Douglas Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt (Hrsg.): INFORMATIK 2015
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2015

Game Event Lenses: Focus+Context Visualizations of
Computer Game Data

Lars Schiitz!

Abstract: This paper introduces Game Event Lenses. They enable explorative and interactive fo-
cus+context visualizations of computer game events that may form huge and complex datasets
including various attributes from the close game environment. The Data State Reference Model
(DSRM) is the foundation of the presented approach. It is based on different data states and opera-
tors. This work features a concept that is designed to completely simulate the DSRM on a graphics
card by using its memory and related shader programs. Their new general purpose computing and
traditional rendering capabilities allow user interactions and frequently generated images in real
time.

Keywords: Information visualization, graphic systems and interfaces, computer game data.

1 Introduction

Computer games are versatile, technically complex and widely spread. They can be dif-
ferently perceived. Developers might create new virtual worlds and adventures with ded-
ication and passion. They and additional publishers try to make a profit with their games
while players typically consume them to have fun or to simply pass time. There are more
concrete motivational points when it comes to games.

Developers and publishers try to analyze the behavior of players in solo and group activi-
ties [EDC13]. By doing this, they possibly gain insight into specific trends and preferences,
e. g., favorite in-game weapons. Furthermore, they might detect if the players really play
their game how they meant it to be played. Such obtained information can result in further
adjustments to the game and its mechanics that even might get into the game after its initial
release. Individual short term offers for in-game items that can be bought with real money
or layout changes of specific in-game world areas can be seen as only two related of many
more imaginable examples.

Other motivations from a developer’s point of view refer to the general game design. Weak
points regarding the overall game balance can become obvious by analyzing each player’s
progress and performance in a game. For example, several players have to fight enemies
and no one is able to beat them because their attack skill is numerically too weak. Those
kind of shortcomings can possibly be seen when collected game data is examined. Such an
analysis can lead to game balance adjustments, e. g., lowering the overall difficulty level.

! Anhalt University of Applied Sciences, Department of Computer Science and Languages, 06366 Kéthen,
Germany / Otto von Guericke University, Faculty of Computer Science, 39106 Magdeburg, Germany,
l.schuetz@inf.hs-anhalt.de

1877

Lars Schiitz

Players view games from another perspective. They may take part in electronic sports
tournaments where the best strategies and tactics typically lead to a tournament win. In this
respect, they possibly have a high interest in the analysis of their performances. But also
ordinary players compare themselves by browsing player profiles and statistical overviews
about achievements and owned items in various games. A game can almost always be seen
as a competitive environment.

Generally speaking, the analysis of computer game data involves different directions and
perspectives. The afore-mentioned approaches only give a basic overview. A separate dis-
cipline called Game Analytics evolved during the last years that deals with such questions
[EDC13]. It combines several other subjects like Data Mining, Machine Learning, Statis-
tics and Visualization to gain insight into game related data.

1.1 Challenges

The extraction and communication of usable information from huge datasets is a central
issue, because it is difficult to deduce structural information and interrelationships from
raw data representations. It can be a very time-consuming and complex task. The visual-
ization of the raw data may help in this respect. Additionally, supporting tools are needed
that process data in a timely manner.

A consequent problem is the possible information overload when many data elements are
visualized at the same time. That complicates the recognition and interpretation of facts.
Specific visualization techniques may help to address that challenge.

All those issues affect visualization in general and they are applicable to the visual anal-
ysis of computer game data in particular. This paper examines possibilities to overcome
those problems and therefore provides a useful contribution to the specific area of Game
Analytics as well as to the discipline called Information Visualization [Sp01].

1.2 Outline

The visualization of raw data makes the illustration of information possible and more
accessible. It is seen as one chance to address the previously mentioned challenges. Sec-
tion 2 clarifies what visualization actually means and how initial data can be processed by
introducing the visualization transformation and the Data State Reference Model (DSRM)
[CROS].

Section 3 refers to (computer) game events in the context of the DSRM. Game events are
defined, their components are identified and it is outlined how they can be processed.

Visualizations of game events in particular and of data in general still might lead to clut-
tered information as previously mentioned. This hinders the discovery of new insights into
the data. Regarding this, lenses are presented in Section 4. They enable a user to focus on
specific parts of a visualization.

1878

Game Event Lenses

To process and to visualize the game events with respect to the integration of lenses a
performant graphics system is needed. Section 5 shows the conceptual idea of such a
system and delivers introductory examples based on a collected sample dataset of game
events.

