An Access Control Servicefor Dynamic and Hierarchical
Resour ces. Declarative Model and I mplementation on top

of XACML
Giuseppe Psaila(® Fulvio Biondi(®
M Universita degli Studi di Bergamo ¥ Ingenium Technologyn sir.l.
Facolta di Ingegneria ViaPhilips 3
VialeMarconi 5 1-20052 Monza (M1), Italy

1-24044 Dalmine (BG), Italy

psaila@unibg.it fulvio.biondi@ingeniumtech.it

Abstract: The increasing complexity of (distributed) information systems requires
new solutions for dealing with access control problems. In particular, information
systems are based on a large number of resources, with very complex structure, that
must be accessed by alarge variety of users. Traditional and instance based solutions
are not adequate.

In this paper, we propose a new approach to the problem. First of all, we define
an access control model which is declarative, modular, hierarchical and instance inde-
pendent, so that it is suitable for highly dynamic contexts. Then, we reports about the
implementation of a Profile Service, which effectively exploits the XACML technol-
ogy to simplify and shorten the devel opment.

1 Introduction

The increasing complexity of (distributed) information systems requires new solutions for
dealing with access control problems. In particular, information systems are based on a
large number of resources, with very complex structure, that must be accessed by alarge
variety of users. Traditional and instance based solutions are not adequate.

Thisis the case of the I-Service system, developed by |ngenium Technology [Ing], which
provides Service Level Management support: any kind of service can be monitored; agree-
ments over the quality of service are modeled in the system and reports based on the agree-
ments are generated. Thus, this is a complex system that can be used by an incredible
variety of users. system administrators, managers of the company providing the service,
managers of the customer company, etc.. Furthermore, several services can be monitored
at the same time and resources involved in these services can be a very large number and
can vary in avery dynamic way.

In the context of access control solutions (we can cite just a few works [DPS03, BDS02,

93

JSS*01, GM, DSDP02], sincethis areais extremely dynamic; however, [DPS03] isanin-
teresting and recent survey), an interesting technology is XACML (XML Access Control
Modeling Language), a proposal of the OASIS group: thisis avery powerful and declara-
tive specification language, provided with alibrary, that constitute a framework on top of
which it is possible to define more abstract access control models. Thus, it is not suitable
as apractical solution, but allows to build simple and powerful solutions.

Inthis paper, wetry to solve the above mentioned problem by proposing a new approach to
the problem. First of all, we define an access control model which is declarative, modular,
hierarchical and instance independent, so that it is suitable for highly dynamic contexts;
the model is introduced and explained by means of a running example, inspired to the |-
Service system. Then, we reports about the implementation of the Profile Service based on
the proposed model within the I-Service system; in particular, we discuss the architecture
of the Profile Service, whose implementation exploits the XACML technology, showing
how this solution provides significant advantages, in that it simplified and shortened the
development of the Profile Service.

The paper is organized as follows. Section 2 describes the problem, by moving from fea-
tures of the I-Service system. Section 3 introduces the access control model, and explains
it by means of several examples. Section 4 discusses the main features concerning the
implementation of the Profile Service within the I-Service system; in particular, Section
4.1 briefly introduces the main features of XACML, while Section 4.2 describes the archi-
tecture in details. Finally, Section 6 draws the relevant conclusions.

2 TheProblem

We introduce the problem by talking about the context from which it generated, i.e. the
I-Service system developed by Ingenium Technology [Ing]. |-Service is a Service Level
Management (SLM) system. it can be exploited by organizationsto monitor the quality of
a service (network service, back office service, etc., i.e. not necessarily an ICT service).
By means of Inspectors, the system gathers a large volume of raw datathat are later used
to evaluate the quality of the service, for example by generating reports or by defining
complex evaluation formulas that compare the actual service level with the desired service
level, for example, as specified by a Service Level Agreement (SLA). Thus, the system
is complex, usually deals with a large number of resources and with a large number of
users; nevertheless, the structure of resources might be very complex, and not every user
is allowed to access and/or perform actions on every resource or resource component, due
to privacy concerns.

