
Optimizing Semantic Web services ranking using

parallelization and rank aggregation techniques

Ioan Toma

University of Innsbruck, Austria.

ioan.toma@sti2.at

Ying Ding

Indiana University, Indiana, USA.

dingying@indiana.edu

Dieter Fensel

University of Innsbruck, Austria.

dieter.fensel@sti2.at

Abstract: The problem of combining many rank orderings of the same set of candi-
dates, also known as the rank aggregation problem, has been intensively investigated
in the context of Web (e.g meta-search) databases (e.g combining results from multi-
ple databases), statistics (e.g. correlations), and last but not least sports and elections
competitions. In this paper we investigate the use of rank aggregation in the context
of Semantic Web services. More precisely we propose an optimization technique for
ranking Semantic Web services based on non-functional properties by using paralle-
lization and rank aggregation methods. Instead of using a ranking algorithm over the
entire set of non-functional properties our approach splits the set of non-functional
properties in multiple subsets, runs the ranking algorithm on each of the subsets and
finally aggregates the resulting ranked lists of services into one unifying ranked list.
Experimental results reported in this paper show improvements of our initial rank ag-
gregation method both in terms of quality and processing time.

1 Introduction

Two of the most important challenges in any service-oriented infrastructure are how to

identify the relevant services given a user request and how to provide an ordered list of

services according to user preferences. Known as service ranking, the later challenge has

been investigated both by academia and industry ([26], [15], [19]).

Existing approaches for service ranking provide in general one single rank ordering given

a set of services and a user request. Based on the same input data (same user request

and services) different ranking engines create different rank lists. This is due to specific

algorithms employed by each of the ranking engines, different ways of interpreting the

request and service descriptions, etc. In the future service-oriented ecosystems, ranking

engines become service themselves that produce different rank lists given the same user

request. One challenge that becomes important in this context is how to identify the best

rank list out of a given set of rank lists produced by different ranking engines. This is a

difficult task and in most cases difficult to achieve due to the lack of access to the inner

mechanics of the individual ranking engines.

181

A consensus mechanism that combines the rank lists produces by individual rank engines

into a communally agreed rank list is more likely to create the ’optimal’ solution. Building

such a consensus is equivalent to solving the rank aggregation problem. This problem can

be defined more formally as follows. Given a set of rank lists R1,...,Rm, each of them

the rank lists of the set S of services S = {s1, s2, ..., sn}, the problem is to identify the

’optimal’ rank list σ such that
∑m

k=1 D(σ,Rk) is minimized, where D is a distance metric

showing how much two rank lists are similar respectively different.

The rank aggregation problem has been studied in the context of many fields such as social

choice theory ([10], [27]), statistics ([5], [4]), machine learning ([13], [14]), web search

engines ([7], [21]),sports and competitions ([11], [24]). To the best of out knowledge the

rank aggregation problem has not been investigated in the context of finding consensus

among Semantic Web services rank engines.

Semantic Web services [8] are a new paradigm that combines on one hand the Semantic

Web [9] vision, as the augmentation of the current Web supporting meaningful retrieval

of data and interaction in a precise, semantically defined way, and on the other hand Web

services,as the technology that brings the aspect of dynamic and distributed computation

into the current Web. Semantic Web services provide increasing degree of automation with

respect to all service related tasks, including discovery, composition, execution and last but

not least, ranking. Among the properties of services in general, and Semantic Web services

in particular, non-functional properties are considered to be the most relevant properties

for the task of ranking services and identifying the best service given a user request. They

describe restrictions over the other properties of the services [2] including functional and

behavioural properties.

In this paper we investigate the use of rank aggregation in the context of Semantic Web

services. More precisely we propose an optimization technique for ranking Semantic Web

services based on non-functional properties by using rank aggregation methods. Instead of

using a ranking algorithm that consider the entire set of non-functional properties reques-

ted by the user, our approach splits the set of non-functional properties in multiple subsets,

runs the ranking algorithm on each of the subsets and finally aggregates the resulting rank

lists of services into one unifying rank list.

