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Abstract: DNN-based face veriication systems are vulnerable to adversarial examples.
The previous paper’s evaluation protocol (scenario), which we called the probe-dependent
attack scenario, was unrealistic. We deine a more practical attack scenario, the probe-
agnostic attack. We empirically show that these attacks are more challenging than probe-
dependent ones. We propose a simple and efective method, PAMTAM, to improve the
attack success rate for probe-agnostic attacks. We show that PAMTAM successfully im-
proves the attack success rate in a wide variety of experimental settings.
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1 Introduction

Face veriication systems (FVSs) verify the identity of a person by comparing two
face images: gallery and probe images. The gallery image xg is registered in the FVS
in advance, and the probe image xp is captured by a camera installed in the FVS
at veriication time, as shown in Fig. 1a. Recent progress on deep neural networks
(DNNs) has signiicantly improved the performance of FVSs; however, DNNs have
been shown to be vulnerable to small, human-imperceptible perturbations to the
input data, or adversarial examples (AXs) [Sz14], which jeopardize the safety and
security of DNN-based FVSs.

There are several studies on adversarial attacks against FVSs [RGB17, ZD20,
Do19b]. These studies assume an adversary who generates an AX from images
of the victim’s and adversary’s face (source image xs and target image xt , respec-
tively); the generated AX looks like the victim but is expected to be misidentiied
as the adversary. Then, they assume an attack scenario in which the adversary can
input a generated AX and target image xt into the DNN in FVSs as a gallery image
xg and probe image xp, respectively, as shown in Fig. 1b. However, this attack sce-
nario is impractical in real-world settings because the probe images are captured
by a camera at veriication time 5. We call this impractical attack scenario (xt = xp)
the probe-dependent attack.
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(a) Face Veriication System (b) Probe-Dependent Attack

(c) Probe-Agnostic Attack (d) Proposed Method (PAMTAM)

Fig. 1: (a) Face veriication systems (FVSs) verify the identity of a person by comparing
two face images: gallery image xg, which is registered in the FVS in advance, and probe
image xp, which is captured by the camera installed in the FVS at the veriication time.
(b) Probe-Dependent Attack assumes that the adversary can input a generated AX and
target image into the DNN in FVSs as a gallery image and probe image (xt = xp). (c)
Probe-Agnostic Attack assumes that the adversary cannot input a target image as a
probe image (xt ̸= xp). (d) Our method, PAMTAM, generates AXs using multiple target
face images T . Note that the aforementioned settings are diferent from the presentation
attack [Hu19], which is outside the scope of the present paper.

In this paper, we consider a more practical but challenging attack scenario, the
probe-agnostic attack, as shown in Fig. 1c. We do not assume that xt = xp; thus,
there generally exists a domain gap between xt and xp depending on when, where,
and how the images are captured (capturing conditions), e.g., the illumination
conditions, head poses, and image resolution. To the best of our knowledge, the
probe-agnostic attack is yet to be explored in the literature and is important for
assessing the true risk of practical adversarial attacks against FVSs.

The diiculty with the probe-agnostic attack comes from the domain gap between
xt and xp due to the diferent capturing conditions. To address this problem, we
propose a simple but efective method for increasing the attack success rate for
probe-agnostic attacks: the Probe-Agnostic Multiple Target Method (PAMTAM).
PAMTAM makes arbitrary attack methods robust to variable capturing conditions,

that the adversary cannot hack the FVS, which is the case, e.g., the automated face recognition
gates at airports.
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irrespective of white- or black-box attacks. PAMTAM generates AXs so that it
approaches, on average, multiple target images in the feature space to make the
features robust to domain gaps, as shown in Fig. 1d. We empirically show that
PAMTAM successfully increases the attack success rates of 2 widely used attacks
on 3 databases with 8 diferent model combinations, attaining a maximum relative
recovery of 83.3%.

Our contribution is twofold. First, we formulate the probe-agnostic attack, which
is yet to be explored in the literature and is important for assessing the true risk
of practical adversarial attacks against FVSs. Next, we propose PAMTAM, which
makes arbitrary attack methods robust to variable capturing conditions. We em-
pirically show that PAMTAM successfully improves the attack success rate under
a wide variety of conditions.

