
Generic Roles for Increased Reuseability

Andreas Mertgen

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin

Ernst-Reuter-Platz 7
D-10587 Berlin

andreas.mertgen@tu-berlin.de

Abstract: Role-based programming, as in the Object Teams/Java (OT/J) language,
aims to improve object-oriented programming with regard to separation of cross-
cutting or context-related concerns. Therefore, OT/J introduces class-like modules
for roles and context, which connect common classes to build collaborations. How-
ever, since role and base objects are directly linked, it implies strong coupling and
limited possibilities of reuse. This research aims to create a generic way of expressing
connections between a collaboration and its base in order to further decouple modules
and enhance their reusability. We introduce a quantification mechanism based on logic
meta-programming in Prolog that allows using generic references to declaratively de-
fined program elements, which are transformed to build valid OT/J code. We propose
that the use of logic meta-variables improves the expressiveness and genericity of role-
based programming.

1 Introduction

Separation of concerns is a key principle applied in designing complex, flexible, and
reusable software systems. Today’s programming languages need to provide features
that strongly support modularization. In object-oriented programming (OOP), classes and
objects are abstractions of real-world entities with state and behavior and form a well-
accepted set of modules to implement functional concerns. However, there are certain
dimensions of modularization where the concepts of classes and objects reach their limi-
tations. Our research focuses on two such dimensions: (1) the modularization of crosscut-
ting concerns and (2) modularization of collaboration and context. Both areas of concern
cannot be clearly separated in a single class module. Crosscutting concerns are often
non-functional concerns and are scattered around multiple classes or tangled together in a
single module. Collaborations may involve several classes and instances and depend on
a context; all collaboration members together build a strongly coupled composite. Sev-
eral developments exist that address these concerns and improve modularization support
in OOP.

Modularization of crosscutting concerns is addressed in aspect-oriented programming (AOP)
[KIL+97]. An aspect is a module that defines advices and pointcuts. The advice construct

131

is generally similar to a method and defines additional or altered program behavior. Point-
cuts specify where the advice behavior has to be applied in the influenced base program
by describing a set of well-defined points in the program control flow - the so-called join
points. A pointcut is defined by stating conditions about the structure, state and/or dy-
namic behavior of a program. The idea of influencing multiple points in a program with a
single module is called quantification. Quantification is a key technique for modularizing
crosscutting concerns [FF00]. Currently, the most prominent apect-oriented language is
AspectJ [KHH+01].

Modularization of collaborations is addressed in role-oriented (RO) programming. A role
describes the intersection of an entity with a context. Entities may exist outside a con-
text, and their features are defined independently, as in the case of ordinary objects. A
context builds a scenario, in which several entities assume specific roles in a collabora-
tion. One example is an entity, Person, which plays a role Employee within a context,
Company. Two relationships define a role (e.g., Employee): (1) a player relationship
to a base (Person), which plays the role and (2) a containment relationship to a context
(Company), which harbors the role. A role uses and extends its base. The context-specific
state and behavior are attached to the context and its roles. Thus, all context and role-
dependent concerns can be modularized independently and do not get tangled within the
base modules. The notion of roles is used in the design and modeling of software, but
it is hardly supported in mainstream programming languages. A language with explicit
support for roles is Object Teams/Java [Her07], which is the focus of this paper.

In Object Teams, a context is represented by a so-called team class. Within a team, there
may be several role classes, each of which may be bound to a base class via a playedBy
relationship. For each base class instance, in each surrounding team, an instance of a
bound role class may exist. The playedBy relationship between role and base class shows
many similarities with the extends relationship between sub- and superclass. First, the role
may delegate to all methods and fields of its base (so-called callout bindings). Second,
the role may override any method of the base with specialized behavior (callin bindings).
Third, variables declared with the role type are substitutes for variables declared with the
base type (translation polymorphism).