The rest of the paper is organized as follows. Section 2 introduces some basic concepts

used latter on in the paper. A set of rank aggregation methods that have proved to be ef-

ficient in other domains (i.e. Web) are described in Section 3. Section 4 discusses our

ranking algorithm for Semantic Web services based on non-functional properties. Taking

the rank aggregation methods introduced in Section 3, Section 5 proposes optimization

techniques for the ranking algorithm introduced in Section 4. Section 6 presents the ex-

perimental results obtained for rank aggregation with Semantic Web services. Section 7

discussed related work approaches for the problem of rank aggregation and finally Secti-

on 8 concludes the paper and presents our future work.

182

2 Background

Before we describe our approach for rank aggregation of Semantic Web services we intro-

duce the terminology used in this paper.

Let U be a universe of services, S a subset of U , and ≤O a partial order relation on S. We

define a rank list as an ordering of S on which the partial order relation ≤O holds over any

pair of services. More formally a rank list is defined as follows.

[Rank list] Given a set S of services S = {s1, s2, ..., sn}, a partial order relation ≤O on

this set and a ranking function f , a rank list R can be defined as R = f(S,≤O), where

R contains all the elements from S and ∃s a sequence s(1, 2, ..., |R|) → R such that

∀i, j ∈ {1, 2, ..., |R|}, with i <= j ⇒ s(i) ≤O s(j).

In case R contains all the elements from the universe U , R is called a full rank list. If only

some of the elements of U are ranked, R is call a partial rank list.

A ranking metric or ranking distance is a function that computes the similarity between

two rank lists, where the similarity is a positive real number. A ranking metric is defined

as follows.

[Ranking Metric] Given two rank lists R1 and R2, a ranking metric Δ or distance between

the two rank lists is defined as a function Δ : R×R → R
+ that determine the degree of

similarity between the two rank lists.

Any ranking metric has the following properties: (1) it is non-negative, meaning that the

distance between two rank lists is always positive, (2) is it identical, meaning that if di-

stance between two rank lists is 0 then the two rank lists are the same, (3) it is symmetric,

meaning that the given two rank lists R1 and R2, the distance between R1 and R2 is the

same as the distance between R2 and R1 and finally (4) it preserves the triangle inequality,

meaning that for any three rank lists R1, R2 and R3 any ranking metric Δ will satisfy the

following inequality Δ(R1, R2) ! Δ(R1, R2) + Δ(R2, R3)

Some of the most used ranking metrics are Kendall-Tau [12] and Spearman Footrule [23].

Kendall-Tau (Kendall’s τ) determines the degree of similarity between two rank lists by

considering the number of inversions of pairs items needed to transform one rank list into

the other. It basically corresponds to the number of transpositions bubble sort requires to

turn one rank list into the other one. The Kendall’s τ ranking metric is defined as follows:

τ = 1−
2δ

N(N − 1)
(1)

where δ is the symmetric difference distance between the rank lists created based on the

given sets of items and N is the total number of items. The symmetric difference distance

is a set operation which associates to the rank lists, the set of elements which belong to

rank lists. The Kendall’s τ ranking metric value for two lists of length n can be computed

in nlogn time [7].

183

Spearman Footrule (Spearman’s ρ) captures how well an arbitrary monotonic function

could describe the relationship between two variables, without making any assumptions

about the frequency distribution of the variables. The Spearman ranking metric is defined

as follows:

ρ = 1− 6

∑N
i=1 d

2
i

N(N2 − 1)
(2)

where di is the difference in statistical rank of corresponding variables, and N is the num-

ber of pairs of values. Equation 2 can be rewritten in the following form:

ρ(X,Y) =

∑N
i=1 xiyi√∑N

i=1 x
2
i

∑N
i=1 y

2
i

(3)

The Spearman Footrule metric between two lists can be computed in a linear time.

3 Rank aggregation methods

In this section we present the rank aggregation methods that are used to optimize our exis-

ting ranking approach for Semantic Web services based on non-functional properties [25].