Finally, Section 6 concludes this paper and proposes future work.

2 Visualization and the Data State Reference Model

A visualization is typically understood as an external graphical representation of concepts
or data [Wa04]. In this respect, it stands for a final result of some kind of process. In
contrast to that, another point of view refers to a visualization as a human process itself that
leads to a mental model of data [SpO1]. This approach emphasizes the human brain with
its perceptive and cognitive abilities. We can combine both views and see a visualization as
an interface between them [Wa04]. Humans with their comprehensive faculty and decision
making abilities are on the one side. Computers that process huge amounts of data, e. g.,
images from the internet, to further abstractions by using specific algorithms are on the
other side. A visualization is then the foundation for the knowledge acquisition. It carries
information that is based on the given data that should be easier to understand. This whole
idea is illustrated in Fig. 1.

@ — Visualization — Q

Human Computer

Knowledge

Fig. 1: Visualization acts as an interface between the human and the computer-processed data and
enables the discovery of knowledge

It now needs to be clarified how visual representations or image data D; are generated
starting with available raw data Dg before we are actually able to derive knowledge from
them. The involved process is the so called visualization transformation that is basically
the mapping f : Dr X Py X P X -+ X P, = Dy with P, | 1 <i < n,n € N being the visu-
alization parameters and p € P; being the visualization parameter values [JMGO02]. This
parameterized form gives us more control and flexibility because each set P; can be ap-
plied to different steps in the visualization transformation depending on how it is actually
defined.

The DSRM describes how raw data can be transformed into image data. It is based on
different data states and operators. The following four states, also called stages, need to be
distinguished:

° Raw data Dy are the input data for the visualization.

° Analytical abstractions D4 are calculated properties or meta data.

1879

Lars Schiitz

° Visual abstractions Dy are abstracted data in portrayable form that carry visual prop-
erties, e. g., color hue values.

) Image data Dy are the final visual representations, e. g., pixel data.

The DSRM works like a pipeline. It consists of two types of operators that propagate the
data through the model:

° State operators leave the structure of the data untouched because the output is on
the same stage as the input. There are operators Or on Dg, operators O4 on Dy,
operators Oy on Dy and operators Oy on Dy.

° Transformation operators transform data from one stage to their succeeding stage.
They can be distinguished into the following operators:

- Raw data transformations Ty abstract raw data and create new structures.

- Visualization transformations Ty map analytical abstractions to visual ab-
stractions.

- Visual mapping transformations Ty render visual abstractions to obtain image
data.

The first two states are part of the data domain while the remaining states are part of
the view domain. The same principle applies to the operators. This kind of classification
enables a distinction between data-oriented or semantic operators and view-oriented or
graphical operators [TFS08]. The schematic view of the DSRM is depicted in Fig. 2.

Operators on Operators on Operators on Operators on
raw data analytical abstractions visual abstractions image data

Raw data Analyn.cal Vlsugl Image data
abstractions abstractions

Data Visualization Visual mapping
transformations transformations transformations

Data domain View domain

Fig.2: The DSRM transforms raw data via analytical abstractions and visual abstractions into image
data by using operators

3 Game Events in the Context of the Data State Reference Model

The following examinations apply the DSRM to game events. Aspects that relate to the
data domain and the view domain are considered. But first of all the most important terms
shall be clarified.

1880

Game Event Lenses

A (computer) game is an interactive experience that offers increasingly challenging se-
quences of patterns to a player that can learn and potentially master those [Ko0O4]. We can
conclude that the gaming experience can turn out differently for various persons while the
patterns may be the same. That relates to the individual learning aptitude of each player
and to the fact that they interact with or within the game in different ways, e. g., in terms
of chronological order.

The term event is versatile and actually defined differently in various disciplines. For ex-
ample, events are essential when it comes to interrupt processing and the process life cycle
in operating systems [Mal3]. In that context, events trigger temporary and final interrupts
of process executions to handle new or already existing processes. Those kind of events
let a system react to them. In discrete event-oriented simulations events are instant occur-
rences that alter a system’s state [To11]. Such a state comprises a collection of the system’s
properties at a specific time. We can find different general concepts for an event that are
sometimes used interchangeably. On the one hand, there are event types or event classes
that describe different kind of events and determine a unified structure for similar events
while, on the other hand, there are event instances or event objects that are a concrete real-
ization or instantiation of an event type [BD10]. In this paper, an event stands for an event
instance unless stated otherwise.