2 Problem Description

Although role orientation in Object Teams shares several ideas with aspect orientation,
few possibilities exist for quantification. So far, binding of roles to base classes, including
callin bindings, have to be made explicitly. Although a programmer may select the bind-
ings on the basis of specific criteria, which are based on program structure and optionally
qualified by program state, since there is no abstraction for describing this selection, the
programmer may not express the binding in a reuseable way. Because of this, a program-
mer encounters numerous problems, which are listed below, and this paper will seek to
contribute to the solutions to these problems:

132

1. Modularization and reuse. The missing generalization feature of selection criteria
implies that there is no use (nor reuse) of any selection logic for quantifying over
binding elements. An abstract selection mechanism would allow quantification of
such elements, thus enhancing modularization and reuse options.

2. Evolution and fragility. Explicit bindings imply a high coupling between role and
base classes, which affects the robustness of the program. Thus, evolution of the
base program requires a review of all affected roles. A declarative abstraction of
these bindings would loosen the coupling and mitigate evolution issues.

3. Maintenance. Lack of quantification support is an inconvenience. Although it is
possible to achieve the same results without using quantification, it entails coding
overhead, which may be cumbersome and error-prone. Furthermore, a declarative
definition of bindings can also contribute to the readability and documentation of
the code.

The join point model for callin bindings in Object Teams is limited to method call inter-
ception, that is, the execution of a base method may be delegated to a corresponding role
method, analogous to the method overriding between sub- and superclass. At first sight,
from an aspect-oriented perspective, this seems to be a hindrance; however, on closer in-
spection, binding via method call interception fits in well with the ideas of roles and con-
text. Callin bindings may be viewed as contextual method overriding. Keeping bindings
at the granularity of methods prevents unintended interference with invariants, pre- and
post-conditions, and encapsulation. The limitations of bindings reflect a trade-off between
expressiveness, safety, and usability in language design.

By contrast, quantification in AOP, like AspectJ, utilizes an extensive join point model.
Numerous pointcut designators exist to select join points by kind, scope, or context.
In addition, the programmer may use wildcards to describe patterns; e.g., a pointcut
call(void set*(..)) would describe all calls of setter-methods in a single state-
ment. However, the feasibility of such patterns simply relies on naming and structuring
conventions. There is no relation with regards to content between the intention of the pro-
grammer and the semantics of a wildcard expression. For example, a call to a method
named setup would also match the example pointcut, which may not have been intended
by the programmer. This may lead to unintended mismatches and pose a problem during
evolution, e.g., during refactoring, when a programmer renames or moves a method with-
out considering the influence of such changes on the evaluation of pointcuts [KS04]. Thus,
wildcards seem to be a “one-size-fits-all” approach, requiring the arranging of patterns to
succeed in complex scenarios [GB03].

Nevertheless, the concept of quantification in AOP has proved to be very useful in ad-
dressing crosscutting concerns. Therefore, we believe that quantification can improve the
power of an RO approach like Object Teams, even though the join point model is less
sophisticated.

133

3 Motivating Example

To illustrate the motivation for this work, we examine a typical example of a non-functional,
crosscutting concern: synchronizing UI views with their corresponding data model. The
scenario involves objects (playing the role of observers), which have to keep track of the
current state of other objects (playing the role of the observed subjects). Such tasks are
commonly realized by using the observer pattern, where every subject is responsible for
notifying its dependent observers about any relevant changes in its state. Triggering the
notification is a crosscutting concern, influencing one or more mutator methods in each
involved subject.

As a concrete example, consider a simple application that displays geometrical figures
on the screen. If any change occurs in a figure, the displaying object must be notified
and updated automatically. An object-oriented approach (see Figure 1) usually includes
a (possibly abstract) superclass or interface (e.g., Figure), which is the root type for
all classes of view-relevant objects (e.g., Point and Line). These classes represent the
subjects and inherit a Subject class that serves two purposes: (1) maintaining subject-
observer mappings (add- and removeObserver) and (2) triggering the update logic
(notify). The latter is performed whenever a subject wants to report a state change,
which leads to calling all its registered observers (update).

 !"#$%
 !"#$ & ' ()*! +",- .

 !"#
 / (01"#$
 2 (01"#$
-3$0/ & (01"#$.
-3$02 & (01"#$.
'3$0/ & . (01"#$
'3$02 & . (01"#$$02 & .