Borda count method The Borda count [1] is a rank aggregation method that computes

the aggregated rank list based on the cumulative positional score obtained by each candi-

date in each rank list. The candidate with the highest score is the winner, followed by the

other candidates in decreasing order of their scores. More formally the Borda count me-

thod works as follows. Given the full rank lists R1, R2, ..., Rn of a set of services S, then

for each candidate s ∈ S, Borda count method assign a score Bi(s) equal to the number

of the candidate services that are ranked lower then s in the rank list Ri. The cumulative

score for the candidate s is:

B(s) =
n∑

i=1

Bi(s) (4)

An important advantage of Borda count method and of other positional rank aggregation

methods is that they are computationally very easy as they can be implemented in linear

time. However such methods, including Borda count method, do not satisfy the Condor-

cet criterion [27], namely if the Condorcet winner exists is not guaranteed that it will be

selected by the voting system. The Condorcet winner is that candidate that defeats any of

the other candidates in two-candidates election.

Markov chains based methods In [7] a set of four methods based on Markov chains

have been introduced to solve the problem of rank aggregation. A Markov chain [18]

184

is a stochastic process consisting of a domain D, a set of states {s1, ..., sm}, an initial

distribution vector (p(s1), ..., p(sm)) and a mxm transition probability matrix, where m
is the total number of states. In a Markov chain the present state of the system captures

all the information that could influence the future evaluation of the system (past states do

not influence future states). The system moves from one state si to another state sj with

a probability Pij . Rank aggregation methods based on Markov chains try to compute the

stationary distribution of the Markov chain which represents the resulting rank aggregation

list.

The Markov chains based methods proposed in [7] are using different heuristics rules to

construct the transition probability matrix. In [7] the states are basically the web pages

rank by rank engines, while in our case services represent states of a Markov chain. Given

a service Si, representing a current given state of the system, the four heuristics introduced

in [7], denoted shortly by MC1, MC2, MC3 and MC4 are informally defined as follows:

• MC1: Choose uniformly from the multiset of all candidate services that were ranked

at least as high as Si in a rank list R.

• MC2: Choose a rank list R uniformly at random and pick uniformly at random from

among the candidate services that were ranked at least as high as Si in R.

• MC3: Choose a rank list R uniformly at random and pick uniformly at random a

service Sj . If service Sj was ranked higher then current state (service Si) in the rank

list R, then select Sj as current state, otherwise stay in Si.

• MC4: Choose a candidate service Sj at random. If Sj was ranked higher than Si in

most rank lists then choose Sj as current state, otherwise stay in Si.

As pointed out in [7], method MC4 outperforms the other methods as well as the Bor-

da count methods. We investigate all the methods introduced above on a Semantic Web

services dataset and we report results in Section 6.

4 Describing and ranking Semantic Web services

This section briefly introduces our approach for modeling non-functional properties of

Semantic Web services and the ranking algorithm we used for ranking services based on

non-functional properties. As a model framework and language to semantically describe

services we use the Web Service Modeling Ontology (WSMO) [22], respectively the Web

Modeling Language (WSML) [3]. WSMO/L is a comprehensive approach for modeling

Semantic Web services that offers complete rule-based modeling support required in our

scenarios.

Non-functional properties of services are modeled by means of logical rules in which the

terminology (e.g. concepts, relations) is provided by a set of non-functional properties

185

ontologies 1. Listing 4 displays a concrete example on how to describe the obligations

non-functional property of a service.✞ ☎
namespace { ”WS1.wsml#”,

so ”Shipment.wsml#”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax/”}

webService ws1Service
nonFunctionalProperty deliveryTime hasValue ?deliveryTime

definedBy
//delivery time per order/package depends on dimension of the package; WS1 deliveryTime are as follows:
// 1 day if volume <= 20 cm3, 3 days if volume > 20 cm3
computeDeliveryTime(?package, ?deliveryTime):? ?package[so#length hasValue ?length, so#width hasValue ?

width,
so#height hasValue ?height] memberOf so#Package and ?volume = (?length ? ?width ? ?height) and ?

volume < 20 and ?deliveryTime = 1.
computeDeliveryTime(?package, ?deliveryTime):? ?package[so#length hasValue ?length, so#width hasValue ?

width,
so#height hasValue ?height] memberOf so#Package and ?volume = (?length ? ?width ? ?height) and ?

volume = 20 and ?deliveryTime = 1.
computeDeliveryTime(?package, ?deliveryTime):? ?package[so#length hasValue ?length, so#width hasValue ?

width,
so#height hasValue ?height] memberOf so#Package and ?volume = (?length ? ?width ? ?height) and ?

volume > 20 and ?deliveryTime = 3.✝ ✆
Listing 1: WS1 obligations

More informally the service delivery time is as follows: in case the volume of the package

is lower or equal than 20cm3 then the delivery time is one day, otherwise if the volume of

the package is more than 20cm3 the delivery time is three days.