A (computer) game event can now be defined as a detectable and immediate event that
contains parts of the complete game state description and is triggered by game mechanics
or internal requests. This definition focuses on the following aspects:

° Detection: A game event can be detected by the game itself. It can further be de-
tected by either nobody or at least one player.

° Duration: A game event occurs instantly and does not span a specific period of time.

° State description: A game event represents properties of game related elements. It
is an excerpt from the game’s current complete internal state description.

° Game mechanics or requests: On the one hand, at least one action of a player trig-
gers an event. Respectively, an action is caused by interacting with the game, e. g.,
pressing a button to move a virtual avatar. That refers to game mechanics in the sense
of gameplay. On the other hand, the game’s internal processes trigger events, too.
Those are either game mechanics with no players involved, e. g., jumping of a non-
player character, or procedures that are relevant to the system itself, e. g., getting the
number of currently logged in players in an online game.

3.1 Game Events in the Data Domain

Game events consist of different components that represent the game’s partial state de-
scription. They form the input of the DSRM. We propose the following classification:

) The event type describes the event’s class or the type of the corresponding event
instance.

1881

Lars Schiitz

° The timestamp informs about the point in time the event happened, e. g., by stating
date and time information.

) The spatial data describe several spatial information, e. g., the position or place of
the happening in in-game world coordinates or orientations of game entities.

° The sender holds information about the event’s trigger.

° The receiver may store associated data if the event affects a game related entity. The
receiver can also be the sender at the same time.

) The event type data are specific information based on the event type.

These components can result in many game events with different concrete attributes. They
are flexible and suit different fields of application, e. g., a gameplay or business context.
Tab. 1 shows two examples for a game event to further substantiate the appropriateness of
the mentioned components.

Component Gameplay game event Business game event
Event type Attack Transaction
Timestamp 2015-03-07T23:01:14Z 2015-01-18T11:11:11Z
Spatial data Area: 23, x: 234,y: 102, z: 20 Auction house: 15
Sender Player: 3, level: 80, class: 4 Account: 66
Receiver Player: 5, health points: 34; Account: 66
Player: 14, health points: 56
Event type data Damage to player 5: 11; Item: 54, quantity: 1, price: $7.99

Damage to player 14: 5

Tab. 1: Two sample game events from different contexts

It is obvious that just one event can hold plenty of data depending on the degree of detail.
There is no general rule. Each game may handle events differently. Some components may
be optional. The shown arrangement and hierarchical structure of the components are not
mandatory, e. g., the spatial data could be part of the sender’s data instead. Each component
further divides itself into several attributes, e. g., the receiver’s health points. The proposed
components are a working approach to describe the raw data but each visualization system
should be aware of the complexity and possible different structures.

It is now clear how the raw data looks like. Several different operators can be used to fur-
ther process the game events depending on the goal or task. Data cleansing, data reduction
or data transformation are typical activities with a lot of different specific operators, e. g.,
automatic or manual selection of events (O or Oy4), dealing with missing attribute values
(Og or Tg), detection and handling of outliers (Og), normalization and standardization (Og
or Oy), attribute selection by principal component analysis (7g), aggregation or discretiza-
tion (Og, Tg or O4) [HKP12]. The operators may change the structure of the data so that
analytical abstractions result from their application, or the data is simply passed through
to the visualization transformation operators.

1882

Game Event Lenses

3.2 Game Events in the View Domain

The visualization transformation operators choose at least one of the visual variables from
Bertin [Bell] to encode the analytical abstractions. Those variables are called position,
size, shape, brightness, color hue, orientation and texture. It is possible to pick a visual
variable for an attribute of a game event that should be transformed by observing its level
of measurement. There are concepts that classify the degree of appropriateness for a visual
variable, e. g., see MacEachren [Ma04]. Each game event or its further abstraction is rep-
resented by a geometric primitive with different levels of detail, e. g., a game event might
have a position and a specific shape to encode its spatial data and type components.

The visual mapping transformation includes typical rendering operators, e. g., transfor-
mation and shading of geometric primitives, perspective or parallel projection and raster-
ization. The visual abstractions of the game events in form of geometric primitives are
transformed into image data. Game events and possible further abstractions of them are
now visualized. Operators for exemplary graphical manipulations on the image data are
the translation, the rotation or the scaling of the viewable area.

