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Comparative Evaluation of Machine Learning-based
Malware Detection on Android

Sebastian Hahn, Mykolai Protsenko? Tilo Miiller?

Abstract: The Android platform is known as the market leader for mobile devices, but it also
has gained much attention among malware authors in recent years. The widespread of malware, a
consequence of its popularity and the design features of the Android ecosystem, constitutes a major
security threat currently targeted by the research community. Among all counter methods proposed
in previous publications, many rely on machine learning algorithms based on statically extracted
attributes from an app. Machine learning, which is also inspired by the developed field of desktop
malware detection, has proven to be a promising approach for fighting Android malware. Many
publications, however, rely on different data sets for different application attributes, rendering the
comparison of them difficult. Furthermore, there exist attribute sets known from the desktop world
which have not been ported to Android yet. In this paper, we aim to step towards filling this gap by
assessing the effectiveness of the total number of 11 attribute sets, including those never evaluated on
Android before, using a consistent data set of 10,000 apps. Our comparative evaluation provides a
ranking for the single attribute sets according the detection performance they can reach, and suggests
the most effective combination of all attributes.

Keywords: Android, Malware Detection, Machine Learning

1 Introduction

Due to the widespread of Android malware, a search for reliable detection methods remains
an important research topic. In general, most detection measures can be classified as either
being static or dynamic approaches. Static detection is usually facilitated by machine
learning algorithms based on some static attributes of an application. In the numerous
publications that emerged in the last years, researchers have proposed and evaluated many
attribute sets for malware detection. At the same time, many static features are known to
be valuable for machine learning based detection from the x86 domain, but have never
been implemented for Android. In this paper we review those approaches and assess their
effectiveness by performing an evaluation on a common dataset, which can bring us closer
to the selection of the most optimal combination of static attributes for Android malware
detection.

This paper is organized as follows: Section 2 gives some basic information about the
Android system. Section 3 provides an overview of the attribute sets participated in our
evaluation and covers details of their extraction implementation. The outcome of the
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evaluation is given in Section 4 and the results are discussed in Section 5. Finally, we
conclude in Section 6.

2 Background

This section covers the basics of the Android system. Readers familiar with Android can
safely skip this section.

The Android mobile platform was created by the Open Headset Alliance with the goal to
cope with the resource scarcity of hand-held devices and hardware plurality provided by
numerous vendors. In a nutshell, Android is based on the Linux kernel enhanced by the
core libraries and runtime environment, ontop of which the applications are executed. In the
early versions of Android the runtime was represented by the Dalvik VM, a JIT supporting
virtual machine with register-based bytecode which can be compiled from Java bytecode.
Since Android version 5.0, Dalvik was replaced with ART, the more performant ahead of
time compilation approach, generating machine code for each app from its bytecode at
installation time. With both Dalvik and ART, the apps can also use native code by means of
the Java native interface (JNI).

Within the code of any Android app, one can highlight the four main base classes which
define the application components: Activities, Services, Broadcast Receivers and Content
Providers. Each Activity corresponds to a single action performed by the app with a
corresponding Ul screen. The Services are used to perform some long-term background
tasks and do not have any interface directly assigned to them. The Content Providers
facilitate delivery of data by the app in response to the requests by other apps. The Broadcast
Receivers help the application to define the reaction to the global events triggered either by
the Android system or by installed apps. Examples for such events are a receipt of an SMS
message or a low battery notification. The broadcast of such events, as well es invocation
of Activities, relies on Intent objects, which can be considered as a description of a desired
action.

Despite the recent replacement of the runtime environment, the structure of the app remained
unchanged. The apps are shipped as zip-archived apk files, containing metadata, GUI layout
definitions, Dalvik and native code, and other resources required by the app. The crucial
metadata of the app is provided within the Android Manifest file and includes the description
of the application components, the default Activity to be launched at the app startup, and
the permissions requested by the apps.