$%!"&
4 (516783
9 (516783
-3$: & 4 (516783 .
-3$; & 9 (516783 .
'3$: & . (516783
'3$; & . (516783

'()*#+&
!55<7-3*=3* & 1 (<7-3*=3* .
3>1=3<7-3=3* & 1 (<7-3*=3* .
#1$"?9 & .

@"#$3*?!,3A
,)-#./#.

6 5!$3 & .

0!1(.#2!-3456

B

B

 !"#$&'()*! +",-. !"#$ &'()*! +",-.

Figure 1: A simple system for displaying figures implementing the observer pattern

Variations of this example scenario are widely used in the field of aspect-orientation; the
characteristics of the standard object-oriented pattern implementation in Java as well as the
improvements of an aspect-oriented approach in AspectJ are demontrated in [HK02]. In
terms of modularization of the crosscutting concern, the RO approach with Object Teams
is quite similar to the aspect-oriented solution. The observer functionality is sourced out
to an additional module, a team class, as shown in Listing 1.

134

The FigureDisplay class contains a list of figures to be displayed on the screen, re-
flecting their current state. Within this context, classes Point and Line play the role
of subjects; for each, a role class is defined and bound to its base class (lns. 8, 13). A
base guard dynamically maintains the subject-observer mapping. An instance of Point
should play the PointSubject role only if it is part of the team’s figure list (ln. 9); the
same applies to Line instances (ln. 14). The updating mechanism is realized with a callin
binding to all mutator methods, the execution of one of these base class methods triggers
the execution of an update in the team (lns. 10, 15). No additional code is required. Any
role-related code is defined within the module. Thus, Figure instances are completely
unaware of their role as a subject and their original implementations are not required to
change. The observer may also be implemented as a role. However, in this case, we pre-
fer to implement the observer as a team because it is not only a role within a context; it
actually is the context.

1 public team class FigureDisplay {

2 private List<Figure> figures;

3 ...

4 public void update() {

5 for(Figure fig : figures) {fig.paint(graphics);}

6 }

7

8 protected class PointSubject playedBy Point

9 base when (figures.contains(base)) {

10 update <- after setX, setY;

11 }

12

13 protected class LineSubject playedBy Line

14 base when (figures.contains(base)) {

15 update <- after setP1, setP2;

16 }

17 }

Listing 1: FigureDisplay

To avoid unnecessary updates (e.g., those caused by nested mutators), update calls should
be buffered and accumulated, instead of being executed immediately. However, for the
sake of simplicity, we refrained from optimizing and omitted all parts not relevant to the
pattern mechanism.

As stated in [HK02], the structure of a pattern implementation contains common parts
essential to all pattern instantiations and individual parts specific to each instantiation.
The common parts of the observer pattern are as follows:

1. Roles for subjects and observers
2. Maintenance of subject-observer mapping
3. General updating mechanism (trigger)

135

The individual parts of the observer pattern are:

4. Binding of roles to certain objects
5. Binding of triggers to certain methods
6. Specific updating procedure of the observer

For the purpose of reuse in further developments, all common parts (1-3) may be extracted
into an abstract class, whereas individual parts (4-6) need a concrete extension. This is
good practice for the OO, AO, and RO approaches mentioned, but we argue that in this
scenario (as in many others) there are additional opportunities for abstraction and reuse.

On closer examination of the observer FigureDisplay, we see that information about
the individual parts’ role and trigger bindings (4 and 5) is inherent to the updating pro-
cedure (6). Objects that may be considered for role playing are those accessed during
update (members of the attribute figures); their relevant base classes are Figure
and all its subclasses (4). Thus, a call to Figure.paint updates the display. Hence,
all properties of a figure instance read within paint seem to be relevant for updating.
Changes of exactly these properties should trigger the observer, which may be accom-
plished by binding all mutator methods of these properties (5).

Parts 4 and 5 pose a quantification issue. Although we find the required information in-
herent in the program structure, utilizing this information requires complex code analysis.
A programmer could clearly describe the idea of the update-mechanism, e.g., ”trigger the
update after the execution of any method that may cause a change of a field read some-
where in my update processing.” Such a statement could be reused in many similar cases,
e.g., for updating a textual data representation in a table view; no further change is needed
except for selecting the update process. However, existing language features are not capa-
ble of expressing the quantification logic in a programmer’s mind. Neither code analysis
nor the use of analysis results are supported by the languages presented so far in this paper.

