
Formalizing ETL Jobs for Incremental
Loading of Data Warehouses

Thomas Jörg and Stefan Dessloch
University of Kaiserslautern,

67653 Kaiserslautern, Germany
{joerg|dessloch}@informatik.uni-kl.de

Abstract: Extract-transform-load (ETL) tools are primarily designed for data ware-
house loading, i.e. to perform physical data integration. When the operational data
sources happen to change, the data warehouse gets stale. To ensure data timeliness,
the data warehouse is refreshed on a periodical basis. The naive approach of simply
reloading the data warehouse is obviously inefficient. Typically, only a small fraction
of source data is changed during loading cycles. It is therefore desirable to capture
these changes at the operational data sources and refresh the data warehouse incre-
mentally. This approach is known as incremental loading. Dedicated ETL jobs are
required to perform incremental loading. We are not aware of any ETL tool that helps
to automate this task. In fact, incremental load jobs are handcrafted by ETL program-
mers so far. The development is thus costly and error-prone.

In this paper we present an approach to the automated derivation of incremental
load jobs based on equational reasoning. We review existing Change Data Capture
techniques and discuss limitations of different approaches. We further review existing
loading facilities for data warehouse refreshment. We then provide transformation
rules for the derivation of incremental load jobs. We stress that the derived jobs rely
on existing Change Data Capture techniques, existing loading facilities, and existing
ETL execution platforms.

1 Introduction

The Extract-Transform-Load (ETL) system is the foundation of any data warehouse [KR02,
KC04, LN07]. The objective of the ETL system is extracting data from multiple, hetero-
geneous data sources, transforming and cleansing data, and finally loading data into the
data warehouse where it is accessible to business intelligence applications.

The very first population of a data warehouse is referred to as initial load. During an
initial load, data is typically extracted exhaustively from the sources and delivered to the
data warehouse. As source data changes over time, the data warehouse gets stale, and
hence, needs to be refreshed. Data warehouse refreshment is typically performed in batch
mode on a periodical basis. The naive approach to data warehouse refreshment is referred
to as full reloading. The idea is to simply rerun the initial load job, collect the resulting
data, and compare it to the data warehouse content. In this way, the required changes
for data warehouse refreshment can be retrieved. Note that it is impractical to drop and
recreate the data warehouse since historic data has to be maintained. Full reloading is

327

obviously inefficient considering that most often only a small fraction of source data is
changed during loading cycles. It is rather desirable to capture source data changes and
propagate the mere changes to the data warehouse. This approach is known as incremental
loading.

In general, incremental loading can be assumed to be more efficient than full reloading.
However, the efficiency gain comes at the cost of additional development effort. While
ETL jobs for initial loading can easily be reused for reloading the data warehouse, they
cannot be applied for incremental loading. In fact, dedicated ETL jobs are required for
this purpose, which tend to be far more complex. That is, ETL programmers need to
create separate jobs for both, initial and incremental loading. Little advice on the design
of incremental load jobs is found in literature and we are not aware of any ETL tool that
helps to automate this task.

In this paper we explore the following problem: Given an ETL job that performs initial
loading, how can an ETL job be derived that performs incremental loading, is executable
on existing ETL platforms, utilizes existing Change Data Capture technologies, and relies
on existing loading facilities? Our proposed approach to tackle this problem is based on
previous work of ours [JD08]. We elaborate on this approach and provide formal models
for ETL data and ETL data transformations. We further provide formal transformation
rules that facilitate the derivation of incremental load jobs by equational reasoning.

The problem addressed in this paper is clearly related to maintenance of materialized
views. Work in this area, however, is partly based on assumptions that do not hold in data
warehouse environments and cannot directly be transferred to this domain. We highlight
the differences in Section 2 on related work. We review existing techniques with relevance
to the ETL system in Section 3. We then introduce a formal model for the description
of common ETL transformation capabilities in Section 4. Based on this model we de-
scribe the derivation of incremental load jobs from initial load jobs based on equivalence
preserving transformation rules in Section 5 and conclude in Section 6.

2 Related Work

ETL has received considerable attention in the data integration market; numerous commer-
cial ETL tools are available today [DS, OWB, DWE, IPC]. According to Ralph Kimball
seventy percent of the resources needed for the implementation and maintenance of a data
warehouse are typically consumed by the ETL system [KC04]. However, the database re-
search community did not give ETL the attention that it received from commercial vendors
so far. We present academic efforts in this area in Section 2.1. We then discuss work on
the maintenance of materialized views. This problem is clearly related to the problem of
loading data warehouses incrementally. However, approaches to the maintenance of mate-
rialized views are based on assumptions that do not hold in data warehouse environments.
We discuss the differences in Section 2.2.

328

2.1 Related Work on ETL

An extensive study on the modeling of ETL jobs is by Simitsis, Vassiliadis, et al. [VSS02,
SVTS05, Sim05, SVS05]. The authors propose both, a conceptual model and a logical
model for the representation of ETL jobs. The conceptual model maps attributes of the
data sources to the attributes of the data warehouse tables. The logical model describes the
data flow from the sources towards the data warehouse. In [Sim05] a method for the trans-
lation of conceptual models to logical models is presented. In [SVS05] the optimization
of logical model instances with regard to their execution cost is discussed. However, data
warehouse refreshment and, in particular, incremental loading has not been studied.

In [AN08] the vision of a generic approach for ETL management is presented. The work is
inspired by research on generic model management. The authors introduce a set of high-
level operators for ETL management tasks and recognize the need for a platform- and
tool-independent model for ETL jobs. However, no details of such a model are provided.

Most relevant to our work is the Orchid project [DHW+08]. The Orchid system facilitates
the conversion from schema mappings to executable ETL jobs and vice versa. Schema
mappings capture correspondences between source and target schema items in an abstract
manner. Business users well understand these correspondences but usually do not have the
technical skills to design appropriate ETL jobs.