1.1 Related Work

All the following studies focus on the AXs against FVSs but follow the probe-
dependent scenario. In the white-box setting, the attacker can access the network
structure and parameters of the target DNN. [Sa16] is the irst to show that DNN-
based feature extractors, not only classiiers, are vulnerable to AXs. [RGB17] pro-
posed LOTS that generates AX that is close to the target face image in the feature
space. [ZD19] proposed Iterative Feature Target Gradient Sign Method (IFTGSM),
which iteratively updates AX with a gradient sign of the gradient. [SWY18, DZJ19]
leveraged Generative Adversarial Networks (GANs) to generate AXs with high per-
ceptual quality. In contrast, the black-box attack assumes that the attacker cannot
access the network structure or parameters of the target DNN. [Do19b] proposed
a query-based attack method, where the attacker could send queries to FVSs and
see the outputs. The query-based attack can relatively high attack success rates
but can be easily detected because a number of queries are necessary to generate
AXs, causing a suspiciously large amount of accesses to the target FVS. [ZD20]
used surrogate models to generate AXs without queries. The authors proposed the
dropout face attacking network (DFANet) to enhance transferability. They also
showed that [Li17, Xi19, Do18], originally used for classiiers, are efective even for
feature extractors.

2 Preliminaries

Face veriication systems. Face veriication is a task to determine whether
two face images are derived from the same identity. Modern FVSs use DNN-based
feature extractors [De19, Wa18]. Let X be a set of images with height H ∈ N,
width W ∈ N, and the number of channels C ∈ N, i.e., X = {0,1, ...,255}H×W×C.
Let f : RH×W×C →R

d be a feature extractor, where d ∈N is the feature dimension.
We deine a function Ver, which represents the internal processes of FVSs, as a
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mapping from two images (x1,x2 ∈ X ) to a binary set ({Verified,NotVerified}):

Ver f ,α(x1,x2) =

{

Verified (if dist( f (x1), f (x2))≤ α)

Not Verified (otherwise),
(1)

where α ∈ R≥0 is a threshold, and dist : Rd ×R
d → R≥0 is an arbitrary distance

function of feature vectors. Typically, the cosine similarity or L2 norm are used for
face veriication. We use the latter in the present paper, but the extensions to other
distance functions are straightforward.

Our primary focus is the FVSs which involve the following two steps (See also Fig.
1a):

1. Registration. A user registers her or his face image (gallery image xg ∈ X )
with the FVS. The FVS stores f (xg) in the gallery set.

2. Veriication. At the veriication phase, the FVS takes a photo of the user
(probe image xp ∈X ) with the internal camera, which is sometimes invisible
to the user. Then, the FVS computes f (xp) and runs Eq. (1) to investigate
whether the two identities are the same.

Adversarial attacks against face veriication systems. We assume that the
gallery image xg is an AX and the probe image xp is not, as in Introduction, although
there are two other possibilities in principle: (i) xp is an AX, and (ii) both xg and
xp are AXs. We can see that both (i) and (ii) are possible but infeasible, because
the attacker is required to hack the FVS to input an AX directly to it. A potential
solution is the physical adversarial attack [Sh16], but this is out of the scope of
the present paper. Therefore, the attacker’s goal is formally summarized into the
problem of inding adversarial noise δ ∈ R

H×W×C such that

dist( f (xg = xs +δ ), f (xp))≤ α (2)
∥δ∥∞ ≤ ε, (3)

where || · ||∞ denotes the L∞ (max) norm. Eq. (3) restricts the size of δ and ensures
that the noise is imperceptible to humans. In general, δ is a function of xs and xt .

3 PAMTAM

Probe-dependent and probe-agnostic attacks. A common way to generate
δ is to deine an objective function and minimize it. In the probe-dependent attack,
xt = xp and δ = δ (xs,xp) (Fig. 1b); therefore, Eq. (2) can be achieved by minimizing
the objective function

J(xs +δ ,xp, f ) = ∥ f (xs +δ )− f (xp)∥
2
2 (4)



Toward Practical Adversarial Attacks on Face Veriication Systems

with respect to δ . The adversarial noise thus obtained, denoted by δ ∗(xs,xp), de-
ceives the target FVS more easily than in the probe-agnostic scenario because
δ ∗(xs,xp) has the prior knowledge of xp. In comparison, the probe-agnostic attack
assumes xt ̸= xp and δ = δ (xs,xt) (Fig. 1c); therefore, the objective function is

J(xs +δ ,xt , f ) = ∥ f (xs +δ )− f (xt)∥
2
2. (5)

The solution δ ∗(xs,xt) has no prior knowledge of xp and is likely to overit to xt ;
therefore, the AX xg = xs +δ ∗(xs,xt) has no guarantee of being misidentiied as xp

if the domain gap between the two (xt and xp) is large. In fact, we empirically show
in Section 4 the degradation from δ ∗(xs,xp) to δ ∗(xs,xt); probe-agnostic attacks are
more challenging than probe-dependent attacks.

