work. There is more related work, e.g.,
on model merging and on non-graph-based approaches.

Giese and Wagner [GW09] present an approach how TGGs can be applied for incremen-
tally updating a target model when changes to a source model occurred, basically by
revoking (deleting) and re-applying rules. Giese and Hildebrand [GHO9] improved this
algorithm so that it removes less elements, but this is still insufficient for my applica-
tion scenario, because their algorithm still causes unnecessary deletions for more complex
editing operations, leading to possible damage of model-specific information.

Réth et al. [RVV09] propose a solution which does not define the transformation between
models any more, but maps between model manipulation operations. This is a fundamen-
tally different approach, as the rule design differs significantly from traditional, declarative
model transformations, and its design methodologies still have to be elaborated. Further-
more, designing a complete transformation based upon editing operation is more extensive
than using traditional declarative rules. However, I would like to investigate how their
ideas could be included in my approach, e.g., to avoid user interaction ambiguous cases.

In the context of chemical process modeling, Kortgen [K6r09] developed a synchroniza-
tion tool for the case of a simultaneous evolution of both (source and target) models. She
defines several kinds of damage types that may occur and gives abstract repair rules for
these cases. At runtime, these general repair rules are used to derive concrete repair opera-
tions for a specific case. In this way, changes can be propagated with repair operations that
delete less elements, i.e., affect less elements that are not subject to the transformations.
The approach also includes means for processing alternative rules. However, the solu-
tion relies on user-interaction during the transformation, which should, in my application
scenario, be avoided where possible.

Xiong et al. [XSHTO09] present a synchronization technique that also allows for the si-
multaneous evolution of both models in parallel. Basically, they run a backward trans-
formation into a new source model, and then use model merging techniques to create the
updated final source model. The same is done in forward direction. This technique mainly
relies on the capabilities of the model merger. Furthermore, if the model transformation
damages model-specific elements during update, their technique cannot avoid information
loss, neither. Additionally, they do not incorporate advanced support for conflict detection
and resolution, a major requirement in practical scenarios.

313

4 Summary

Model synchronization is promising technique to support the model-based development
of mechatronic systems by automating consistency management tasks, which are time-
consuming and error-prone if done manually. However, existing model synchronization
techniques mainly focus on simple application scenarios where models of the same or
similar expressiveness have to be kept consistent. If models of different abstraction levels
or of different scopes have to be synchronized, these techniques are often insufficient.

My aim is to improve existing model synchronization techniques to be able to support such
advanced requirements. My hypothesis is that such advanced techniques could greatly im-
prove the development of mechatronic systems as well as other model-based development
approaches. I plan to provide a prototype and to apply the developed techniques in the con-
text of a larger example from the CRC 614, in order to evaluate the benefits and possible
disadvantages.

References

[GHO9] Holger Giese and Stephan Hildebrandt. Efficient Model Synchronization of Large-Scale
Models. Technical Report 28, Hasso Plattner Institute at the University of Potsdam,
2009.

[GK10] J. Greenyer and E. Kindler. Comparing relational model transformation technologies:
implementing Query/View/Transformation with Triple Graph Grammars. Software and
Systems Modeling (SoSyM), 9(1), 2010.

[GTO06] H. Giese and M. Tichy. Component-Based Hazard Analysis: Optimal Designs, Product
Lines, and Online-Reconfiguration. In Proc. of the 25th Int. Conference on Computer
Safety, Security and Reliability (SAFECOMP), Gdansk, Poland, pages 156-169, 2006.

[GWO09] Holger Giese and Robert Wagner. From model transformation to incremental bidirec-
tional model synchronization. Software and Systems Modeling, 8(1), 2009.

[K6r09] Anne-Thérese Kortgen. Modellierung und Realisierung von Konsisten-
zsicherungswerkzeugen fiir simultane Dokumentenentwicklung. PhD thesis, RWTH
Aachen University, 2009.

[RVV09] 1. Rath, G. Varrd, and D. Varr6. Change-driven model transformations. In Proc. of
Model Driven Engineering Languages and Systems. Springer, 2009.

[Sch94] Andy Schiirr. Specification of Graph Translators with Triple Graph Grammars. In
G. Tinhofer, editor, 20th Int. Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG’94), volume 903 of Lecture Notes in Computer Science (LNCS), Heidelberg,
1994. Springer Verlag.

[Ver04] Verein Deutscher Ingenieure. Design Methodology for Mechatronic Systems, 2004.

[XSHTO09] Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato Takeichi. Supporting Parallel
Updates with Bidirectional Model Transformations. In Proc. of the 2nd Int. Conference
on Theory and Practice of Model Transformations (ICMT ’09). Springer-Verlag, 2009.

314