Orchid translates schema mappings into executable ETL jobs in a two-step process. First,
the schema mappings are translated into an intermediate representation referred to as Oper-
ator Hub Model (OHM) instance. The OHM captures the transformation semantics com-
mon to both, schema mappings and ETL jobs. Second, the OHM instance is translated
into an ETL job tailored for the ETL tool of choice. However, jobs generated by Orchid
are suited for initial loading (or full reloading) only. We adopt Orchid’s OHM to describe
ETL jobs in an abstract manner and contribute an approach to derive incremental load jobs
from initial load jobs. By doing so, we can reuse the Orchid system for the deployment of
ETL jobs. We thus complement Orchid with the ability to create ETL jobs for incremental
loading.

2.2 Related Work on Maintenance of Materialized Views

Incremental loading of data warehouses is related to incremental maintenance of materi-
alized views, because, in either case, physically integrated data is updated incrementally.
Approaches for maintaining materialized views are, however, not directly applicable to
data warehouse environments for several reasons.

• Approaches for maintaining materialized views construct maintenance expressions
in response to changes at transaction commit time [GL95, QW91, GMS93]. Main-
tenance expressions assume access to the unchanged state of all base relations and
the net changes of the committing transactions. ETL jobs for incremental loading,
in contrast, operate in batch mode for efficiency reasons and are repeated on a peri-

329

odical basis. Hence, any possible change has to be anticipated. More importantly,
source data is only available in its most current state unless the former state is ex-
plicitly preserved.

• A materialized view and its source relations are managed by the same database sys-
tem. In consequence, full information about changes to source relations is available.
In data warehouse environments Change Data Capture techniques are applied that
may suffer from limitations and miss certain changes as stated in Section 3.2. In
Section 4 we will introduce a notion of partial change data to cope with this situa-
tion. We are not aware of any other approach that considers limited access to change
data.

• In literature, a data warehouse is sometimes regarded as a set of materialized views
defined on distributed data sources [AASY97, ZGMHW95, Yu06, QGMW96]. We
argue that this notion disregards an important aspect of data warehousing since
the data warehouse keeps a history of data changes. Materialized views, in con-
trast, reflect the most current state of their base relations only. Change propagation
approaches in the context of materialized views typically distinguish two types of
data modifications, i.e. insertions and deletions [AASY97, GL95, GMS93, QW91,
ZGMHW95, BLT86, CW91]. Updates are treated as a combination of both, inser-
tions and deletions. The initial state of updated tuples is propagated as deletion
while the current state of updated tuples is propagated as insertion. Materialized
views are maintained by at first performing deletions and subsequently performing
insertions that have been propagated from the sources. Data warehouse dimensions,
however, keep a history of data changes. In consequence, deleting and reinserting
tuples will not lead to the same result as updating tuples in place, in terms of the
data history. Therefore, our approach to incremental data warehouse loading han-
dles updates separately from insertions and deletions.

3 The ETL Environment

In this Section we review existing techniques that shape the environment of the ETL sys-
tem and are thus relevant for ETL job design. We first introduce the dimensional mod-
eling methodology that dictates data warehouse design. We then discuss techniques with
relevance to incremental loading. First, we review so called Change Data Capture tech-
niques that allow for detecting source data changes. Second, we describe loading facilities
for data warehouses. In absence of an established term, we refer to these techniques as
Change Data Application techniques.

3.1 Dimensional Modeling

Dimensional modeling is an established methodology for data warehouse design and is
widely used in practice [KR02]. The dimensional modeling methodology dictates both,

330

the logical schema design of the data warehouse and the strategy for keeping the history
of data changes. Both parts are highly relevant to the design of ETL jobs.

A database schema designed according to the rules of dimensional modeling is referred to
as a star schema [KR02]. A star schema is made up of so called fact tables and dimension
tables. Fact tables store measures of business processes that are referred to as facts. Facts
are usually numeric values that can be aggregated. Dimension tables contain rich textual
descriptions of the business entities. Taking a retail sales scenario as an example, facts
may represent sales transactions and provide measures like the sales quantity and dollar
sales amount. Dimensions may describe the product being sold, the retail store where it
was purchased, and the date of the sales transaction. Data warehouse queries typically use
dimension attributes to select, group, and aggregate facts of interest. We emphasize that
star schemas typically are not in third normal form. In fact, dimensions often represent
multiple hierarchical relationships in a single table. Products roll up into brands and then
into categories, for instance. Information about products, brands, and categories is typi-
cally stored within the same dimension table of a star schema. That is, dimension tables
are highly denormalized. The design goals are query performance, user understandability,
and resilience to changes that come at the cost of data redundancy.

In addition to schema design, the dimensional modeling methodology dictates techniques
for keeping the history of data changes. These techniques go by the name of Slowly Chang-
ing Dimensions [KR02, KC04]. The basic idea is to add a so called surrogate key column
to dimension tables. Facts reference dimensions using the surrogate key to establish a for-
eign key relationship. Surrogate keys are exclusively controlled by the data warehouse.
Their sole purpose is making dimension tuples uniquely identifiable while there value is
meaningless by definition.

Operational data sources typically manage primary keys referred to as business keys. It is
common to assign a unique number to each product in stock, for instance. Business keys
are not replaced by surrogate keys. In fact, both, the business key and the surrogate key are
included in the dimension table. In this way, dimension tuples can easily be traced back to
the operational sources. This ability is known as data lineage.

When a new tuple is inserted into the dimension table a fresh surrogate key is assigned.
The more interesting case occurs when a dimension tuple is updated. Different actions
may be taken depending on the particular columns that have been modified. Changing
a product name, for example, could be considered as an error correction; hence the cor-
responding name in the data warehouse is simply overwritten. This case is referred to
as Slowly Changing Dimensions Type I. Increasing the retail price, in contrast, is likely
considered to be a normal business activity and a history of retail prices is kept in the
data warehouses. This case is referred to as Slowly Changing Dimensions Type II. The
basic idea is to leave the outdated tuple in place and create a new one with the current
data. The warehouse assigns a fresh surrogate key to the created tuple to distinguish it
from its expired versions. Note that the complete history can be retrieved by means of the
business key that remains constant throughout time. Besides the surrogate key there are
further “special purpose” columns potentially involved in the update process. For instance,
an effective timestamp and an expiration timestamp may be assigned, tuples may hold a

331

reference to their preceding version, and a flag may be used to indicate the most current
version.