4 Generic Modules

Our approach aims to enhance abstraction and reuse capabilities in scenarios similar to
the one described above, where we prefer to reference program elements like classes and
methods in a generic way to promote reuse in multiple scenarios. Therefore, we introduce
logic meta-variables, which will be bound and replaced by the use of meta-programming.
Our goal is to build an extended version of the OT/J language, called Generic Object
Teams (GOT), which during a precompilation step transforms its code into valid OT/J
code. This way, we ensure full compatibility with OT/J and prevent interference with
existing tools and the compiler. As the transformation process implies, we rely on static
program information and do not intend to use dynamic execution properties. First, the
generic parts of GOT represent regular static elements and do not have any other effect
on program execution. Second, dynamic dependencies may still be addressed by guard
predicates, although they will only affect program execution and not the transformation.
To handle meta-variables in GOT , we introduce three language constructs: (1) queries
to declaratively describe sets of program elements; (2) matching statements to evaluate

136

queries and bind free variables; and (3) per-blocks to build the unit for applying meta-
variables and code transformation.

4.1 Querying Program Elements

To facilitate the binding of meta-variables, we need to offer the option of querying various
program elements about their properties and relationships, thus making the abstract syn-
tax tree (AST) information available to the programmer. Several similar approaches that
use XQuery, SQL or OCL [EMO04, SS08] exist, featuring a direct and readable syntax
for single elements. However, they do not support transitive closures. Queries involv-
ing multiple elements may make frequent use of quantifiers (e.g., forall and exists) and
include relations across tree branches, resulting in recursion and/or nested tree walking.
Instead, we have chosen a logic-based representation in Prolog, which offers more con-
cise and elegant expressions in such scenarios because information is globally available
in facts without the need to navigate a tree structure. For each AST node type, there is a
fact representation. For example, a method call is represented in a fact, callT(#id, #enclos-
ingMethod, #receiver, #method, [#args, ...]), holding a unique id for the fact, a reference
(by id) to the calling method, a reference to the expression representing the receiver of the
call, a reference to the invoked method, and a list of references to argument expressions.
Thus, a Prolog query may include meta-variables that get unified to every possible match
in the factbase; e.g., the query callT(, Caller, , Callee,) would match pairs of the meta-
variables Caller and Callee to the method ids, such that the Caller invokes the Callee at
least once in the program (using wildcards for irrelevant information). Our query module
attempts to encapsulate logical queries in a manner as similar as possible to that in Java.
A query is a special kind of method, marked with the otquery keyword (see listing 2) for
processing meta-variables. A query is a conditional, built from facts or other queries.

1 otquery qrySubjects(?Method ?update, ?Class ?baseclass,

?Method ?setter) {

2 ?Field -readField;

3 ?Method -calledMethod, -executedMethod;

4 ?Method -executedMethod;

5 call(_, ?update, _, -calledMethod, _) &&

6 overrides(-executedMethod, -calledMethod) &&

7 readsField(-executedMethod, -readField) &&

8 setsField(?setter, -readField) &&

9 isMemberOfClass(?setter, ?baseclass)

10 }

Listing 2: A query for the declarative description of the observer’s subjects

Two points about meta-variables need to be mentioned: (1) they are typed with a special
set of types and (2) they are declared using a prefix. These points are discussed in detail
as follows:

137

Typing of variables. Meta-variables may store values of certain types. To be consistent
with typed languages OT/J and Java, the newly introduced meta-variables shall follow the
rules of declaration. Since the set of possible types is different, they will be indicated
by using a “?” prefix. Our type set includes ?Class, ?Method and ?Field and others
related to the AST. For more general purposes, the types ?String, ?int and ?boolean are
also included. Typing allows the generic parts of the code to be statically checked before
the evaluation; e.g., in a playedBy-statement, we clearly expect a meta-variable of type
?Class. Any other type could not possibly lead to a valid result.