The permissions play a crucial role in the Android security system. Each permission
corresponds to a certain security-critical action, for instance dispatch of an SMS message.
Each app declares the permissions it requires in its Manifest, and they are accredited by the
user before app installation. Once being granted, an app may utilize its permissions at any
time after.
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3 Attributes and Implementation

All previously proposed solutions to the malware detection problem can roughly be clas-
sified in static, dynamic and hybrid approaches. The static ones analyze an app without
its execution, the dynamic ones, on the opposite, aim to classify the app by monitoring
its behavior at run time, and the hybrid approaches combine static and dynamic detection
methods. In this paper, we focus on the static detection based on machine learning. A review
of static attributes utilized in previously published classification approaches is provided
in the following. An overview of the well-known dynamic and hybrid detection tools was
performed by Neuner et al. [Nel4].

3.1 Manifest attributes

This subcategory of attributes is extracted from the Manifest which every apk has to contain.
The Manifest is located in the main folder of the apk and contains various information
regarding the application.

° Permissions: As mentioned in Section 2, Android permissions reflect the security-
sensitive actions an app intends to make use of. Due to the fact that such actions are
only accessible if the corresponding permissions have been granted, and the manda-
tory nature of their declaration, intuitively they can be very helpful in recognizing
potentially malicious applications. Indeed, in many detection approaches known from
the literature permissions play a crucial role [Sal3b, AZ13, Sal3a].

° Features: Features declare software and hardware properties on which an application
depends. Unlike the permissions, the declaration of features is not necessary for an
application to function properly and serves solely informational purposes, allowing
to identify compatibility of an app with certain Android devices and system versions.
The use of this attribute set was proposed by Santos et al. [Sal3a].

° Intents: This attribute is defined by the intents an app is using. Intents are used to
either start an Activity, a Service, or to broadcast an event to all subscribed receivers.
The use of Intents as attributes for malware detection was proposed by Arp et
al. [Ar14]. An app components can only react to certain Intents if the corresponding
intent-filters are declared in the Manifest. The filter declaration contains an
action element, which describes what has to be performed in response to the received
Intent or what global event has occurred. In this paper, we use the declared action as
a representation of the Intent filters.

° Application Components: This feature set, utilized among other attributes by Arp et
al. [Ar14], is defined by the application components, namely Activities, Services, and
Broadcast Receivers, declared in the Android Manifest file. The Content Providers
were not included in this set.
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3.2 Code attributes

This set of attributes is extracted from the code contained in an app. If not stated otherwise,
the following attributes refer to the bytecode of an app. The features derived from the native
code are marked as such.

° Used URLs: This attribute composed from the URLs that are found inside the
code of an app. The presence of certain URLs may help to identify malware since
they can reveal command and control servers of botnets or resources to update
and enhance malicious functionality. Since not every URL leads to a malicious
website, we follow the example by Apvrille and Strazzere [AS12] and remove
extremely frequently used URLs like the Android Market’s URL, Google services,
XML schemes and advertisement companies. Furthermore, the presence of URLs is
taken into consideration regardless of the number of their occurrences.

° Codesize: The codesize feature is defined straight forward, it is the sum of the sizes
of all codefiles in an apk. This feature was a part of the attribute set proposed by
Apvrille and Strazzere [AS12].

° Times of appearance of opcodes:
This attribute is based on the statistical properties of an app’s code that was proposed

by Santos et al. [Sal3a] to detect unknown x86 malware (PE). According to the
authors, opcodes reveal significant statistical differences between malware and legiti-
mate software. Following their example, for this attribute we compute the number of
appearances of each opcode in the app’s code.

° Opcode sequences: Similarly to the previous one, this attribute set is based on
the occurrences of the bytecode instructions in an app’s code, and was proposed
for detection of Windows malware. Here, we apply the similar approach on the
Android bytecode. In particular, we define attributes corresponding to the number
of occurrences of the bytecode sequences of length two. Note that here only the
instruction opcodes are considered, whereas the arguments of each instruction are
discarded. Examples of the usage of such attribute for Android malware detection
can be found in the works by Jerome et al. [Je14], Canfora et al. [CMV15], or Kang
et al. [Kal3].

