A Self-Organizing Job Scheduling Algorithm for a
Distributed VDR

Kendy Kutzner, Curt Cramer, and Thomas Fuhrmann
IBDS Systemarchitektur, Universitidt Karlsruhe (TH)
{kutzner|cramer|thomas.fuhrmann} @ira.uka.de

1 Background

In [CKF04], we have reported on our concept of a peer-to-peer extension to the popular
video disk recorder (VDR) [Sch04], the Distributed Video Disk Recording (DVDR) system.
The DVDR is a collaboration system of existing video disk recorders via a peer to peer
network. There, the VDRs communicate about the tasks to be done and distribute the
recordings afterwards. In this paper, we report on lessons learnt during its implementation
and explain the considerations leading to the design of a new job scheduling algorithm.

DVDR is an application which is based on a distributed hash table (DHT) employing prox-
imity route selection (PRS)/proximity neighbor selection (PNS). For our implementation,
we chose to use Chord [SMK 01, GGGT03]. Using a DHT with PRS/PNS yields two im-
portant features: (1) Each hashed key is routed to exactly one destination node within the
system. (2) PRS/PNS forces messages originating in one region of the network destined
to the same key to be routed through exactly one node in that region (route convergence).
The first property enables per-key aggregation trees with a tree being rooted at the node
which is responsible for the respective key. This node serves as a rendezvous point. The
second property leads to locality (i.e., low latency) in this aggregation tree.

In our specification of the algorithm (cf. sec. 2), we distinguish inner nodes from leaf
nodes. The latter both issue and fulfill recording requests (“jobs”). The former aggregate
these requests. In an actual system, however, nodes are able to conduct both tasks. We
model this by representing a physical node that happens to be an inner node of the aggre-
gation tree by two virtual nodes, one inner (for aggregation) and one leaf node (for job
creation and fulfillment).

Node churn will create inconsistencies in this structure, but these inconsistencies are tem-
porary and limited to a local scope. If, e.g., the node that is the rendezvous point for a
certain key unexpectedly dies, most parts of the aggregation tree for that key remain in-
tact. (The tree lost its root, but aggregation in the sub-trees still works.) When a another
node steps in as a new root, this information quickly propagates down the tree, causing a
quick reorganization of its sub-trees. Hence, at time-scales well above the average DHT
lookup latency (about 400ms in a globally deployed system [KF05]), the system appears

147

to be stable. (Note that the very same argument discussed here for the rendezvous point
also applies to the disappearance of any other node in the system.)

2 The Algorithm

Assumptions and Goals

We assume that all nodes in the system have reasonably synchronized clockswhich is eas-
ily achievable with standard protocols like the Network Time Protocol (NTP). Each job &
is assigned a discrete starting time tj,, where ¢;, is rounded to the next full minute divisible
by five. (This coarse slicing of the time is the reason for the lax synchronization require-
ments. It is the basis for the definition of timeout values and the system’s ability to fuse
overlapping data blocks stemming from different nodes.) Each job is identified by a hash
key h obtained from hashing the job’s starting time h = H(t). A leaf node i issuing a
job J, also has to announce a priority p; € {1,2,...} forit. There, p = 1 denotes a
high-priority job (as rated by the respective node’s user). A value of p = 1 is also assigned
to jobs which can be especially well performed by a node (e. g. because its receiver card
has already been tuned to the designated channel). A node may handle several jobs with
the same starting time, however these jobs have to differ in their priorities. It is highly
probable that several nodes will issue requests for the same job (not necessarily with dif-
fering priority assignments). The goal of the scheduling algorithm then is to identify a
subset of all nodes that execute J;,. We assume that, for every possible ¢, there are fewer
jobs than nodes in the system (i. e. the number of channels is smaller than the number of
nodes). This is leveraged to have each job be redundantly executed on several nodes. The

-1
goal of our algorithm is that the higher the job’s global priority p; = (Z i pf,}) is, the

more nodes should execute it'. The higher the job’s local priority p; x is, the more likely
node ¢ will perform the job itself.

Details

At point in time ¢ = ¢ — T}, where T} is randomly drawn from [2.5 min,7.5 min], node @
whose highest priority job is Jj issues a REQUEST message with request value R, = 1
and a COMMIT message with commit value Cj, = 1, i.e. the node requests some node
to execute the job and commits itself to do it unless further notice is given. For all lower
priority jobs, it issues a REQUEST message with R = p,?,l, but a COMMIT message
with C» = 0. The messages are destined for key h = H (1). Since requests and commits
always come in pairs, we will refer to these messages as RC messages. These original
messages are only forwarded one overlay hop towards the destination key h, as messages
always get aggregated (i. e. the amount of requests R and the number of commits C' are
summed up) on the next node. This is done as follows:

INote that, as with Di, k- the lower py, is, the higher the priority is.

148

When a node receives an RC message from node i, it creates or updates a record containing
R; i and C; j. If this was the first RC message for that job, it also sets a timer 75, where
T5 is randomly drawn from [5 s, 15 s]. (Note that 7} should be much larger than T5.) If
further RC messages arrive for Jy, their respective parameters are recorded, too. Thus, the
node builds a cumulated list of direct downstream? overlay neighbors for that job.