Consider, for instance, the case of reports. They are a family of resources, where each
report is aresource instance. A report contains several sub-resources, such as Charts and
Matrices, as well as resources corresponding to Data Sources and Aggregation Functions
(which compute aggregate values for large sets of values). If we consider a Matrix, its
specification is based on (thus contains) a pool of resources, such as Style Parameters,
Cell Definitions, and so on; consequently, instances of these resources are contained in

94

Chart

.| Style Parameter
Report| M ~EdT Defmition
Aggregate Function
Data Source

Table 1: Containment Relationship among resources for Reports.

an instance of Matrix, which is contained in an instance of Report. Table 1 shows this
relationship.

This structure usually becomes rather complex, and may contain hundreds of resource
instances in practical cases; furthermore, several users may access these resources with
different roles (for example, report manager, executive, customer, etc.); to further com-
plicate the situation, these resource instances may change dynamically. The main result
of this situation is that an instance oriented access control model is not suitable for this
context.

The problem can be summarized as follows.

Consider a set of resources, where each resource has a set of parameters and contains
a set of sub-resources; sub-resources are recursively defined in the same way. Given a
group of users G, it must be possible to assign access rights to usersin G such that they
concern a sub-set of resources, are properly propagated to sub-resources, and are not tied
to specific instances of resources.

3 TheModd

The access control model defined to cope with the problem introduced in Section 2 is based
on severa different concepts. They can be divided into two main categories. Resources
andProfiles. We now introduce the concepts, by describing the syntax to specify them.

In the following, we write non-termina symbols in italic; the derivation rule for a non-
termina symbol isin the right hand side of symbol :=; multiple repetitions of symbols or
expressions are denoted as (expr) (i.e. the repeated expression is enclosed in bold face
parenthesis followed by x); the symbol | denotes alternatives.

3.1 Resources

Resour ce Schema. The basic concept in our model is the Resource Schema. It definesthe
structure of typologies of resources, and defines the containment relatiosnhips between
resource typologies. The syntax of a resource schema definition (ResourceSchemaDef) is
the following.

95

ResourceSchemaDef .=
ResourceSchema (Family: Typology- >Containedin) =
[(ParameterDef)x] { (‘ActionDef)x}

where Family is the family which the defined resource typology belongs to, Typology
is the name of the resource typology under definition, Containedin is the name of the
resource typology that contains the resource typology under definition (the family of both
resource typologies must be the same). Between square brackets it is possible to define
a list of parameters (Parameter Def) which characterize the resource typology; between
curly brackets it is possible to define the set of actions (ActionDef) allowed in resource
instances belonging to the typology under definition.

The syntax of ParameterDef is
ParameterDef := (ParamName, ParamType, [(ComparisonOp)x])

where, for each parameter, it is necessary to specify the name, the data type and a list of
comparison operators alowed for matching against the parameter.

Similarly, the syntax of ActionDef is
ActionDef := (ActionName, ActionScope)

where, for each action, it is necessary to specify the name and the scope, that can be either
common (i.e. the action is propagated to contained resource typologies) or custom (the
action is proper of the typology under definition only).

If aresource typology is not contained in any other resource typology, the feature Con-
tainedin can be omitted. However, if the feature Containedin is specified, the following
constraint must hold: given a resource typology 7'; that contains another resource typol-
ogy 1>, if we denote with Par(T1) and Par(T2) the set of parameters for 7; and 75,
respectively, it must be Par(T1) C Par(T2). The meaning of this condition is that T
inherits all the parameters of T, adding to these specific parameters; for the sake of sim-
plicity in the specification, inherited parameters must not be redefined. The same is for
common actions, that are inherited by contained resources.

Example 1. Consider the problem of defining reports. We might define the schema for
reports, matrices and style parameters as follows..