Prefixes. Meta-variables get bound to a set of matches. Although a match-statement looks
like a method, its parameters are either in or out as in Prolog; in contrast to Java’s strict
call-by-value method parameters. The prefixes allow narrowing the binding options of
a variable: The - (“minus”) declares an out-parameter, meaning the variable must not be
bound at evaluation time. In contrast, the + (“plus”) declares an in-parameter, which has to
be bound to evaluate other dependent properties. The ? indicates an in- or out-parameter.

4.2 Integration of Meta-variables and Transformation

To offer the aforementioned genericity for OT/J, meta-variables should be accepted in the
least by the playedBy and callin-bindings, though they would generally be accepted in
several other locations as well. Listing 3 shows a sketch of a generic role for the observer
example. The base class of the Subject role is defined by the free variable ?b, whereas
the triggering callin is defined by the free variable ?m. Both variables have to be declared
and bound. An obvious location to do this is on the level of the enclosing team, assigning
the team as the main unit for collaborations. Therefore, a statement match, which looks
similar to a method, is appended to the team declaration. The match statement declares the
variables as its parameters, enabling them to be used within the team body. Their bindings
are defined in the match body by a query expression.

1 public team class FigureDisplay

2 match(?Class ?b, ?Method ?m){qrySubjects(update,?b,?m)} {

3 ...

4 per (?b) {

5 protected class -Subject playedBy ?b

6 base when (figures.contains(base)) {

7 per (?m) {

8 update <- after ?m;

9 }

10 }

11 }

12 }

Listing 3: Version of FigureDisplay with Generic Object Teams

138

The query for the observer example in listing 2 realizes the selection of program elements
as intended by the programmer. In the match statement, the first parameter is bound to
the FigureDisplay.update method, leaving the other parameters open as outputs,
expecting a set of tuples for base-classes and setter methods. The call fact will match
meta-variable -calledMethod to Figure.paint. Considering dynamic dispatch,
we need all methods overriding the Figure.paint method. A query overrides (not
included in the example) then binds the meta-variable -executedMethod to match
Point.paint and Line.paint. Then, we need to identify the fields that are (indi-
rectly) read in these methods, and the methods (and the classes they belong to), which
mutate that fields. This way, we finally identify the relevant setter methods that trigger
an update. The evaluated result of the match for the observer example will be a set of
class/method tuples: {(Point, setX); (Point, setY); (Line, setP1); (Line, setP2)}.

The goal of the transformation is to change the team class according to the matches so
that every code fragment dependent on a meta-variable is generated once for every match
instance. In the class body, a meta-variable may only appear within a per-block. A per-
block defines a non-empty set of meta-variables to be in its scope. Per-blocks may be
nested; the inner block extends its set of meta-variables by the set of the outer block. A
meta-variable may be put in place of a direct reference. In the example in listing 3, the
playedBy relationship holds ?b in place for the base class, and the callin-binding holds
?m in place for base methods. Per-blocks control the transformation; for each tuple of
matching values of a per-block’s set of meta-variables, the per-block’s body gets generated
once in the transformation output with every occurrence of a meta-variable replaced by its
matched value.

Every generated program element on the per-block level must use an unbound meta-
variable for its name because simple names would collide if there is more than one in-
stance in the generation output. These elements may be classes, methods, or fields. Such
meta-variables are defined in place and are not declared in a matching statement. Their
types are inferred and bound by the transformation, e.g., class -Subject is stated as a
meta-variable. To prevent ambiguous expressions, a non-declared meta-variable cannot be
referenced from outside the per-block; inside the per-block, it is unique and safe to use.

Finally, the code of the example will transform to a team with two role classes replac-
ing -Subject, one played by Point, the other played by Line, both having two
callin statements linking the update method to setter methods of their base class. The
FigureDisplay class remains decoupled of the base classes and is robust with respect
to evolution. For instance, consider adding a new property in one of the figure classes, e.g.,
a color, or adding a new figure class; in all cases, the team and the query will adapt the
new situation without change. In addition, the template class may be used in other observer
scenarios, e.g. managing the textual representation of the figures and their properties in
a table. All that is required is to give different arguments for the match-query. Differ-
ent match-instantiations of GOT team classes may be realized by inheritance, though the
details of this mechanism are beyond the scope of this paper.