° Presence of the native code: Since the native code might be harder to analyze and is
not supported by many analysis tools to the same extent as Dalvik bytecode, malicious
apps may try to hide parts of their functionality in the native code. Furthermore,
native code may be used to exploit vulnerabilities of the Android system, for instance
to gain the root access to the device. Therefore, we add this attribute which reflects
the presence of native libraries in the app. The use of the native code was also utilized
as a feature for malware detection by Apvrille and Strazzere [AS12].
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3.3 Other known attributes

This section provides an overview of the other attributes known form the literature, which
do not fit in any of the categories above.

° Presence of executables and zip-files in assets: The use of this attribute set was
suggested by Apvrille and Strazzere [AS12], motivated by the rational assumption
that an attempt to hide data, e.g. an executable exploit, in the assets is a clear evidence
for the app’s malignity.

° Statistical analysis attributes: This statistical feature set was proposed by Tabish et
al. [TSF09] for detection of x86 malicious files, not limited to executables only. In
this paper we adapt this approach for Android malware detection, extracting the raw

data from the files of the apk.
Following the methodology described in the original paper, the content of each file is

decomposed into blocks, which are used to form n-grams with various values of n.
According to the authors [TSF09], the block size “plays a critical role in defining the
accuracy”, in this work it was set to 2000. The approach was evaluated for the same

values of n as used by by Tabish et al., namely one, two, three and four.
The feature set contains 13 items, which are computed exactly as described in the

original paper, although other sources provide slightly different definitions of some
values. The computation is performed for n-grams with n equals one, two, three, and
four, resulting in a total number of 52 integer attributes in this set.

3.4 New attributes

Next we present the new features we propose in this paper, which to our best knowledge
have never been used as attributes for Android malware detection.

° Entropy of files in the resource-folder: Previously we have introduced the attribute
examining the presence of the executable or archived files in the assets of the app,
originally proposed by Apvrille and Strazzere [AS12]. However, malicious payload
can be hidden by more advanced means, e.g., using steganography. This attribute
goes one step further in the search for suspicious contents of the apk. For this purpose
we utilize entropy of the files in the resource folder as a measure of their ’structural
order’, with the expectation that unusual values will spot encrypted or otherwise
alien content. To detect possible anomalies, we also calculate such statistical features
of the entropy over all resource files as the arithmetic mean, the standard deviation
and the empirical variance. On top of that we also take the maximum and minimum
entropy values for each apk’s resource file.

° GUI Layout: With this feature set we aim to recognize applications, similar by
their visual appearance to the ones already known to the classifier. The attributes are
extracted from the layout xml-files that define the structure of the app’s GUI. These
xml-files contain a hierarchy of layout items, for example LinearLayouts, Textboxes,
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Buttons or Views. The features are defined as the total and the average number of
each kind of Layout, Textbox, Button, and View in all xml-files of the apk.

° Number of methods and number instructions per method: This attribute should
help the classifier to identify applications with similar code-structure as the known
ones. For this purpose, from each apk we extract the following values: the number
of methods in the code, the average number of opcodes in each method, and the
standard deviation and empirical variance of the number of opcodes in each method.
Note that the methods containing 3 or less opcodes are ignored, since we assume that
those are getters or setters, or other short methods without relevant functionality.

3.5 Implementation

The extraction of the attributes described previously in this section was implemented ontop
of the Androguard framework [DG11], which provided us with the necessary capabilities
of processing the bytecode, as well as the Manifest and other xml files of the Android
application package. For the classification of the samples we have utilized the WEKA
tool [Ha09], which includes the classifiers that have demonstrated top performance in
detecting Android Malware in previous studies: e.g., Random Forest, Bayesian Network,
and K Nearest Neighbors.