In summary, the dimensional modeling methodology impacts the ETL job design in two
ways. First, it dictates the shape of the target schema, and more importantly it requires the
ETL job to handle “special purpose” columns in the correct manner. We emphasize that
the choice for Slowly Changing Dimensions Type I or II requires knowledge of the initial
state and the current state of updated tuples.

3.2 Change Data Capture

Change Data Capture (CDC) is a generic term for techniques that monitor operational
data sources with the objective of detecting and capturing data changes of interest [KC04,
BT98]. CDC is of particular importance for data warehouse maintenance. With CDC tech-
niques in place, the data warehouse can be maintained by propagating changes captured
at the sources. CDC techniques applied in practice roughly follow three main approaches,
namely log-based CDC, utilization of audit columns, and calculation of snapshot differen-
tials [KC04, BT98, LGM96].

Log-based CDC techniques parse system logs and retrieve changes of interest. These
techniques are typically employed in conjunction with database systems. Virtually all
database systems record changes in transaction logs. This information can be leveraged
for CDC. Alternatively, changes may be explicitly recorded using database triggers or
application logic for instance.

Operational data sources often employ so called audit columns. Audit columns are ap-
pended to each tuple and indicate the time at which the tuple was modified for the last
time. Usually timestamps or version numbers are used. Audit columns serve as the selec-
tion criteria to extract changes that occurred since the last incremental load process. Note
that deletions remain undetected.

The snapshot differential technique is most appropriate for data that resides in unsophis-
ticated data sources such as flat files or legacy applications. The latter typically offer
mechanisms for dumping data into files but lack advanced query capabilities. In this case,
changes can be inferred by comparing a current source snapshot with a snapshot taken at
a previous point in time. A major drawback of the snapshot differential approach is the
need for frequent extractions of large data volumes. However, it is applicable to virtually
any type of data source.

The above mentioned CDC approaches differ not only in their technical realization but also
in their ability to detect changes. We refer to the inability to detect certain types of changes
as CDC limitation. As mentioned before deletions cannot be detected by means of audit
columns. Often a single audit column is used to record the time of both, record creation
and modification. In this case insertions and updates are indistinguishable with respect
to CDC. Another limitation of the audit columns approach is the inability to retrieve the
initial state of records that have been updated. Interestingly, existing snapshot differential
implementations usually have the same limitation. They do not provide the initial state

332

of updated records while this would be feasible in principle, since the required data is
available in the snapshot taken during the previous run. Log-based CDC approaches in
practice typically capture all types of changes, i.e. insertions, deletions, and the initial and
current state of updated records.

3.3 Change Data Application

We use the term Change Data Application to refer to any technique appropriate for updat-
ing the data warehouse content. Typically a database management system is used to host
the data warehouse. Hence, available CDA techniques are DML statements issued via the
SQL interface, proprietary bulk load utilities, or loading facilities provided by ETL tools.
Note that CDA techniques have different requirements with regard to their input data.

Consider the SQL MERGE statement1. The MERGE statement inserts or updates tuples;
the choice depends on the tuples existing in the target table, i.e. if there is no existing
tuple with equal primary key values the new tuple is inserted; if such a tuple is found it is
updated. There are bulk load utilities and ETL loading facilities that are equally able to
decide whether a tuple is to be inserted or updated depending on its primary key. These
techniques ping the target table to determine the appropriate operation. Note that the input
to any of these techniques is a single dataset that contains tuples to be inserted and updated
in a joint manner.

From a performance perspective, ETL jobs should explicitly separate data that is to be
updated from data that is to be inserted to eliminate the need for frequent table lookups
[KC04]. The SQL INSERT and UPDATE statements do not incur this overhead. Again,
there are bulk load utilities and ETL loading facilities with similar properties. Note that
these CDA techniques differ in their requirements from the ones mentioned before. They
expect separate datasets for insertions and updates. However, deletions have to be sepa-
rated in either case to be applied to the target dataset using SQL DELETE statements, for
instance.

In Section 3.1 we introduced the Slowly Changing Dimensions (SCD) approach that is the
technique of choice to keep a history of data changes in the data warehouse. Recall, that
the decision whether to apply SCD strategy type I or type II depends on the columns that
have been updated within a tuple. That is, one has to consider both, the initial state and
the current state of updated tuples. Hence, SCD techniques need to be provided with both
datasets unless the costs for frequent dimension lookups are acceptable.

In summary, CDA techniques differ in their requirements with regard to input change data
very much like CDC techniques face varying limitations. While some CDA techniques
are able to process insertions and updates provided in an indistinguishable manner, others
demand for separated data sets. Sophisticated CDA techniques such as SCD demand for
both, the initial state and the current state of updates tuples.

1The MERGE statement (also known as upsert) has been introduced with the SQL:2003 standard.

333

4 Modeling ETL Jobs

To tackle the problem of deriving incremental load jobs we introduce a model for ETL
jobs in this section. We first specify a model for data and data changes and afterwards
provide a model for data transformations. We adopt the relational data model here since
the vast majority of operational systems organize data in a structured manner2. In the
following we use the term relation to refer to any structured datasets. We do not restrict
this term to relational database tables but include other structured datasets such as flat files,
for instance.

Formally, relations are defined as follows. Let R be a set of relation names, A a set of
attribute names, and D a set of domains, i.e. sets of atomic values. A relation is defined
by a relation name R ∈ R along with a relation schema. A relation schema is a list
of attribute names and denoted by sch(R) = (A1, A2, . . . , An) with Ai ∈ A. We use
the function dom : A → D to map an attribute name to its domains. The domain of a
relation R is defined as the Cartesian product of its attributes’ domains and denoted by
dom (R) := dom (A1) × dom (A2) × . . . × dom (An) with Ai ∈ sch(R). The data
content of a relation is referred to as the relation’s state. The state r of a relation R is a
subset of its domain, i.e. r ⊆ dom (R). Note that the state of a relation may change over
time as data is modified. In the following we use rnew and rold to denote the current state
of a relation and the state at the time of the previous incremental load, respectively.