Proposed method. To achieve better attack success rates in the probe-agnostic
scenario, we propose diversifying the target image xt , introducing the target image
set T = {xi

t ∈ X |i = 1, ..., |T |}, and modifying the objective function (5) as

J(xs +δ ,T, f ) =
1

|T | ∑
xt∈T

∥ f (xs +δ )− f (xt)∥
2
2. (6)

The target image set consists of facial images of the attacker, which should cover
the domain gaps between xt and xp, such as diferent head poses, illumination con-
ditions, image resolutions, facial expressions, and makeup. In fact, our experiment
shows that a larger T enhances the attack success rate (Section 4). Note that it is
easy to increase the sample size of T in practice, compared with source and probe
images, because the attacker can take selies under arbitrary conditions. We set
|T |= 5 in our experiments unless otherwise noted.

A motivation of Eq. (6) comes from the recent studies showing that the diversity
of the input images improves transferability [Do19a, Xi19]; however, no previous
work has explored it to attack FVSs especially in the probe-agnostic scenario.
Moreover, a crucial diference between our method and [Do19a, Xi19] is that the
latter uses automatic, mechanical transformations for the input diversity (random
resizing, random padding, and translation). However, such transformations are not
suicient to ill the large, complex domain gaps. In addition, their transormations
are applied to the source image, while our method diversify the target image, to
adapt the adversarial example to the probe-agnostic scenario.

The proposed method, PAMTAM, is widely applicable to arbitrary objective func-
tions for (2) and arbitrary optimization methods, e.g., [ZD19, RGB17, Sa16, Do19b]
. PAMTAM does not even depend on whether the attack is white-box or black-box.

4 Experiment

In this section, we demonstrate that probe-agnostic attacks are more challenging
than probe-dependent attacks, as mentioned in Section 3. We then show that PAM-
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TAM successfully improves the attack success rate. Our experiments are based on
2 attack methods on 3 datasets under 8 diferent conditions, as explained below.
We focused on three domain gaps, head poses, illumination conditions, and image
resolutions, which are likely to occur when we use an actual FVS.

To simulate the most realistic situations, all the experiments assumesd that the at-
tacker cannot access the FVS model. First, we trained a DNN model (FVS model)
on a training dataset (FVS dataset). Second, we trained another DNN model (sur-
rogate model) on another dataset (surrogate dataset) to perform the surrogate
model attack. Third, we sampled (i) source-probe doublets (xs,xp) and (ii) source-
probe-target triplets (xs,xp,xt) from yet another dataset (material dataset), which
should have no intersection with the FVS or surrogate datasets. Note that this
step distinguishes our experiments from those in preceding papers. (i) and (ii) were
used for probe-dependent and probe-agnostic attacks, respectively. xt in (ii) was
replaced with T when PAMTAM was used. Fourth, using (i) and (ii), we generated
AXs that deceive the surrogate model. Finally, using the AXs thus generated, we
evaluated their attack success rates on the FVS model. The evaluation measure
was the attack success rate, i.e., the proportion of the AXs matched to the probe
images.

∑
xs,xp,δ∈D

1l(Ver f ,α(xs +δ ,xp) = Verified)

|D|
, (7)

where the test set D was deined as {(xi
s,x

i
p,δ (x

i
s,x

i
p))}

|D|
i=1, {(xi

s,x
i
p,x

i
t ,δ (x

i
s,x

i
t))}

|D|
i=1,

or {(xi
s,x

i
p,T

i,δ (xi
s,T

i))}
|D|
i=1 for the probe-dependent attacks, probe-agnostic at-

tacks, and PAMTAM, respectively (|D|= 200 for our experiments). The veriication
threshold α of the FVS model was determined to achieve the best veriication accu-
racy on the LFW dataset [Hu07]. All the FVS models in our experiments achieved
a veriication accuracy of 98% or higher.

Surrogate and FVS datasets and models. Though not essential, we slightly
modiied the objective functions (4), (5), and (6) to improve the base attack success
rate of all the methods. Following [Li17, Xi19, ZD20], we introduced multiple sur-
rogate models (F = { fi}

|F |
i=1) and stochastic transformations τ of xs+δ and took the

average over F and τ. F is deined in Tab. 1 (|F |= 5). τ includes random resizing
and padding.

Our experiments used 8 combinations of the surrogate dataset, surrogate mod-
els, FVS dataset, and FVS model (Tab. 1). We used seven network architectures:
residual network (R50, R100) [He16], inception residual network (IR50, IR100)
[Sz17], squeeze-and-excitation inception residual network (SE50, SE100), and Mo-
bileFaceNet (MOB) [Ch18], each of which was attached with a state-of-the-art loss
function (ArcFace (Arc) [De19] or CosFace (Cos) [Wa18]). We used two datasets:
MS1MV2 (MS) [De19] and VGGFace2 (VGG) [Ca18].
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Tab. 1: Surrogate and FVS datasets and models. We use four conditions (I, II, III,
and IV).