ResourceSchema (Reports:Report) =
[(Name, String) (Customer: String) (Service: String)]
{ (Create, common) (Modify, common) (Show, common) }
ResourceSchema (Reports:Matrix->Report) =
[(MatrixId, String) (Importance, Int, [< = >])]
{ (Approve, custom) }
ResourceSchema (Reports:StyleParameter->Matrix) =
[(StyleName, String) (1 { }

Report isthe main typology for family Reports (it is not contained in any other ty-
pology); its parameters are the report Name, the identifier of the Customer that receives
the service, and the service type; furthermore, three actions are possible, i.e. Create,
Modify and Show, that can beinherited by contained resources. A Matrix iscontained

96

| Typology | Parameters | Actions

Report Name Customer Service | Create Modify Show
Matrix Name Customer Service | Create Modify Show
-> Report MatrixId Importance Approve
StyleParameter | Name Customer Service | Create Modify Show
-> Matrix MatrixId Importance

StyleName

Table 2: Resource Typologies defined in Example 1.

inaReport, hasaname (MatrixName) and anumerical value (Importance), which
denotes the importance of the matrix in the report; notice that three comparison operators
< = > are alowed.; an action Approve is added to the inherited ones (it is custom,
thus not inherited below). Finally, resources StyleParameters are contained in ma-
trices. for this typology, only parameter StyleName is added to the ones inherited from
Matrix, while no actions are added. Table 2 shows the complete schemas for the three
defined resource typologies. O

Resource Group. Defined schemas for resources, it is possible to define resource groups,
i.e. groups of resource instances with some common features (notice that instances may be
apriori infinite and can dynamically change). The syntax of aresource schema definition
(ResourceGroupDef) is the following.

ResourceGroupDef :=
ResourceGroup (ResourceGroupName) = (Family : Typology)
[((ParamName, ParamValue, ComparisonOp))1

where ResourceGroupName is the name of the resource group under definition, Fam-
ily : Typology is the resource typol ogy which resource instances belong to. Between square
bracketsit is possible to define the list of values for parameters: it is necessary to specify
ParamName, i.e. the name of the resource parameter (defined in the schema of the re-
source typology) and the parameter value ParamVal ue; furthermore, ComparisonOp is the
comparison operator used to match resource instances. a resource instance r is matched
if, for each parameter specification ParamName;, it holds
r.ValueO f (ParamName;) ComparisonOp; ParamVvalue;

where r.ValueO f (ParamName;) denotes the value of specified parameter for instance r,
while ParamValue; isthe parameter value. In case only one comparison operator is defined
in the schema of the resource typology, thisis the default comparison operator and it can
be omitted where the parameter appears in the resource group definition.

The left hand side of Figure 1 shows the relationship between resource schema and re-
source groups. In particular, the solid line arrow means that resource groups are sets of
instances of resource typologies.

Example 2: We define three resource groups.

ResourceGroup (Rep_sl cl)=
(Reports:Report) [(Service, "sl1") (Customer, "cl")]

97

ResourceGroup (Rep_cl) =
(Reports:Report) [(Customer, "cl")]

ResourceGroup (ImportantMatrix cl)=
(Reports:Matrix) [(Customer, "cl") (Importance, 3 <)]

The first one contains all reports concerning service of type "s1" and customer "c1";
the second one all reports concerning customer "c1"; the third one al matricesin re-
ports concerning services for customer "c1" with Importance lessthan 3, thus very
important (observe that parameter Customer isinherited from Report). O

3.2 Profiles

Over resource schemas and resource groups, it is possible to define profiles. In particular,
we considered three levels of profiles: Roles (defined for resource schemas), Responsibil-
ities (defined for resource groups) and User Profiles (defined for single users and related
with roles, responsibilities and specific resource groups).

Role. A roleis a set of permissions, which specify which actions can be performed on
resources by users associated to the role. A role considers only the schema of resources.
The syntax of arole definition (RoleDef) is the following.

RoleDef := Role (RoleName) = [(TypologyGrant)]

where RoleName is the name given to the role. Between square brackets, it is possible
to define the list of grants concerning typologies (TypologyGrant). Their syntax is the
following

TypologyGrant := Grant _for_Typology (Family: Typology,
{ ((ActionName))=}, PropagationMode)

where Grant _for_Typology specifies the resource typology for which the grant is
defined and the set of actions allowed (within curly brackets). The PropagationMode can
be of two types: if itis local, the grant islimited to the typology for which it is defined;
if itispropagate, the grant is propagated to all contained resource typologies, for all
actions defined as common (thus, inherited by contained resource typologies).

Example 3: Based on the schema for reports, we can define the standard role for report
administrators; notice that the grant is propagated, so that automatically all contained re-
sources can be managed though this role (it implicitly grants actions Create, Modify
and Show for Matrix and StyleParameter).