The ranking algorithm that consider multiple non-functional properties of Semantic Web

services such as the one presented in the previous example was introduced as part of our

previous work [25]. In rest of this section we shortly recap how the algorithm is working.

A particularity of our ranking algorithm is the evaluation of the logical rules used to model

non-functional properties of services by a reasoning engine. In a nutshell the multi-criteria

ranking algorithm works as follows. First the non-functional properties the user is interes-

ted and their importance are extracted from the user goal description. The importance of a

non-functional property is an number between 0 and 1, 0 denoting no user interest on that

property, 1 denoting maximum user interest. Each service from the available set of ser-

vices in the repository is checked if its description contains the non-functional properties

specified in the user goal. If this is the case the corresponding logic rules are extracted and

evaluated using a reasoning engine which support WSML rules. A matrix containing the

services, as first dimension, and the set of non-functional properties the user is interested,

as the second dimension, is constructed. The elements of this matrix are the non-functional

properties values of each service obtain during the previous rule evaluation step. The ma-

trix values are normalized and a aggregated score is computed for each service taking into

account the importance of the non-functional properties. Finally the scores values are sor-

ted and the final list of services is returned. For more details we refer the reader to our

previous work [25].

1www.wsmo.org/ontologies/nfp

186

5 An approach for Semantic Web service ranking optimization

Having introduced our ranking approach for Semantic Web services (Section 4) and a set

of general rank aggregation methods (Section 3), this section proposes an an optimization

of the initial ranking approach for Semantic Web services by use of parallel processing

and rank aggregation methods. The experimental results (Section 6) show considerable

improvements in terms of processing time and quality of results.

The first step of the optimized approach is to split the set of non-functional properties

requested by the user into multiple subsets. If [NFP1, NFP2, ..., NFPn] is the full set

of non-functional properties the user is interested, the resulting subsets are of form Λk =
[NFP k

1 , ..., NFP k
|Λk|

], k is the total number of subsets. A non-functional property will be

part of only one subset. More formally if NFP ∈ Λk then NFP /∈ Λj , where j 2= k. In

our experiments the subsets of non-functional properties Λ, have the same cardinality.

As described in Section 4, the initial ranking algorithm constructs a matrix containing the

services, as one dimension, and the set of non-functional properties the user is interested,

as the other dimension. The elements of this matrix are the non-functional properties va-

lues of each service that are computed by evaluating the logical expressions (logic rules)

representing the non-functional properties. Splitting the set of non-functional properties

requested by the user into multiple subsets results in splitting the services/non-functional

properties matrix, as exemplified in Figure 1.

Abbildung 1: Optimization approach.

The second step is to apply the ranking algorithm described in Section 4 on each sub-

set of non-functional properties. The ranking algorithm is applied in parallel to subsets

Λ of the initial set of non-functional properties. The initial pre-processing part, including

the extraction of user preferences from the goal as well as the extraction of non-functional

properties descriptions from the services is performed at once for all the multiple instances

of the algorithm. The evaluation of the logical expression representing the non-functional

properties is done in parallel which reduces the processing time. It is known that the use

of a reasoner on big data set is a time consuming task. The following steps of the initial

187

ranking algorithm are followed for each of the subsets. This includes the normalization of

the values obtained, the computation of each service score by aggregating its correspon-

ding non-functional properties values from the given subset and finally the ordering of the

services based on their scores. A rank list of services is obtained for each of the subsets of

the non-functional properties set requested by the user.

The third and final step of the overall optimized Semantic Web service ranking solution in-

cludes the use of rank aggregation methods to aggregate the rank lists of services obtained

as the result of the previous step. Figure 2 depicts the last step of the approach.

Abbildung 2: High level overview of aggregation.

Each instance of the initial ranking algorithm, depicted in the figure as REΛi
, produces a

rank list RΛi
. The rank lists are finally aggregated using rank aggregation methods intro-

duced in Section 3.