During incremental loading the data changes that occurred at operational data sources are
propagated towards the data warehouse. We introduce a formal model for the description
of data changes referred to as change data. Change data specifies how the state of an
operational data source has changed during one loading cycle. Change data is captured
at tuple granularity and consists of four sets of tuples namely, the set of inserted tuples
(insert), the set of deleted tuples (delete), the set of updated tuples in their current state
(update new), and the set of updated tuples in their initial state (update old). We stress that
change data serves as both, the model for the output of CDC techniques and the model for
the input of CDA techniques. Below, we provide a formal definition of change data. We
make use of the relational algebra projection operator denoted by π.

Definition 4.1. Given relation R, the current state rnew of R, the previous state rold of
R, the list of attribute names S := sch(R), and the list of primary key attribute names
K ⊆ sch(R), change data is a four-tuple (rins, rdel, run, ruo) such that

rins := {s | s ∈ rnew ∧ t ∈ rold ∧ πK (s) ;= πK (t)} (4.1)
rdel := {s | s ∈ rold ∧ t ∈ rnew ∧ πK (s) ;= πK (t)} (4.2)

run :=
{
s | s ∈ rnew ∧ t ∈ rold ∧

(
πK (s) = πK (t)→ πS\K (s) ;= πS\K (t)

)}
(4.3)

ruo :=
{
s | s ∈ rold ∧ t ∈ rnew ∧

(
πK (s) = πK (t)→ πS\K (s) ;= πS\K (t)

)}
. (4.4)

2Data in the semi-structured XML format with relevance to data warehousing is typically data-centric, i.e. data
is organized in repeating tree structures, mixed content is avoided, the document order does not contribute to the
semantics, and a schema definition is available. The conversion of data-centric XML into a structured represen-
tation is usually straightforward.

334

In order to express changes of relations we introduce two partial set operators, namely the
disjoint union and the contained difference.

• Let R and S be relations. The disjoint union R ⊕ S is equal to the set union R ∪ S
if R and S are disjoint (R ∩ S = ∅). Otherwise it is not defined.

• The contained difference R 7 S is equal to the set difference R \ S if S is a subset
of R. Otherwise it is not defined.

In an ETL environment the state of a relation at the time of the previous incremental load
is typically not available. This state can however be calculated given the current state and
change data.

Theorem 4.2. Given relation R, the current state rnew of R, the previous state rold of R,
and change data rins, rdel, run, ruo, the following equations hold

rnew 7 rins 7 run = rnew ∩ rold (4.5)

rnew ∩ rold ⊕ rdel ⊕ ruo = rold (4.6)

rnew = rold 7 rdel 7 ruo ⊕ rins ⊕ run. (4.7)

Proof. We show the correctness of 4.5. Equation 4.6 can be shown in a similarly way.
Equation 4.7 follows from 4.5 and 4.6.

rnew 7 rins 7 run =
rnew 7 (rins ⊕ run) =

rnew 7
{
s | s ∈ rnew ∧ t ∈ rold ∧

(
πK (s) ;= πK (t) ∨ πS\K (s) ;= πS\K (t)

)}
=

rnew 7 {s | s ∈ rnew ∧ t ∈ rold ∧ s ;= t}
rnew 7 (rnew \ rold) = rnew ∩ rold

The survey of CDC in Section 3.2 revealed that CDC techniques may suffer from limita-
tions. While Log-based CDC techniques provide complete change data, both the snapshot
differential and audit column approaches are unable to capture certain types of changes.
We refer to the resulting change data as partial change data. Existing snapshot differential
implementations often do not capture the initial state of updated tuples (update old). Con-
sequently, this data is unavailable for change propagation; with regard to relation R we say
that ruo is unavailable. The audit column approach misses deletions and the initial state of
updated records, i.e. rdel and ruo are unavailable. In case a single audit column is used to
record the time of tuple insertions and subsequent updates, insertions and updates cannot
be distinguished. Thus, the best the CDC technique can provide is rups := rins⊕ run. Tu-
ples that have been inserted or updated since the previous incremental load are jointly pro-
vided within a single dataset (upsert). Note that neither rins nor run are available though.

We further stressed in Section 3.3 that CDA techniques differ in their requirements with
regard to change data. There are CDA techniques capable of consuming upsert sets, for

335

example. These techniques ping the data warehouse to decide whether to perform inser-
tions or updates. Other techniques need to be provided with separated sets of insertions
und updates but work more efficiently. Advanced techniques may additionally require up-
dated tuples in their initial state. In summary, the notion of partial change data is key to
the description of both, the output of CDC techniques and the input of CDA techniques.
Below, we provide a definition of partial change data.

Definition 4.3. Given a relation R we refer to change data as partial change data if at
least one component rins, rdel, run, or ruo is unavailable.

Having established a model for data and change data we are still in need of a model for
data transformations. While all major database management systems adhere to the SQL
standard, no comparable standard exists in the area of ETL. In fact, ETL tools make use
of proprietary scripting languages or visual user interfaces. We adopt OHM [DHW+08]
to describe the transformational part of ETL jobs in a platform-independent manner. The
OHM is based on a thorough analysis of ETL tools and captures common transformation
capabilities. Roughly speaking, OHM operators are generalizations of relational algebra
operators. We consider a subset of OHM operators, namely projection, selection, union,
and join, which are described in-depth in Section 5.1, Section 5.2, Section 5.3, and Section
5.4, respectively.

Definition 4.4. An ETL transformation expression E (or ETL expression for short) is gen-
erated by the grammar G with the following production rules.

E ::= R Relation name fromR
| σp (E) Selection
| πA (E) Projection
| E ⊕ E Disjoint union
| E 7 E Contained difference
| E &(E Join

We impose restrictions on the projection and the union operator, i.e. we consider key-
preserving projections and key-disjoint unions only. We show that these restrictions are
justifiable in the section on the respective operator. In contrast to [DHW+08] we favor
an equational representation of ETL transformations over a graph-based representation.
Advanced OHM operators for aggregation and restructuring of data are ignored for the
moment and left for future work.