Role (ReportAdmin) =
[Grant for Typology (Reports:Report,
{ (Create) (Modify) (Show) }, propagate)]
O

Responsibility. A role is independent of specific resource instances. To set up grants
concerning resource instances, but still independent of specific users, the concept of Re-
sponsibility must be used. The syntax of a responsibility definition (ResponsibilityDef) is

98

the following.

ResponsibilityDef :=
Responsibility (ResponsibilityName) = [(RoleGrant | ActionGrant)x]

where ResponsibilityName is the name of the defined responsibility. Within square brack-
ets, it is possible to define alist of grants, that can be either of type RoleGrant or of type
ActionGrant. RoleGrant grants permissions about roles; ActionGrant grants actions on
resource groups, independently of therole. The syntax for RoleGrant is

RoleGrant := Grant Roles ({((RoleName))}, { ((GroupName))})

where between thefirst curly brackets it is possible to define a set of role names, whilein
the second curly brackets it is possible to define a set of resource group names for which
the previous set of rolesis granted.

The syntax for ActionGrant is

ActionGrant := Grant _Actions ({ ((ActionName))x}, {((GroupName))x},
PropagationMode)

where between thefirst curly bracketsit is possible to define a set of granted action names,
while in the second curly brackets it is possible to define a set of resource group names
for which the previous set of actionsis granted. Finaly, if PropagationModeis 1ocal,
the grant is limited to resource instances in the resource group for which it is defined; if it
ispropagate, the grant is propagated to all contained resourceinstances, for al actions
defined as common (thus, inherited by contained resource typologies).

Example 4: Suppose we want to define some responsibilities for reports.

Responsibility (Manager cl)=

[Grant Roles ({ (ReportAdmin)}, {(Rep c1)})]
Responsibility (Standard User cl)=

[Grant Actions ({(Show)}, {(Rep cl1)}, propagate)

Responsibility Manager_c1 grants the role ReportAdmin for resources in the re-
source group Rep _c1; consequently, thisresponsibility allows actions Create, Modify
and Show on resource instances of type Report, Matrix and StyleParameters
(since the propagation mode was set to propagate in the role). Responsihility
Standard User_c1 grantsaction Show on all reportsand sub-resourcesin the resource
groupRep_cl. O

User Profiles. Finaly, it is necessary to grant permissions to single users, i.e. defining
User Profiles. The syntax of a user profile definition (User ProfileDef) is the following.

UserProfileDef := UserProfile (UserProfileName) =
{((UserName))« } [((RoleGrant| ActionGrant | RespGrant))x]

where UserProfileName is the name given to the profile. The list of users, to which this
profile is granted, is reported within the first parenthesis. Within square brackets, it is
possible to specify alist of grants: a grant can be a RoleGrant (previously defined), or an
ActionGrant (previously defined) or a RespGrant that grants responsibilities. The syntax
of RespGrantis

99

RespGrant := Grant Responsibilities ({((ResponsibilityName))})

where, within curly brackets, it is possible to specify the list of granted responsibilities.
Notice that the propagation mode is specified in the definition of responsibilities.

Example5: Finally, we can define user profiles.

UserProfile(cl users)={ (John) (Jim)) }
[Grant Responsibilities ({ (Standard User c1})]
UserProfile (¢l _manager)={ (Jeff))}
[Grant Actions ({ (Approve}), {(ImportantMatrix c1)},
local)]l
UserProfile (manager for cl and sl1)={(Jack) }
[Grant Role ({ (ReportAdmin)}, {(Rep sl c1)})]

User profile c1_users grants responsibility Standard User_cl to users John
and Jim: they can show all reports and sub-resources in the resource group
Rep_cl. User profile cl_manager grants user Jeff (which should belong
to enterprise c1) action Approve for resource instances in the resource group
ImportantMatrix_cl: thus, Jeff can approve matrices in the report. Finally, user
profilemanager_for_cl_and._s1 grants Jack (which belongsto the enterprise provid-
ing the service) therole Reportadmin for resourcesin the resource group Rep s1 c1:
thus, Jack can perform actions Create, Modify and Show on al reports and sub-
resources for which customer is "c1" and the servicetypeis"s1". O

The right hand side of Figure 1 shows dependencies between concepts about profiles,
while the overall figure shows dependencies between all defined concepts. In particular,
dotted line arrows means that a generic profile (either role or responsibility) is granted,
while dashed line arrows denotes that actions are granted for resources (either resource
typologies or resource instances).