4 Visualization Lenses for Game Events

The interpretation of visualizations can still be difficult because of some kind of infor-
mation overload. Visualized game events may overlap each other. Too many game events
may be illustrated at the same time. Therefore it is sometimes useful to concentrate on spe-
cific areas of a graphical representation. That area can include more detailed information
while the surrounding remains simple and does not distract. That leads to focus+context
visualizations by means of visualization lenses.

A visualization lens is an interactive and parameterizable visualization tool that spatially
selects and modifies the underlying original representation of a visualization and helps to
enrich, suppress or alter the corresponding content [To14]. The spatial selection represents
the focus the user is interested in. The remaining part specifies the context that helps to ori-
entate oneself. That enables a user to focus on different regions one after the other. In order
to do this, the interaction with the lens is necessary that can be achieved by controlling its
properties shape, position, size and orientation [To14].

A lens needs to be integrated into the visualization transformation. The focus region
can be visualized by an additional DSRM pipeline that is attached to the main DSRM
pipeline [Tol4]. A selection of the data in the focus region is needed. It is possible to
select data from any stage of the DSRM, but a proper inverse projection of the selected
data elements to their corresponding representations from previous states might be needed
depending on the first operator in the lens pipeline. A management of unique identifiers
for data elements or the concept of half spaces [TFS08] are resolutions for this prob-
lem. The lens determines the content of its focused region by realizing a composition
f=o0n00,4-10---00; of n € N> operators o; so that f can be interpreted as at least one
state or transformation operator of the DSRM. The final output or the lens effect is joined
with the main pipeline. Fig. 3 shows the described idea.

1883

Lars Schiitz

OR 0/\ OV 01

" T "]

L0 0 0
—C o H)

Fig.3: A separate lens pipeline is attached to the main pipeline

Finally, the overall visualization of game events including the lens and its rendering is
generated in three steps:

1. Create and render the base or context visualization by omitting the lens region.
2. Create and render the lens or focus region.
3. Optionally render the lens itself to show its properties, e. g., by drawing its boundary.

5 Graphics System and Prototypical Implementation

A software application is needed to explore game events. It is mainly responsible for the
graphical representation and the processing of user interactions that alter the visualization
parameter values. It should be able to process thousands of events in real time.

The proposed graphics system is based on the Open Graphics Library (OpenGL) [Sh13]. It
is a cross-platform application programming interface and enables the control of the ren-
dering process through the use of shader programs that operate on the graphics processing
unit (GPU) and therefore profits from the GPU’s parallel computing capabilities [Ow05].
OpenGL combines different shader types in a pipeline whereby each one has its distinc-
tive functionality [Sh13]. These are in order the vertex shader (VS), the tessellation control
shader (TCS), the tessellation evaluation shader (TES), the geometry shader (GS) and the
fragment shader (FS).

In the presented concept the shader programs are used to simulate the DSRM’s operators.
Traditionally, vertices of geometric primitives are transformed into pixel data using at least
a vertex shader and a fragment shader. This approach is similar to what the DSRM’s graph-
ical operators do. Consequently, those are covered and only the semantic operators need
to be handled. Since August 2012 respectively OpenGL Version 4.3 the OpenGL pipeline
is additionally equipped with compute shaders (CS) [Sh13]. They allow general purpose
computations on the data that can be visualized afterwards. No extra interoperability ef-
forts in terms of context switches are needed. A compute shader is used to simulate a
semantic operator. Fig. 4 shows the proposed applicability of the shaders.

1884

Game Event Lenses

CS CS VS, GS or CS [

CS VS, TCS, TES, GS or CS VS, TCS, TES, GS or FS

Fig. 4: Conceptual applicability of the shader types to simulate the DSRM’s operators

In order to use GPU-based operators the data they work on need to be stored on the graph-
ics card. All game events and further abstractions are coherently packed using shader
storage buffer objects because shader programs can read from and write to them [Sh13].
That means that initially m game events with a maximum number of n attributes are stored
in the sequence (v¢) = (v, v}, . vh w3 V3 w2 v v V™) where v is the value
of the attribute a that belongs to the specific event e. The visualization parameter values
can be stored in uniforms or in uniform buffer objects [Sh13].