5 Incremental Loading

The basic idea of incremental loading is to infer changes required to refresh the data ware-
house from changes captured at the data sources. The benefits of incremental loading as

336

compared to full reloading are twofold. First, the volume of changed data at the sources
is typically very small compared to the overall data volume, i.e. less data needs to be ex-
tracted. Second, the vast majority of data within the warehouse remains untouched during
incremental loading, since changes are only applied where necessary.

We propose a change propagation approach to incremental loading. That is, we construct
an ETL job that inputs change data captured at the sources, transforms the change data,
and ultimately outputs change data that specifies the changes required within the data
warehouse. We refer to such an ETL job as change data propagation job or CDP job for
short. We stress that CDP jobs are essentially conventional ETL jobs in the sense that they
are executable on existing ETL platforms. Furthermore existing CDC techniques are used
to provide the input change data and existing CDA techniques are used to refresh the data
warehouse.

Recall that CDC techniques may have limitations and hence may provide partial change
data (see Section 3.2). Similarly, CDA techniques have varying requirements with regard
to change data they can consume (see Section 3.3). The input of CDP jobs is change data
provided by CDC techniques; the output is again change data that is fed into CDA tech-
niques. Thus, CDP jobs need to cope with CDC limitations and satisfy CDA requirements
at the same time. This is, however, not always possible. Two questions arise. Given CDA
requirements, what CDC limitations are acceptable? Or the other way round, given CDC
limitations, what CDA requirements are satisfiable?

In the remainder of this section we describe our approach to derive CDP jobs from ETL
jobs for initial loading. We assume that the initial load job is given as an ETL expression
E as defined in 4.4. We are thus interested in deriving ETL expressions Eins, Edel, Eun, and
Euo that propagate insertions, deletions, the current state of updated tuples, and the initial
state of updated tuples, respectively. We refer to these expressions as CDP expressions.
In combination, CDP expressions form a CDP job3. Note that Eins, Edel, Eun, or Euo may
depend on source change data that is unavailable due to CDC limitations. That is, the
propagation of insertions, deletions, updated tuples in their current state, or updated tuples
in their initial state may not be possible, thus, the overall CDP job may output partial
change data. In this situation one may choose a CDA technique suitable for partial change
data, migrate to more powerful CDC techniques, or simply refrain from propagating the
unavailable changes. The dimensional modeling methodology, for instance, proposes to
leave dimension tuples in place after the corresponding source tuples have been deleted.
Hence, deletions can safely be ignored with regard to change propagation in such an envi-
ronment.

For the derivation of CDP expressions we define a set of functions fins : L(G) → L(G),
fdel : L(G) → L(G), fun : L(G) → L(G), and fuo : L(G) → L(G) that map an
ETL expression E to the CDP expressions Eins, Edel, Eun, and Euo, respectively. These
functions can however not directly be evaluated. Instead, we define equivalence preserv-
ing transformation rules that “push” these functions into the ETL expression and thereby
transform the expression appropriately. After repeatedly applying applicable transforma-
tion rules, these functions will eventually take a relation name as input argument instead

3CDP expressions typically share common subexpressions, hence it is desirable to combine them into a single
ETL job.

337

of a complex ETL expression. At this point, the function simply denotes the output of the
relation’s CDC system.

We provide transformation rules for projection, selection, union, and join in the subsequent
sections and explain the expression derivation process by an example in Section 5.5.

5.1 Key-preserving Projection

Our notion of an ETL projection operator generalizes the classical relational projection.
Besides dropping columns, we allow for adding and renaming columns, assigning constant
values, and performing value conversions. The latter may include sophisticated transfor-
mations, such as parsing and splitting up free-form address fields. Our only assumptions
are that any value transformation function processes a single tuple at a time and computes
its output in a deterministic manner.

We further restrict our considerations to key-preserving projections since dropping key
columns is generally unwanted during ETL processing [KR02, KC04]. We highlighted
the importance of business keys in Section 3.1 on dimensional modeling. Business keys
are the primary means of maintaining data lineage. Moreover, in the absence of business
keys, it is impractical to keep a history of data changes at the data warehouse. Hence,
business keys must not be dropped by the ETL job. Whenever the ETL job joins data
from multiple sources, the business key is composed of (a subset of) the key columns
of the source datasets. Consider that the key columns of at least one dataset have been
dropped. In this case, the join result will just as well lack key columns. That is, the
propagation of business keys renders impossible if at any step of the ETL job a dataset
without key columns is produced. We thus exclude any non-key-preserving projection
from our considerations. For this reason implicit duplicate elimination is never performed
by the projection operator.

In view of the above considerations we formulate the following transformation rules. The
proofs are straightforward and therefore omitted.

fins (πA (E)) ! πA (fins (E)) (5.1)
fdel (πA (E)) ! πA (fdel (E)) (5.2)
fun (πA (E)) ! πA (fun (E)) (5.3)
fuo (πA (E)) ! πA (fuo (E)) (5.4)
fups (πA (E)) ! πA (fups (E)) (5.5)
fnew (πA (E)) ! πA (fnew (E)) (5.6)

5.2 Selection

The selection operator filters those tuples for which a given boolean predicate p holds and
discards all others. In the light of change propagation three cases are to be distinguished.

338

• Inserts that satisfy the filter predicate are propagated while inserts that do not satisfy
the filter predicate are dropped.

• Deletions that satisfy the filter predicate are propagated since the tuple to delete has
been propagated towards the data sink before. Deletions that do not satisfy the filter
predicate lack this counterpart and are dropped.