6 Experiments, results and discussions

In this section we report the results obtained by applying first the initial, non-optimized

method for ranking Semantic Web services and second a set of rank aggregation methods

as part of the optimized approach.

6.1 Data set and experimental setup

In our experiment we use a set of 50 Semantic Web services each having 4 non-functional

properties descriptions. The non-functional properties that we consider are: price and dis-

counts, obligations, delivery time and rewards. Price and discounts represent the price

charged by the shipping service to ship a package from one place to another. On top of

it some shipping services might provide discounts if certain conditions are fulfilled. As

obligations we model any payment obligations of the enterprise providing the shipping

service in case the package to be delivered is lost or destroyed. The delivery time is simply

188

the required time expected by the provider to deliver the package. Finally as rewards we

modeled reward points that shipping service might offer to their customers.

The set of Semantic Web services used in our experiments was modeled starting from

concrete shipment services descriptions. The WSDLs of these services were provided to

us by seekda2. The set includes as well the 5 shipment services from the SWS Challenge

Shipment Discovery scenario3. The initial WS Challenge Shipment Discovery scenario

have been extended the by augmenting services description with the previously mentioned

4 non-functional properties. Similarly non-functional properties of WSDL services from

the seekda collection are semantically described using the WSMO approach.

6.2 Results

Table 1 contains the average execution times in milliseconds for the initial ranking algo-

rithm and the five rank aggregation methods (i.e., Borda, MC1, MC2, MC3 and MC4). For

each algorithm/method, the execution time reported is the arithmetic mean of the executi-

on times of 10 trials. For each of the five rank aggregation methods we consider two cases,

one in which two ranking lists are being aggregated and the second in which three ranking

lists are being aggregated. The user request used in all cases is the WSML goal that corre-

sponds to informal query: ”Rank the services based on the combination of price/discounts,

liability/obligations, delivery time and rewards, where price/discounts and liability/obliga-

tions are equally important, delivery time and rewards are equally important but the first

two are more important than the second two. The results must be in descending order.”

The resulting execution times are available in Table 1.

1 ranking list (in millisec) 2 ranking lists (in millisec) 3 ranking lists (in millisec)

Initial 197362 - -

Borda - 155248 145915

MC1 - 155642 145883

MC2 - 153344 144757

MC3 - 153735 145612

MC4 - 154889 144738

Tabelle 1: Ranking framework - Average execution times.

As reported in Table 1, the optimized approached based on parallelization and rank ag-

gregation techniques performs better in terms of execution time than the initial ranking

approach. Besides execution time our evaluation focuses also on qualitative performance.

The qualitative performance results for each method is quantified based on the ranking

metrics defined in Section .

Table 2 contains the Kendall’s τ correlation values between the ranking lists results gene-

rated using the optimized approaches and the reference ranking list for Query Q5.

Table 3 contains the Spearman’s ρ correlation values between the ranking lists results

2seekda.com
3 http://sws-challenge.org/wiki/index.php/Scenario: Shipment Discovery

189

1 2 3

Initial τ=0.81 - -

Borda - τ=0.87 τ=0.81

MC1 - τ=0.82 τ=0.80

MC2 - τ=0.73 τ=0.76

MC3 - τ=0.79 τ=0.73

MC4 - τ=0.92 τ=0.81

Tabelle 2: Ranking framework - Qualitative performance Kendall’s τ .

generated using the optimized approaches and the reference ranking list for Query Q5.

1 2 3

Initial ρ=0.95 - -

Borda - ρ=0.92 ρ=0.90

MC1 - ρ=0.86 ρ=0.84

MC2 - ρ=0.88 ρ=0.91

MC3 - ρ=0.90 ρ=0.88

MC4 - ρ=0.98 ρ=0.93

Tabelle 3: Ranking framework - Qualitative performance Spearman’s ρ.

6.3 Discussions

The execution times available in Table 1 show that the rank aggregation methods perform

better than the initial ranking algorithm. The percent of improvement ranges between 21%

to 26%. One can observe a gradual improvement of the results by splitting the set of

non-functional properties further. Rank aggregation methods applied on three ranking lists

performs better than the rank aggregation methods applied on two ranking lists, where each

list is determined by one or two of the four non-functional properties mentioned before.