As a proof of concept two lens examples were developed and integrated into a software
prototype that enables a user to interactively explore an example dataset, e. g., by moving
the mouse to change the lens’ position. The visualization design of the following exam-
ples is not addressed consciously and almost arbitrary, because only the feasibility of the
shader-based approach is considered. That should definitely be examined and discussed
separateley, e. g., in terms of choosing color hues or picking different shapes. The dataset
originates from the computer game Counter-Strike: Global Offensive. The game events
were collected on a private dedicated server applying a custom-built server plugin. 782000
events with 33 attributes for each event of overall 827 game rounds between two teams of
computer controlled bots were logged. That corresponds to the play time of about 20.5 h.
As a basic example Fig. 5 shows the spatial positions of each game event’s sender compo-
nent. This is the base visualization with no omitted events because there is no active lens.

(a) 13 game rounds (b) 827 game rounds

Fig.5: Processed game events reveal the spatial position of their sender component

The first lens example allows to explore the category of the used weapon when a shot was
fired by a player in relation to the event’s position. The goal is to reveal preferred weapon

1885

Lars Schiitz

types. The lens starts operating on Dr and uses a CS o1 : Dg — Dy (selects and passes
the related events through), a VS 0, : D4 — Dy (sets the position, and sets the color hue
based on the weapon’s category), a GS o3 : Dy — Dy (changes the shape from point to
triangle or square to encode the bot’s team attribute) and a FS o4 : Dy — Dy (passes the
color through). Fig. 6 shows this example for one team by using a cuboid-shaped lens.

=

Fig. 6: Used weapon categories (encoded by different color hues) of one team when a shot was fired

The second lens example shows the positions of virtual player deaths and kills and the
connections between them. The goal is to show dangerous and advantageous positions,
and the related view directions at the same time. The lens starts operating on Dg and uses
a CS 01 : D — Dy (selects and passes the related events through), a VS 05 : D4 — Dy
(sets the position, and sets the color hue based on the team attribute), a GS 03 : Dy — Dy
(changes the shape from point to triangle (kill) or cross (death)) and a FS o4 : Dy — Dy
(passes the color through). The lens also uses a VS 05 : D4 — Dy, a GS 0¢ : Dy — Dy
(changes the shape from point to line) and a FS 07 : Dy — Dy in a second pass to draw the
connections. Fig. 7 shows this example with a sphere-shaped lens.

= L .
Fig. 7: Death and kill positions of both teams (encoded by shapes and color hues) and their relations

From a user’s point of view performance is an important criteria in interactive applications.
Loading times or processing times in general need to be minimized if a user interacts with

1886

Game Event Lenses

the system and when the visualization almost constantly changes, e. g., when adjusting the
lens’ position. An interactive experience is still possible with a maximum latency of about
66.667 ms that correspond to about 15 frames per second whereby a higher frame rate re-
spectively a lower latency is preferable [TC0O7]. The runtime performance heavily depends
on the used operators and their time complexity. A generalization of the performance is
not possible. We additionally need to distinguish between iterative and parallel problems,
because a GPU-accelerated operator can be more suitable than a CPU-based operator for
some problems and vice versa. That makes the considerations difficult. But a mandatory
process is the detection of game events in the focus region. These need to be updated when
a single lens property changes. A simple brute force search algorithm implemented on the
GPU was tested in this regard to give at least a performance hint. The runtime between
two frames was measured on the GPU for a duration of 10s using OpenGL timer queries
[Sh13] while the position of the lens constantly changed. The average time taken to test
750000 initial game events on a moderate desktop computer? is 12.143 ms using a cuboid-
shaped lens and 12.207 ms using a sphere-shaped lens. This leaves about 50 ms for other
operators.

6 Conclusion and Future Work

Computer games provide numerous data in form of game events that are interesting for
developers, publishers and players. The visualization of those events is able to reveal in-
sights into facts from the game environment. In this context, the DSRM is an established
and appropriate model for the visualization transformation of game events.

The proposed Game Event Lenses provide a controllable opportunity to explore game
events. It is possible to focus on different areas of the visualization while a contextual
overview is still intact. But there are remaining issues that could be examined in the future,
e. g., visual occlusions of information in three dimensional virtual scenes with correspond-
ing lenses as seen in the examples. Information that are displayed inside the focus area but
do not belong to it might hinder the recognition of facts. This should be addressed.

The Game Event Lenses base on the DSRM and therefore focus on operators that process
data on different stages. The shader based concept is appropriate to simulate the DSRM
because an operator can be easily simulated by a shader program. This GPU-based ap-
proach is suitable for general purpose computations that deal with parallel problems. That
is not tied to game events only. But issues remain. One problem concerns the linkage of
several operators. Currently only the programmer of the graphics system is in total control
of a sequence of operators. Well defined interfaces and interaction mechanisms are needed
if an ordinary user should be able to design and use its own sequences.