When the timer fires, the node issues an RC message containing the aggregated parameters
> ; ik and > ; Ci 1, towards h (upstream) and sends a SUPPRESS message with S, =
logy (14>, Rik)/ > Ci to all nodes in its list, i.e. SUPPRESS messages are relayed
hop-by-hop downstream towards the leaves of the aggregation tree. Note that S = oo
is a valid result. We chose a logarithmic relationship between requests and commitments
as target function because requests coming from only a few nodes should be recorded by
these nodes themselves. When a lot of nodes have similar requests, most of the nodes can
perform lower priority tasks.

Upon reception of a SUPPRESS message, an inner node calculates the mean of both the
received S;,°“” and the Sg‘”c it calculates for its own current list of parameters. Then, it
sends a SUPPRESS message containing this mean value towards its downstream neighbors
and resets its timer 75.

Upon reception of a SUPPRESS message, a leaf node draws a uniform random number
r € [0;1[. If r < Sk, the node sticks to its current commitment to perform J; and again
issues a corresponding RC message. Otherwise, it switches to its next lower priority job
Jy» and sends two RC messages, one revoking its commitment for J;, and one committing
it to Jys. If a leaf node has no further lower priority jobs to be performed, it commits to
the job with the largest Sy value.

This algorithm has three important features: (1) Calculating the mean value leads to sub-
trees having suppression values that more and more reflect the local requests rather than
the global view at the root of the aggregation tree. (2) Over time, S}, values tend to become
equal, i. e. request and commit values are (from a local perspective) in a fair balance. (3)
All inner nodes are functionally equal. There is no special role assumed by the root.
Hence, arbitrary subtrees may be pruned from the main tree at any time without affecting
the functionality of both these subtrees and the rest of the system.

Damping

The algorithm as described above can cause oscillations. In a system where there are
more jobs than nodes, the oscillations would eventually die off (the larger the gap between
requests and commitments, the quicker they die off). In DVDR, the opposite scenario pre-
vails. Therefore, we have to add an additional damping mechanism. It works as follows:

1. Nodes committed to a job with priority p will only change their commitment after
time ¢, — Ty (1 — ap, ') (where a is randomly drawn from [0, 1)), i. e. the higher the
priority of a request is, the more reluctant a node is to rely on another node to do the
job.

2Downstream designates the direction from the aggregation tree’s root towards its leaf nodes.

149

2. Upon reception of a SUPPRESS message, a node calculates m = max{Sk,, ..., Sk, }
and draws a uniformly distributed random number r € [0; m[. Let Ji, be the job to
which the node committed most recently. If » < Sk, (which is very likely when the
S}-values become similar), the node sticks to its commitment. Otherwise, it (uni-
formly distributedly) chooses a job from the set { Ji|r < Si} and commits to doing
that job.

3 Conclusions and Outlook

We presented a fully distributed scheduling algorithm for video disk recorder schedules.
Our algorithm leverages the overlay structure that is created by PNS/PRS in DHTs to re-
flect locality and ensure requests being preferably fulfilled close to their origin. Since
our specific application system can be assumed to be highly redundant (many more active
recorders than channels to record), our algorithm does not need to find an optimum solu-
tion. It suffices to create a fair schedule in a fully decentralized way. Currently, we are
optimizing and implementing the described algorithm in the DVDR. One optimization is
to further minimize the message count, since for each possible recording time there is only
one aggregation tree. This tree can be used to schedule all channels at once. We hope to
soon be able to report on the achievable performance.

We believe that this algorithm does not only provide an elegant solution to a practical
problem in our P2P application, but also sheds some light onto the potential that P2P
approaches have beyond mere file sharing applications.

References

[CKF04] Curt Cramer, Kendy Kutzner und Thomas Fuhrmann. Distributed Job Scheduling in
a Peer-to-Peer Video Recording System. In Proceedings of the Workshop on Algo-
rithms and Protocols for Efficient Peer-to-Peer Applications (PEPPA) at Informatik
2004, Seiten 234-238, Ulm, Germany, September 23 2004.

[GGGT03] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker und I. Stoica. The
Impact of DHT Routing Geometry on Resilience and Proximity. In Proceedings of the
SIGCOMM 2003 conference, Seiten 381-394. ACM Press, 2003.

[KFO05] Kendy Kutzner und Thomas Fuhrmann. Measuring Large Overlay Networks - The
Overnet Example. In /4. Fachtagung Kommunikation in Verteilten Systemen (KiVS),
2005.

[Mil92] D. Mills. Network Time Protocol (Version 3) Specification, Implementation. RFC 1305
(Draft Standard), Marz 1992.

[Sch04] Klaus Schmidinger. Video Disk Recorder, 2004. http://www.cadsoft.de/vdr/, accessed
on 12 May 2004.

[SMKT01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek und Hari Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceed-
ings of the SIGCOMM 2001 conference, Seiten 149—160. ACM Press, 2001.

150