139

5 Related Work

A role-based approach explicitly targeting cross cutting concerns is presented in [HMK05].
The authors demonstrate the value of abstracting cross cutting concerns with roles. How-
ever, this approach focuses on refactoring design patterns using AOP. Selection mecha-
nisms are based on lexical information and require manual adjustments. The approach
does not propose a general-purpose role-based programming language and follows the al-
ready discussed pointcut principles. The fragility of pointcuts is a well-documented prob-
lem; approaches in this field aim to support the programmer by providing either mechani-
cal assistance in maintenance of pointcut expressions [KGRX11] or feedback about the im-
plicit effects of base code changes on pointcut evaluation [KS04]. Another aspect-oriented
approach addressing the genericity of program elements is LogicAJ [RK04]. The research
shows the limitations of wildcard matching and demonstrates the benefits of genericity
by enhancing pointcuts and advices with meta-variables. LogicAJ was a major source of
inspiration for the development of our current approach. Unlike Object Teams, LogicAJ is
purely aspect-oriented and does not feature roles or context. Application of genericity is
based on general AspectJ constructs, whereas Object Teams focuses on the modularization
of roles and its special needs and opportunities.

There are several logic-based approaches in Prolog or Datalog for querying program struc-
ture [KHR07, HVdMdV05, JDV03]. In refactoring approaches, as in the REFACOLA
language [SKvP11], logic programming is also used for program transformation. The ap-
proaches share the need to represent imperative program elements in a declarative way to
enable them to efficiently query the database. The translation is done by describing AST
nodes and relationships in terms of facts and rules. In refactoring, the goal is to make slight
changes in program structure while retaining the observable behavior of the program. In
contrast to refactoring, in Object Teams the input language differs from the output lan-
guage and the transformation focuses on replacing and generating new, adapted program
elements like classes and methods. The AO enhancement tracematches also makes use of
free variables, but limits them to utilizing execution history, for which it introduces new
pointcut idioms [AAC+05]. The Alpha language [OMB05] goes even further by providing
Prolog queries over an extensive representation of the program, including dynamic proper-
ties of the program execution (making significant concessions regarding efficiency). Both
approaches target a more sophisticated aspect-oriented join point selection, rather than
modularization and reuse.

Meta-AspectJ (MAJ) is a structured meta-programming tool for generating AspectJ pro-
grams using code templates [ZHS04]. Partial artifacts of the code are evaluated to gener-
ate either AspectJ or plain Java code. In contrast to our approach, MAJ does not provide
expressions to declaratively select program elements; instead references are gained by
traversing the Java AST.

An approach to handling context-related concerns is context-oriented programming (COP)
[HCN08]. In COP, layers build first-class entities that may modularize and control context-
dependent behavior. Although layers support dynamic dispatching, activation and scoping,
there is no intention to support quantification beneath the activation of layers. Layers build
an explicit enhancement for classes and are intentionally scattered across modules.

140

6 Conclusions and Further Work

In this paper, we have discussed the potential for modularization and reuse beyond stan-
dard object- and aspect-oriented approaches, and we presented Generic Object Teams, an
enhanced version of Object Teams, which is able to support these opportunities. GOT uses
generative programming to replace manual search and adaption of program elements with
automatic generation. Initially, writing GOT queries and teams requires extra effort, but in
return, they provide enhanced reuse capabilities and are more robust towards evolution.

The implementation of a proof-of-concept prototype for GOT is work in progress. So
far, we have extended the OT/J language with the required additional language features
and build a representation (based on the Eclipse modeling framework (EMF)) of the GOT
abstract syntax tree in Prolog facts. We are able to analyze the program structure using
Prolog queries. Further work is required to create a more detailed design and implement
the automated code transformation mechanism. The combination of different dimensions
of reuse, namely inheritance and generics, pose several interesting challenges that will be
addressed next. We believe that this combination of features possesses the potential for
even more reuse than what we have shown so far.