Nevertheless, the lens examples of the prototypical implementation demonstrate the apti-
tude of the presented idea for at least basic or simple visualizations to start with the visual
exploration of game events.

2 Intel i7-960 @ 3.20 GHz x8, 24 GB RAM, NVIDIA GeForce GTX 480 with 1536 MB RAM, NVIDIA driver
version 343.22 on Arch Linux 64 bit with kernel version 3.17.1

1887

Lars Schiitz

References

[BD10]

[Bell]

[CRI8]

[EDC13]

[HKP12]

[IMGO02]

[Ko04]
[Ma04]

[Mal3]

[OwO05]

[Sh13]

[SpO1]
[TCO7]

[TFSO08]

[Toll]

[Tol4]

[Wa04]

Bruns, R.; Dunkel, J.: Event-Driven Architecture: Softwarearchitektur fiir ereignisges-
teuerte Geschiftsprozesse. Springer-Verlag, Berlin, Heidelberg, Germany, 2010.

Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. Esri Press, Redlands, CA,
USA, 2011. Translated by Berg, W. J. from: Jacques Bertin. Sémiologie graphique: Les
diagrammes, Les réseaux, Les cartes. Gauthier-Villars, Paris, France, 1967.

Chi, E. H.-H.; Riedl, J.: An Operator Interaction Framework for Visualization Systems.
In: Symposium on Information Visualization, InfoVis 1998, Research Triangle Park, NC,
USA, Proceedings. IEEE Computer Society, pp. 63-70, 1998.

El-Nasr, M. S.; Drachen, A.; Canossa, A., eds. Game Analytics: Maximizing the Value of
Player Data. Springer-Verlag, London, UK, 2013.

Han, J.; Kamber, M.; Pei, J.: Data mining: Concepts and Techniques. Morgan Kaufmann
Publishers, Waltham, MA, USA, 3rd edition, 2012.

Jankun-Kelly, T. J.; Ma, K.-L.; Gertz, M.: A Model for the Visualization Exploration
Process. In (Moorhead, R.; Gross, M.; Kenneth, 1. J., eds): IEEE Visualization 2002,
Boston, Massachusetts, USA, Proceedings. pp. 323-330, 2002.

Koster, R.: A Theory of Fun for Game Design. Paraglyph Press, Phoenix, AZ, USA, 2004.

MacEachren, A. M.: How Maps Work: Representation, Visualization, and Design. The
Guilford Press, New York, NY, USA, 2004.

Mandl, P.: Grundkurs Betriebssysteme: Architekturen, Betriebsmittelverwaltung, Syn-
chronisation, Prozesskommunikation. Springer Vieweg, Wiesbaden, Germany, 3rd edi-
tion, 2013.

Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.; Krger, J.; Lefohn, A.; Purcell,
T. J.: A Survey of General-Purpose Computation on Graphics Hardware. In: Eurographics
2005: State of the Art Reports. pp. 21-51, 2005.

Shreiner, D.; Sellers, G.; Kessenich, J.; Licea-Kane, B.: OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 4.3. Addison-Wesley, 8th edition, 2013.

Spence, Robert: Information Visualization. Addison-Wesley, Harlow, England, 2001.

Thropp, J. E.; Chen, J. Y. C.: Review of Low Frame Rate Effects on Human Performance.
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
37(6):1063-1076, 2007.

Thiede, C.; Fuchs, G.; Schumann, H.: Smart Lenses. In (Butz, A.; Fischer, B.; Kriiger,
A.; Oliver, P.; Christie, M., eds): Smart Graphics: 9th International Symposium on Smart
Graphics, SG 2008, Rennes, France, Proceedings. Springer-Verlag, Berlin Heidelberg,
Germany, pp. 178-189, 2008.

Tominski, C.: Event-Based Concepts for User-Driven Visualization. Information Visual-
ization, 10(1):65-81, 2011.

Tominski, C.; Gladisch, S.; Kister, U.; Dachselt, R.; Schumann, H.: A Survey on Inter-
active Lenses in Visualization. In (Borgo, R.; R., Maciejewski; Viola, L., eds): EuroVis -
STARs. The Eurographics Association, pp. 43-62, 2014.

Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2nd edition, 2004.

1888