4 Evaluation

This section is devoted to the practical evaluation of the attributes presented in Section 3. The
evaluation contains the performance assessment of both single feature sets and combinations
of the most promising attributes.

4.1 Dataset

The dataset we used for the evaluation was provided by Spreitzenbarth et al. and was
collected within the MobileSandbox project [Sp13]. Out of the total number of obtained
apps, we have randomly formed a dataset which contains 10,000 apps: 5,000 malicious
samples and 5,000 benign ones.

For the purpose of the evaluation the dataset was randomly divided into a training- and
a testset, in the proportion 80 to 20. Note that the testset does not contain any malware
samples from the families included in the trainingset. This allows evaluation of the detection
for previously unknown malware.

4.2 Performance Metrics

Next we describe the metrics of the detection quality which we utilized in our work to
compare performance achieved by various classifiers with various attribute sets. The true
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positive and true negative rates (TPR and TNR) correspond to the fraction of the correctly
identified benign and malicious samples respectively. As an opposite, the values of false
positives and false negatives (FPR and FNR) indicate the percentages of benign samples
flagged as malicious and malicious samples assumed benign, respectively.

The true positive rate is sometimes called precision, meaning the ratio of the malware the
classifier detected correctly amongst the total number of samples the classifier flagged
malicious.

The accuracy can be considered "the ratio of correct hits’ and is defined as the sum of true
positives and true negatives divided by the overall sample count in the test set. Sometimes
instead of the false positive ratio its opposite is used, namely the specificity, as the ratio of
true negatives to the total number of benign samples. Additionally, in our evaluation we
include the time it took to build the classifier and the test time.

4.3 Single Feature Set Evaluation

This part of the evaluation aims to assess the detection performance of each single attribute
set described previously in Section 3. The outcome is summarized in Table 1. According
to the results, Android permissions are the best single predictor of the app’s malignity,
reaching the accuracy of about 96%. Very good classification quality was also achieved
by opcode frequency, opcode sequences, and app components, with accuracy above 90%.
For these and the most other attribute sets the best performance was shown by the Random
Forest.

Such attributes as Intents, the presence of the native code or executable and archived files
in the assets, as one could have expected, did not prove themselves as useful attributes on
their own.

Acc., % TPR, % FPR, % Build Time, ms Test Time, ms Classifier
Permissions 96.02 96.00 3.95 6669 414 Random Forest
Opcode frequency 94.82 90.89 1.25 2196 321 Random Forest
Opcode sequences 94.82 90.29 0.65 10611 539 Random Forest
App components 94.27 91.25 2.7 199721 3628 Random Forest
Res. folder entropy 86.10 82.69 10.5 1606 95 Random Forest
Layout files 85.75 77.79 6.3 1359 233 Random Forest
Instr. per method 85.64 86.59 15.3 1337 108 Random Forest
Statistical analysis 79.92 75.44 15.6 2936 203 Random Forest
Codesize 76.12 79.34 27.1 3 394 KNN-5
Intents 74.24 50.82 3.26 3579792 3108 Random Forest
Features 52.63 98.75 92.92 258 169 Bayesian Network
Native code 51.74 08.70 5.25 8 7 Naive Bayes
Exec. and zip-files 50.26 98.40 97.85 8 11 Naive Bayes

Tab. 1: Ranking of the single attribute sets
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4.4 Feature Combination Evaluation

As a second part of our evaluation, we have examined the performance of various combi-
nations of the attribute sets. The results for the best of them are summarized in Table 2.
The best performance with the accuracy over 97% was achieved by the combination of all
attributes extracted from the Android Manifest, namely permissions, features, intents, and
application components. Notably, we witnessed a slight accuracy increase if the features
were excluded from this set.