For the qualitative evaluation we use two ranking metrics, namely Kendall’s τ and Spear-

man’s ρ to measure the quality of each approach. More precisely, we measure the distance

between the ranking lists produced by the ranking approaches and the reference rank list

created by human experts. A Kendall’s τ and a Spearman’s ρ value closer to 1 indicates

that the ranking list produced by the methods and the reference rank list are highly corre-

lated and thus the method performs well. By contrast, a Kendall’s τ and a Spearman’s ρ
value closer to -1 indicates a higher disagreement between the two lists. One can notice

that the approaches based on rank aggregation methods perform in general better than the

initial approach. Among the rank aggregation methods, the MC4 method produces the best

results.

190

7 Related work

To the best of our knowledge rank aggregation has not been investigated in the context

of aggregating rank lists of Semantic Web services nor rank lists of Web services. Howe-

ver, the rank aggregation problem has been studied in the context of social choice theory,

statistics, machine learning, web search engines as well as sports and competitions. The

pioneering work for developing rank aggregation methods was motivated by challenges

from the social theory. One of the most common rank aggregation developed in this con-

text is Borda count [1], shortly described in Section 3. In short the method orders the

candidates with respect to the average rank. In [7], rank aggregation methods were discus-

sed in the context of the Web. The rank aggregation called Kemeny optimal aggregation is

introduced as the optimal rank aggregation solution which optimizes the Kendall distan-

ce [12]. In [6], the same authors provide a detailed theoretical analysis of various rank

aggregation methods showing that the Kemeny optimal aggregation is a NP-hard problem.

The authors propose a set of methods based on Markov chains are proposed that approxi-

mate the Kemeny optimal. In [16] user preferences are expressed by means of ontologies

and rank aggregation methods are used to combine rank lists from various attributes of

user preferences when searching the Web. A detail comparison of various rank aggregati-

on methods, including Markov chains based methods, is performed in [20] using TREC

data. Furthermore the authors of this work distinguish between rank based and score ba-

sed rank aggregation methods. Machine learning techniques have been used to solved the

rank aggregation problem using either unsupervised learning (e.g. [14]) or supervised lear-

ning(e.g. [17]). However these approaches require good training data which is often not

easy to obtain.

8 Conclusions

In this paper we have developed an optimization technique for ranking Semantic Web

services using rank aggregation techniques. The initial ranking algorithm evaluates the

non-functional properties specifications of each service and computes an aggregated sco-

re. Our optimized approach uses a parallel version of the initial ranking algorithm and

as a last step applies rank aggregation methods to create the final aggregated rank list.

We have proposed and test several rank aggregation methods including Borda count and

Markov chain based methods. As future work we plan to investigate other rank aggregati-

on methods in the context of rank aggregation for Semantic web services, including both

rank and score based methods. We plan as well to perform an extended evaluation of our

approaches using a larger data set, i.e. more than 50 services, with a larger number of

non-functional descriptions. Another related research direction that we plan to investigate

is the use of similarity measures when applying rank aggregation methods for Semantic

Web services.

191

Literatur

[1] J. C. Borda. Memoire sur les elections au scrutin. Histoire de l’Academie Royale des Sciences,
1781.

[2] L. Chung. Non-Functional Requirements for Information Systems Design. In Proceedings of
the 3rd International Conference on Advanced Information Systems Engineering - CAiSE’91,
April 7-11, 1991 Trodheim, Norway, LNCS, pages 5–30. Springer-Verlag, 1991.

[3] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, D. Fen-
sel, I. Toma, N. Steinmetz, and M. Kerrigan. The Web Service Modeling Lan-
guage WSML. Technical report, WSML, 2007. WSML Final Draft D16.1v0.3.
http://www.wsmo.org/TR/d16/d16.1/v0.3/.

[4] Robert DeConde, Sarah Hawley, Seth Falcon, Nigel Clegg, Beatrice Knudsen, and Ruth Et-
zioni. Combining results of microarray experiments: A rank aggregation approach. Statistical
Applications in Genetics and Molecular Biology, 5(1):15, 2007.

[5] P. Diaconis. Group Representations in Probability and Statistics, volume 11 of Lecture Notes
— Monograph series. Institute of Mathematical Statistics, Hayward, CA, 1988.