• Update pairs, i.e. the initial and the current value of updated tuples, are propagated
if both values satisfy the filter predicate and dropped if neither of them does so. In
case only the current value satisfies the filter predicate while the initial value does
not, the update turns into an insertion. The updated tuple has not been propagated
towards the data sink before and hence is to be created. Similarly, an update turns
into a deletion if the initial value satisfies the filter predicate while the current value
fails to do so.
If the initial value of updated records is unavailable due to partial change data it
cannot be checked against the filter predicate. Thus, it is not possible to conclude
whether the updated source tuple has been propagated to the data sinks before. It is
thus unclear whether an insert or an update is to be issued, provided that the current
value of the updated tuple satisfies the filter predicate. Hence, inserts and updates
can only be propagated in a joint manner in this situation (see 5.11).

We formulate the following transformation rules for the select operator. We make use of
the semijoin operator denoted by (and the antijoin operator denoted by (known from
relational algebra.

fins (σp (E)) ! σp (fins (E))⊕ [σp (fun (E))(σp (fuo (E))] (5.7)
fdel (σp (E)) ! σp (fdel (E))⊕ [σp (fuo (E))(σp (fun (E))] (5.8)
fun (σp (E)) ! σp (fun (E))(σp (fuo (E)) (5.9)
fuo (σp (E)) ! σp (fuo (E))(σp (fun (E)) (5.10)
fups (σp (E)) ! σp (fups (E)) (5.11)
fnew (σp (E)) ! σp (fnew (E)) (5.12)

Proof. We show the correctness of (5.7). We make use of the fact that πK (Eins) and
πK (Eold) are disjoint and Eun shares common keys with the updated tuples Euo ⊆ Eold
only. Equation (5.8), (5.9), and (5.10) can be shown in a similar way.

fins (σp (E)) 4.1=

{r | r ∈ σp (Enew) ∧ s ∈ σp (Eold) ∧ πK (r) ;= πK (s)} 4.7=
{r | r ∈ σp (Eold 7 Edel 7 Euo ⊕ Eins ⊕ Eun) ∧ s ∈ σp (Eold) ∧ πK (r) ;= πK (s)} =
{r | r ∈ σp (Eold 7 Edel 7 Euo) ∧ s ∈ σp (Eold) ∧ πK (r) ;= πK (s)}⊕
{r | r ∈ σp (Eins) ∧ s ∈ σp (Eold) ∧ πK (r) ;= πK (s)}⊕
{r | r ∈ σp (Eun) ∧ s ∈ σp (Eold) ∧ πK (r) ;= πK (s)} =
∅⊕ σp (Eins)⊕ (σp (Eun)(σp (Euo))

339

We omit proofs for (5.11) and (5.12).

5.3 Key-disjoint Union

We already emphasized the importance of business keys for maintaining data lineage and
keeping a history of data changes at the data warehouse. Business keys must “survive” the
ETL process and we therefore restrict our considerations to key-preserving unions. That
is, the result of a union operation must include unique key values. In consequence we
require the source relations to be disjoint with regard to their key values. This property
can be achieved by prefixing each key value with a unique identifier of its respective data
source. The key-disjoint union is a special case of the disjoint union.

fins (E ⊕ F) ! fins (E)⊕ fins (F) (5.13)
fdel (E ⊕ F) ! fdel (E)⊕ fdel (F) (5.14)
fun (E ⊕ F) ! fun (E)⊕ fun (F) (5.15)
fuo (E ⊕ F) ! fuo (E)⊕ fuo (F) (5.16)
fups (E ⊕ F) ! fups (E)⊕ fups (F) (5.17)
fnew (E ⊕ F) ! fnew (E)⊕ fnew (F) (5.18)

5.4 Join

The majority of transformation rules seen so far map input change data to output change
data of the same type. Exceptions are (5.7), (5.8), (5.9), (5.10) on the selection operator.
Here updates may give rise to insertions and deletions depending on the evaluation of
the filter predicate. The situation is somewhat more complex for the join operator. We
need to distinguish between one-to-many and many-to-many joins. Consider two (derived)
relations E and F involved in a foreign key relationship where E is the referencing relation
and F is the referenced relation. Say, E and F are joined using the foreign key of E and
the primary key of F . Then tuples in E &(F are functionally dependent on E’s primary
key. In particular, for each tuple in Eun at most one join partner is found in F even if the
foreign key column has been updated. It is therefore appropriate to propagate updates. The
situation is different for many-to-many joins, i.e. no column in the join predicate is unique.
Here, multiple new join partners may be found in response to an update of a column in
the join predicate. Moreover, multiple former join partners may be lost at the same time.
In consequence, multiple insertions are propagated, one for each new join partner and
multiple deletions are propagated, one for each lost join partner. The number of insertions
and deletions may differ.

340

uodeluoFuo

uninsunFun

uodelFdel

uninsFins

uoundelinsFnew ∩ Fold

EuoEunEdelEinsEnew∩ Eold

Figure 1: Matrix Representation 1-to-n Joins

The matrix shown in Figure 1 depicts the interdependencies between change data of the
referencing relation E and the referenced relation F assuming referential integrity. The
matrix is filled in as follows. The column headers and row headers denote change data
of relation E and F , respectivelly. From left to right, the column headers denote the
unmodified tuples of E (Enew ∩ Eold), insertions Eins, deletions Edel, updated records in
their current state Eun, and updated records in their initial state Euo. The row headers are
organized in a similar way form top to bottom. Columns and rows intersect in cells. Each
cell represents the join of two datasets indicated by the row and column headers. The
caption of a cell shows whether the join contributes to either fins (E &(F), fdel (E &(F),
fun (E &(F), fuo (E &(F), or to none of them (empty cell). Take the Eins column as
an example. The column contains five cells out of which three are labeled as insertions
and two are empty. That means the three joins Eins &((Fnew ∩ Fold), Eins &(Fins, and
Eins &(Fun contribute to fins (E &(F). Since no other cells are labeled as insertions
fins (E &(F) is given by the union of these joins.

fins (E &(F) =Eins &((Fnew ∩ Fold)⊕ Eins &(Fins ⊕ Eins &(Fun
4.5=

Eins &((Fnew 7Fins 7Fun)⊕ Eins &(Fins ⊕ Eins &(Fun =
Eins &(Fnew

Note, that the above considerations lead to the transformation rule 5.19. The other trans-
formation rules are derived in a similar way.