In general, the detection performance based on permissions was improved if such attributes
as the resource folder entropy, the opcode frequency or the layouts were added. On the
other hand, the permissions performed better on their own than in combination with opcode
sequences, application components, or statistical analysis attributes.

For the attribute set combinations the best classifier was also the Random Forest algorithm,
showing the best performance in vast majority of cases including the top combinations.

Acc., % TPR, % FPR, % Build Time, ms Test Time, ms Classifier

Manifest attr. without feat. 97.35 96.95 225 108310 1793 Random Forest

Manifest attr. 97.30 96.65 2.05 105550 1755 Random Forest

Perm. and entropy 96.80 96.35 2.75 4744 471 Random Forest

Perm. and oc freq. 96.40 93.69 0.9 2600 348 Random Forest

Perm. and layout 96.30 95.15 2.55 3979 350 Random Forest

Perm., layout, oc freq. 96.30 93.54 0.95 2682 350 Random Forest
Perm. and oc seq. 95.57 96.45 53 172122 9 J48

Perm., app comp., oc freq. 95.35 91.64 0.95 17962 856 Random Forest

Perm. and stat. analysis 95.22 94.05 3.6 3186 393 Random Forest

Tab. 2: Ranking of the attribute set combinations by accuracy

5 Discussion

The results presented in the previous section indicate that the best performing attributes
can be derived rather from an app’s metadata stored in the Android Manifest than from
the actual code of an app, although the code based attributes like opcode frequency and
sequences also performed quite well. The reason is the nature of Android permissions
which more or less precisely declare all the security-critical actions an app can possibly
perform.

One the one hand, the Manifest attributes can provide a reliable and easy way to detect
malicious apps, which does require neither static nor dynamic analysis of the code. On the
other hand, the actual behavior of an app can be theoretically only derived from its code, a
fact that inevitably leads to the possible drawbacks of the metadata-based detection: either
a high false-positive rate, or high risk of missing truly malicious apps, i.e., low true positive
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rate. Indeed, Table 1 shows, that the permissions on their own tend to have a comparatively
high false positive rate.

The code attributes such as opcode frequencies and sequences, on the contrary, seem to be
tightly bound with the actual behavior of an app defined by its code base, and therefore
show much lower false positive rate as single attribute sets. Furthermore, in combination
with permissions, opcode frequencies prove themselves as the most conservative attributes,
with the least false positive rate.

The practical implementation of the malware detection tool based on our results has two
options. First, it can be performed on device, which means an autonomous detection without
Internet connection is possible, at cost of higher runtime overhead and the need of having
the up-to-date trained classifier stored locally. Second, one could submit either the apk
file itself, or the extracted attribute vector to a cloud for the analysis. Since in general it is
associated with less overhead and it does not expose the classifier to the public, the second
option seems to be more reasonable.

From the practical point of view, the main advantage of the strictly Manifest-based attributes
would be the absence of the need to analyze code or other parts of the app, which would
result in a much lower overhead. However, in our opinion, this advantage is outweighted by
the disadvantage of having higher false positive rate, which is a quite important feature, as
its high value would restrict users from installing benign applications.

Furthermore, for a practical anti-malware tool a test time would become a parameter of
a higher importance. In our case, the best performing classifier Random Forest, despite
having a high time consumption for training, can perform classification in relatively short
amount of time.

6 Conclusion

In this paper we have examined different attributes according to their performance for
machine learning based detection of Android Malware. In total, 11 previously known and
new feature sets were evaluated as stand-alone attributes and in various combinations.
Summarizing the results, we can point out that the leadership among the single feature
sets belongs to Android permissions, which achieved accuracy of about 96%. For the
combination of the attributes, the best performance was achieved by the following Manifest
attributes: permissions, intents, and application components with over 97% accuracy. In
both cases, the best accuracy was reached by the Random Forest classifier. Therefore, our
results suggest the use of this combination either for a purely static detection approach, or
as a 'reinforcement’ of dynamic or hybrid tools like MobileSandbox [Sp13].
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