[6] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation revisited.
Technical report.

[7] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the web. In WWW ’01: Proceedings of the 10th international conference on World Wide Web,
pages 613–622, New York, NY, USA, 2001. ACM.

[8] Dieter Fensel and Christoph Bussler. The Web Service Modeling Framework (WSMF). Elec-
tronic Commerce Research and Applications, 1(2):113–137, 2002.

[9] Dieter Fensel, James A. Hendler, Henry Lieberman, and Wolfgang Wahlster, editors. Spinning
the Semantic Web: Bringing the World Wide Web to Its Full Potential [outcome of a Dagstuhl
seminar]. MIT Press, 2003.

[10] C. A. Tovey J. J. Bartholdi and M. A. Trick. Voting schemes for which it can be difficult to tell
who won the election. Social Choice and Welfare, 6(2):157165, 1989.

[11] James P. Keener. The perron-frobenius theorem and the ranking of football teams. SIAM Rev.,
35(1):80–93, 1993.

[12] Maurice G. Kendall. Rank corellation methods. Hafner Publishing Co., 1955.

[13] Alexandre Klementiev, Dan Roth, and Kevin Small. An unsupervised learning algorithm for
rank aggregation. pages 616–623. 2007.

[14] Alexandre Klementiev, Dan Roth, and Kevin Small. Unsupervised rank aggregation with
distance-based models. In ICML ’08: Proceedings of the 25th international conference on
Machine learning, pages 472–479, New York, NY, USA, 2008. ACM.

[15] Steffen Lamparter, Anupriya Ankolekar, Rudi Studer, and Stephan Grimm. Preference-based
selection of highly configurable web services. In WWW ’07: Proceedings of the 16th interna-
tional conference on World Wide Web, pages 1013–1022, New York, NY, USA, 2007. ACM.

[16] Lin Li, Zhenglu Yang, and Masaru Kitsuregawa. Using ontology-based user preferences to
aggregate rank lists in web search. In Takashi Washio, Einoshin Suzuki, Kai Ming Ting, and
Akihiro Inokuchi, editors, PAKDD, volume 5012 of Lecture Notes in Computer Science, pages
923–931. Springer, 2008.

192

[17] Yu-Ting Liu, Tie-Yan Liu, Tao Qin, Zhi-Ming Ma, and Hang Li. Supervised rank aggregation.
In WWW ’07: Proceedings of the 16th international conference on World Wide Web, pages
481–490, New York, NY, USA, 2007. ACM.

[18] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer–Verlag, 1993.

[19] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

[20] Elena M. Renda and Umberto Straccia. Web metasearch: Rank vs. score based rank aggrega-
tion methods.

[21] M. Elena Renda and Umberto Straccia. Web metasearch: rank vs. score based rank aggregation
methods. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing, pages
841–846, New York, NY, USA, 2003. ACM.

[22] D. Roman, H. Lausen, and U. Keller (Ed.). Web service modeling ontology (WSMO). Working
Draft D2v1.4, WSMO, 2007. Available from http://www.wsmo.org/TR/d2/v1.4/.

[23] C. Spearman. The proof and measurement of association between two things. The American
Journal of Psychology, 100(3/4):441–471, 1987.

[24] M. Stob. A supplement to a mathematicians guide to popular sports. American Mathematical
Monthly, 91(5):277–282, 1984.

[25] Ioan Toma, Dumitru Roman, Dieter Fensel, Brahmanada Sapkota, and Juan Miguel Gomez. A
multi-criteria service ranking approach based on non-functional properties rules evaluation. In
ICSOC ’07: Proceedings of the 5th international conference on Service-Oriented Computing,
pages 435–441, Berlin, Heidelberg, 2007. Springer-Verlag.

[26] Le-Hung Vu, Manfred Hauswirth, and Karl Aberer. Qos-based service selection and ranking
with trust and reputation management. In On the Move to Meaningful Internet Systems 2005:
CoopIS, DOA, and ODBASE, volume 3760/2005, 2005.

[27] H. P. Young. Condorcet’s theory of voting. The American Political Science Review,
82(4):1231–1244, 1988.

193