fins (E &(F) !Eins &(Fnew (5.19)
fdel (E &(F) !Edel &(Fnew ⊕ Edel &(Fdel ⊕ Edel &(Fuo7 (5.20)

Edel &(Fins 7 Edel &(Fun

fun (E &(F) !Enew &(Fun ⊕ Eun &(Fnew 7 Eins &(Fun 7 Eun &(Fun (5.21)
fuo (E &(F) !Enew &(Fuo 7 Eins &(Fuo 7 Eun &(Fuo ⊕ Euo &(Fnew7 (5.22)

Euo &(Fins 7 Euo &(Fun ⊕ Euo &(Fdel ⊕ Euo &(Fuo

fups (E &(F) !Enew &(Fups ⊕ Eups &(Fnew 7 Eups &(Fups (5.23)
fnew (E &(F) !Enew &(Fnew (5.24)

Though the right-hand sides of the above transformation rules look rather complex they
can still be efficiently evaluated by ETL tools. It can be assumed that change data is

341

deldeldeldelFuo

insinsinsinsFun

deluodeluoFuo

insuninsunFun

deldeldeldelFdel

insinsinsinsFins

delinsuoundelinsFnew ∩ Fold

EuoEunEuoEunEdelEinsEnew∩ Eold

Join predicate
unaffected

Join predicate
affected

Join predicate
unaffected

Join predicate
affected

Figure 2: Matrix Representation n-to-m Joins

considerable smaller in volume than base relations. Furthermore ETL tools are able to
process the joins involved in parallel.

For the case of many-to-many joins we again provide a matrix representation shown in
Figure 2. Note that a distinction of update operation is necessary here. Updates that
affect columns used in the join predicate have to be separated from updates that do not
affect those columns. The reason is that the former may cause tuples to find new join
partners or loose current ones while the latter may not. Consequently, updates that affect
the join predicate give rise to insertions and deletions while updates that do not affect
the join predicate can often be propagated as updates. For space limitations we omit the
transformation rules for many-to-many joins.

5.5 Example

We exemplify the derivation process of incremental load jobs by means of an example.
Assume that there are two operational data sources A and B that store customer informa-
tion. Further assume that there is a dataset C that contains information about countries and
regions together with a unique identifier, say ISO country codes. The country codes for
each customer are available in relations A and B. All these information shall be integrated
into the customer dimension of the data warehouse. That is, customer data extracted from
relations A and B is transformed to conform to an integrated schema according to the ex-
pressions a and b. This step may involve converting date formats or standardizing address
information, for instance. Furthermore a unique source identifier is appended to maintain
data lineage. The resulting data is then merged (union) and joined to the country relation
C. For the sake of the example, assume that customer data from A is filtered by means
of some predicate p after being extracted, for example, to discard inactive customers. The
ETL expression E to describe the initial load is given below.

E = [πa (A)⊕ πb (σp (B))] &(C

342

CDP expressions are derived from E step-by-step, by applying suitable transformation
rules. The process is exemplified for the case of insertions below.

fins (E) =
fins ([πa (A)⊕ πb (σp (B))] &(C) 5.19=

fins ([πa (A)⊕ πb (σp (B))]) &(fnew (C)
5.13=

[fins (πa (A))⊕ fins (πb (σp (B)))] &(fnew (C)
5.1=

[πa (fins (A))⊕ πb (fins (σp (B)))] &(fnew (C)
5.7=

[πa (fins (A))⊕ πb (σp (fins (B))⊕ (σp (fun (B))(σp (fuo (B))))] &(fnew (C) =

[πa (Ains)⊕ πb (σp (Bins)⊕ (σp (Bun)(σp (Buo)))] &(Cnew

CDP expressions can be translated into an executable ETL job as shown in [DHW+08].
The transformation rules are designed to “push” the function fins, fdel, fun, or fuo into the
ETL expression. Eventually these functions are directly applied to source relations and
thus denote the output of CDC techniques. At this point no further transformation rule
is applicable and the derivation process terminates. The resulting CDP expression shows
that the propagation of insertions is possible if A’s CDC technique is capable of capturing
insertions and B’s CDC technique is capable of capturing insertions and updates in their
initial state and in their current state. In case the available CDC techniques do not meet
these requirements the propagation of insertions is impractical. However, it is possible to
propagate upserts in this situation as the evaluation of fups (E) would show.

5.6 Experimental Results

We provide some experimental results to demonstrate the advantage of incremental loading
over full reloading. We stress that the measurement is exemplary. Nevertheless, the results
clearly suggest performance benefits. Our experiment is based on the sample scenario
described in the previous section. We chose the cardinality of the customer relation and the
country relation to be 600,000 tuples and 300 tuples, respectively. During the experiment,
we stepwise increased the number of changes to the source relations. At each step, equal
numbers of tuples were inserted, deleted, and updated. We employed ETL jobs for initial
loading, full reloading, and incremental loading. The jobs for initial loading and full
reloading differ in the sense that the former expects the target relation to be empty while the
latter does not. Instead, it performs lookups to decide whether tuples need to be inserted,
updated, or remain unchanged. The incremental load job computes three separate datasets,
i.e. tuples to be inserted and tuples to be updated in both, their initial state and their current
state. Deletions are not propagated since historical data is kept in the data warehouse.

We measured the time to compute change data for data warehouse refreshment, i.e. we
focused on CDP and excluded CDC and CDA from our considerations. The cost of CDC

343

0

10

20

30

40

50

60

0% 10% 20% 30% 40%

change percentage

lo
ad

in
g

tim
e

[s
]

Initial Load

Full Reload

Incremental Load

Figure 3: Change Data Propagation Time Comparisons

depends on the CDC technique used and the architecture of the CDC system. However,
none of the CDC techniques described in Section 3.2 has a stronger impact on the data
source than a full extraction required for full reloading. The cost of CDA again depends
on the loading facility used. However, the CDA cost is the same for both, full reloading
and incremental loading.