Surrogate FVS
Data Loss Architecture Data Loss Architecture

I MS Arc R100,R50,IR100, IR50,SE50 VGG Cos MOB
II MS Arc R100,R50,IR100,IR50,SE50 VGG Cos SE100
III MS Cos R100,R50,IR100,IR50,SE50 VGG Arc MOB
IV MS Cos R100,R50,IR100,IR50,SE50 VGG Arc SE100
V VGG Arc R100,R50,IR100, IR50,SE50 MS Cos MOB
VI VGG Arc R100,R50,IR100,IR50,SE50 MS Cos SE100
VII VGG Cos R100,R50,IR100,IR50,SE50 MS Arc MOB
VIII VGG Cos R100,R50,IR100,IR50,SE50 MS Arc SE100

Attack methods. We used two standard attack methods: the Sabour’s attack
(SAB) [Sa16] and the iterative feature target gradient sign method (IFTGSM)
[ZD19]. SAB minimized Eq. (2) under the constraint Eq. (3) by using a box-
constrained L-BFGS. IFTGSM iteratively updated δ as

δ i+1 =Cε(δi − sign(∇xs+δ iJ(xs,xp,δ , f ))), (8)

where Cε(·) is a clipping function with a max radius ε, and sign(·) is a sign function.
In our experiments, the maximum perturbation ε was 10 in terms of the L∞ norm;
therefore, the perturbation to the pixel range was at most 10/255 ≃ 3.9%.

Material datasets. We use Head Pose Image Database [GHC04], Extended Yale
Face Database B [LHK05], and VGGFace2 [Ca18]. They allow us to simulate var-
ious types of the domain gaps: head poses (Head Pose Image Database); illumi-
nation conditions (Extended Yale Face Database B); and combinations of head
poses, illumination conditions, and image resolutions (VGGFace2). Head Pose Im-
age Database consists of 2790 color facial images of 15 individuals with variations of
vertical and horizontal face angles. These angles are expressed from -90 degrees to
90 degrees. Extended Yale Face Database B contains 16128 grayscale facial images
of 28 individuals under 9 poses and 64 illumination conditions. We only use frontal
facial images to ix the head pose. VGGFace2 consists of 3.31 million color facial
images of 9131 persons, which covers a wide variety of head poses, illumination
conditions, and image resolutions. Note that we also use VGGFace2 to train the
FVS datasets, but there is no duplication with the material dataset.

4.1 Results

All the results are summarized in Fig. 2. PD and PA are short for probe-dependent
and probe-agnostic. PD is the baseline and attained comparable performances with
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Fig. 2: Degradation (PD→PA) and recovery (PA→PA(Ours)) of attack success
rate. Three subigures correspond to three material datasets. PD and PA are short for
probe-dependent and probe-agnostic. PA(Ours) is PAMTAM. I, II, III, IV, V, VI, VII,
and VIII correspond to those in Tab. 1. Note that the numbers below the third decimal
place are omitted.

a recent paper [ZD20]6. PD achieved the best performance compared with the
others PA and PA(Ours), and we found a signiicant degradation from PD to PA;
PA was more challenging than PD. The attack success rates decreased by up to
56.4% for the Head Pose Image Database, 45.4% for Extended Yale Face Database
B, and 73.9% for VGGFace2. The degradation of VGGFace2 was relatively large
because the domain gap between xt and xp was larger than the other two. PAMTAM
successfully increased the rates under almost all the conditions. The rates increased
by up to 61.6% for the Head Pose Image Database, 75.0% for Extended Yale Face
Database B, and 83.3% for VGGFace2. Fig. 3 shows PAMTAM’s dependence on |T |
(evaluated on the VGGFace2 material dataset). We conirmed that large sample
sizes help to enhance the attack success rate. The performance gain gradually
saturated.

5 Conclusion

This paper considered adversarial attack against FVSs. We deined a more practical
attack scenario (probe-agnostic attacks) than that in the previous paper (probe-
dependent attacks). We empirically showed that probe-agnostic attacks are more

6 Note that in face veriication, attack success rates luctuate signiicantly, depending on the DNN
model and dataset (e.g., see [ZD20]).
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Fig. 3: Dependence of PAMTAM on |T |. Two subigures correspond to the two attacks.
I, II, III, IV, V, VI, VII, and VIII correspond to those in Tab. 1.

challenging than probe-dependent ones. The results above suggest that previous
papers have overestimated the risk of AXs, especially when the domain gaps be-
tween xp and xt are large. We proposed PAMTAM, which successfully increase the
attack success rate of probe-agnostic attacks. We conclude that we should evalu-
ate not only probe-dependent attacks but also probe-agnostic ones under practical
domain gaps to correctly capture the threat of AXs to FVSs.
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