References

[AAC+05] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. Adding trace matching with free variables to AspectJ. SIGPLAN Not.,
40(10):345–364, 2005.

[EMO04] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as Functional
Queries. In APLAS ’04: Proceedings of the 2nd Asian Symposium on Program-
ming Languages and Systems, volume 3302 of Lecture Notes in Computer Science,
pages 366–381. Springer, 2004.

[FF00] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quan-
tification and Obliviousness. In Workshop on Advanced Separation of Concerns,
OOPSLA, 2000.

[GB03] Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In AOSD ’03: Proceedings of the 2nd international confer-
ence on Aspect-oriented software development, pages 60–69, New York, NY, USA,
2003. ACM.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology, 7(3):125–151, 2008.

[Her07] Stephan Herrmann. A precise model for contextual roles: The programming lan-
guage ObjectTeams/Java. Appl. Ontol., 2(2):181–207, 2007.

[HK02] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java and
aspectJ. SIGPLAN Not., 37(11):161–173, 2002.

141

[HMK05] Jan Hannemann, Gail C. Murphy, and Gregor Kiczales. Role-based refactoring of
crosscutting concerns. In AOSD ’05: Proceedings of the 4th international conference
on Aspect-oriented software development, pages 135–146, New York, NY, USA,
2005. ACM.

[HVdMdV05] Elnar Hajiyev, Mathieu Verbaere, Oege de Moor, and Kris de Volder. CodeQuest:
querying source code with datalog. In OOPSLA ’05: Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 102–103, New York, NY, USA, 2005. ACM.

[JDV03] Doug Janzen and Kris De Volder. Navigating and querying code without getting lost.
In AOSD ’03: Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 178–187, New York, NY, USA, 2003. ACM.

[KGRX11] R. Khatchadourian, P. Greenwood, A. Rashid, and G. Xu. Pointcut Rejuvenation:
Recovering Pointcut Expressions in Evolving Aspect-Oriented Software. Software
Engineering, IEEE Transactions on, PP(99):1, 2011.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In ECOOP ’01: Proceedings of
the 15th European Conference on Object-Oriented Programming, pages 327–353,
London, UK, 2001. Springer-Verlag.

[KHR07] Günter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-based
infrastructures for concern detection and extraction. In LATE ’07: Proceedings of
the 3rd workshop on Linking aspect technology and evolution, page 6, New York,
NY, USA, 2007. ACM.

[KIL+97] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier, Cristina Videira
Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-Oriented Programming. In
ECOOP ’97: Proceedings of the 11th European Conference on Object-Oriented
Programming, pages 220–242. Springer-Verlag, 1997.

[KS04] Christian Koppen and Maximilian Stoerzer. Pcdiff: Attacking the fragile pointcut
problem. In First European Interactive Workshop on Aspects in Software (EIWAS),
2004.

[OMB05] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive Pointcuts for
Increased Modularity. In Andrew Black, editor, ECOOP 2005 - Object-Oriented
Programming, volume 3586 of Lecture Notes in Computer Science, pages 214–240.
Springer Berlin / Heidelberg, 2005.

[RK04] Tobias Rho and Günter Kniesel. Uniform Genericity for Aspect Languages. In
Technical Report IAI-TR-2004-4, Computer Science Department III, University of
Bonn. Dec 2004.

[SKvP11] Friedrich Steimann, Christian Kollee, and Jens von Pilgrim. A Refactoring Con-
straint Language and Its Application to Eiffel. In Mira Mezini, editor, ECOOP 2011
- Object-Oriented Programming, volume 6813 of Lecture Notes in Computer Sci-
ence, pages 255–280. Springer Berlin / Heidelberg, 2011.

[SS08] Mirko Seifert and Roland Samlaus. Static Source Code Analysis using OCL. In
Jordi Cabot and Pieter Van Gorp, editors, OCL’08, 2008.

[ZHS04] David Zook, Shan Shan Huang, and Yannis Smaragdakis. Generating AspectJ pro-
grams with Meta-AspectJ. In Generative Programming and Component Engineer-
ing: Third International Conference, GPCE 2004, volume 3286 of LNCS, pages
1–19. Springer, 2004.

142