The results of the experiment are provided in Figure 3. Expectedly, the time for the initial
load and the full reload are constant, i.e. the number of source data changes does not im-
pact the runtime of these jobs. The full reload is considerably slower than the initial load.
The reason is the overhead incurred by the frequent lookups. Incremental loading clearly
outperforms full reloading unless the source relations happen to change dramatically.

6 Conclusion

In this paper we addressed the issue of data warehouse refreshment. We argued that in-
cremental loading is more efficient than full reloading unless the operational data sources
happen to change dramatically. Thus, incremental loading is generally preferable. How-
ever, the development of ETL jobs for incremental loading is ill-supported by existing
ETL tools. In fact, separate ETL jobs for initial loading and incremental loading have to
be created by ETL programmers so far. Since incremental load jobs are considerably more
complex their development is more costly and error-prone.

To overcome this obstacle we proposed an approach to derive incremental load jobs from
given initial load jobs based on equational reasoning. We therefore reviewed existing
Change Data Capture (CDC) techniques that provide the input for incremental loading.

344

We further reviewed existing loading facilities to update the data warehouse incrementally,
i.e. to perform the final step of incremental loading referred to as Change Data Application
(CDA). Based on our analysis we introduced a formal model for change data to character-
ize both, the output of CDC techniques and the input of CDA techniques. Depending on
the technical realization, CDC techniques suffer from limitations and are unable to detect
certain changes. For this reason we introduced a notion of partial change data.

Our main contribution is a set of equivalence preserving transformation rules that allow
for deriving incremental load jobs from initial load jobs. We emphasize that our approach
works nicely in the presence of partial change data. The derived expressions immediately
reveal the impact of partial input change data on the overall change propagation. That
is, the interdependencies between tolerable CDC limitations and satisfiable CDA require-
ments become apparent. We are not aware of any other change propagation approach
that considers limited knowledge of change data. Thus, we are confident that our work
contributes to the improvement of ETL development tools.

Future work will focus on advanced transformation operators such as aggregation, outer
joins, and data restructuring such as pivoting. We further plan to investigate the usage
of the staging area, i.e. allow ETL jobs to persist data that serves as additional input for
the subsequent runs. By utilizing the staging area, CDC limitations can be compensated
to some extent, i.e. partial change data can be complemented while being propagated.
Moreover, we expect performance improvements form persisting intermediary results.

References

[AASY97] Divyakant Agrawal, Amr El Abbadi, Ambuj K. Singh, and Tolga Yurek. Efficient
View Maintenance at Data Warehouses. In SIGMOD Conference, pages 417–427,
1997.

[AN08] Alexander Albrecht and Felix Naumann. Managing ETL Processes. In NTII, pages
12–15, 2008.

[BLT86] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently Updating
Materialized Views. In SIGMOD Conference, pages 61–71, 1986.

[BT98] Michele Bokun and Carmen Taglienti. Incremental Data Warehouse Updates. DM
Review Magazine, May 1998.

[CW91] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremental View
Maintenance. In VLDB, pages 577–589, 1991.

[DHW+08] Stefan Dessloch, Mauricio A. Hernández, Ryan Wisnesky, Ahmed Radwan, and Jin-
dan Zhou. Orchid: Integrating Schema Mapping and ETL. In ICDE, pages 1307–
1316, 2008.

[DS] IBM WebSphere DataStage. http://www-306.ibm.com/software/data/
integration/datastage/.

[DWE] IBM DB2 Data Warehouse Enterprise Edition. www.ibm.com/software/
data/db2/dwe/.

345

[GL95] Timothy Griffin and Leonid Libkin. Incremental Maintenance of Views with Dupli-
cates. In SIGMOD Conference, pages 328–339, 1995.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining Views
Incrementally. In SIGMOD Conference, pages 157–166, 1993.

[IPC] Informatica PowerCenter. http://www.informatica.com/products_
services/powercenter/.

[JD08] Thomas Jörg and Stefan Deßloch. Towards Generating ETL Processes for Incremen-
tal Loading. In IDEAS, pages 101–110, 2008.

[KC04] Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit: Practical Tech-
niques for Extracting, Cleaning, Conforming, and Delivering Data. John Wiley &
Sons, Inc., 2004.

[KR02] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide
to Dimensional Modeling. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[LGM96] Wilburt Labio and Hector Garcia-Molina. Efficient Snapshot Differential Algorithms
for Data Warehousing. In VLDB, pages 63–74, 1996.

[LN07] Ulf Leser and Felix Naumann. Informationsintegration. dpunkt.verlag, 2007.

[OWB] Oracle Warehouse Builder. http://www.oracle.com/technology/
products/warehouse/index.html.

[QGMW96] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, and Jennifer Widom. Making
Views Self-Maintainable for Data Warehousing. In PDIS, pages 158–169, 1996.

[QW91] Xiaolei Qian and Gio Wiederhold. Incremental Recomputation of Active Relational
Expressions. IEEE Trans. Knowl. Data Eng., 3(3):337–341, 1991.

[Sim05] Alkis Simitsis. Mapping conceptual to logical models for ETL processes. In DOLAP,
pages 67–76, 2005.

[SVS05] Alkis Simitsis, Panos Vassiliadis, and Timos K. Sellis. Optimizing ETL Processes in
Data Warehouses. In ICDE, pages 564–575, 2005.

[SVTS05] Alkis Simitsis, Panos Vassiliadis, Manolis Terrovitis, and Spiros Skiadopoulos.
Graph-Based Modeling of ETL Activities with Multi-level Transformations and Up-
dates. In DaWaK, pages 43–52, 2005.

[VSS02] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual modeling for
ETL processes. In DOLAP, pages 14–21, 2002.

[Yu06] Tsae-Feng Yu. A Materialized View-based Approach to Integrating ETL Process and
Data Warehouse Applications. In IKE, pages 257–263, 2006.

[ZGMHW95] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom. View
Maintenance in a Warehousing Environment. In SIGMOD Conference, pages 316–
327, 1995.

346