4 Implementation

The profile service based on the model presented in Section 3 has been implemented in
the I-Service system. Fully implemented in the Java Language, it exploits the XACML
technology.

41 XACML

XML Access Control Modeling Language (XACML, [XAC4d]) isan initiative coordinated
by the OASIS group. XACML presents several interesting features, making it a modern
solution for access control.

General architecture. XACML envisions an architecture for access control where sepa-
rate components are responsible for the different roles of the access control mechanism.

100

|
Resources | Profiles
|
|
|
|
|
Resource 1
Schema e R Role M
|
| i
‘ :
|
S B |
1
Resource | -
. T Responsibility
Group ‘
i | I
| -
| | -
|
|
|
|
| |
o _____ _‘(,,,,,,,, User
! Profile
|
|
|
|

Figure 1: Structure of the Model.

The architecture envisions four distinct actors.

e Policy Administration Point (PAP): it represents the component that manages the
access control policies;

¢ Policy Execution Point (PEP): it represents the component that controlsthe resource
to which accessis required;

e Policy Decision Point (PDP): it represents the component that evaluates an access
request, typicaly sent by a PEP, and determines if it is consistent with the defined
access control policy;

e Policy Information Point (PIP): it represents the component that supports the con-
struction of access reguests.

Access policies are created on the PAP. When a subject requires access to a resource man-
aged by the PEP, the PEP creates arequest that is sent to the PDP. The request will contain
a description of the subject requesting access, of the resource asked, and of the action that
the subject requires on the resource. The request will contain additional information de-
scribing the time and in general the environment where the request originated; the PIP is
designed to support the construction of this portion of the request. The PDP receives the
request and evaluates it with respect to the policy provided by the PAP; it then returns a
positive or negative answer.

101

In this architecture, XACML specifies the XML format in which the policy is described.
It also specifiesan XML format for the request.

One of the main advantages of XACML is its compatibility with novel Web and network
applications, that require a distributed construction of access control services. The design
of XACML tried to reach a balance between the comprehensiveness of the specification,
which increases the degree of cooperation that systems built around XACML will be able
to offer, and its flexibility, which makes an application able to extend it to suit its specific
needs.

We can resume the advantages of using XACML. First of all, XACML is an open for-
mat, based on XML and independent of the platform. Second, it is totally declarative, in
that resources do not have to be specified by their identities; it overcomes the classical
distinction between the representation of the access control matrix in terms of ACLs or
capabilities. Finaly, XACML isscaable; in fact, it allows the integration among different
policies, defined in separate contexts.

Nevertheless, XACML isdifficult to use. In fact, it isavery powerful instrument, but both
the XML syntax, and its generality (i.e. it is not tied to any particular type of resources)
make it difficult to be directly used to express complex access rights structures, such as
the ones proposed in this paper. In contrast, it is a good tool, provided that a higher level
model has been devised: concepts and access rights expressed in this higher level model
can be automatically mapped into complex XACML PDP specifications; then, an XACML
engine can effectively validate requests to access resources.

4.2 Architecture

The architecture of the profile service is reported in Figure 2. Its definition has been con-
ditioned by the overall architecture of the I-Service system, where the server side provides
core functionality, such as instantiation of services, data storage, etc.. On the client side
heterogeneous applications can be executed, such as configuration and management con-
soles, report generators, etc... Thus, the profile service can be exploited by any client
application in the system. Let us describe the architecture, by discussing how the compo-
nents interact.

1. The client application provides username and password to the Local Profile Manager,
aclient side object that is responsible to communicate with the server side.

2. The Local Profile Manager transmits username and password to the Server profile
Manager, an always running service that authenticates the user.

3. The Server Profile Manager exploitsits repositories for user authentication and, in case
of success, for deriving a Profile Description for the logged on user; this description is
obtained by analyzing all direct and indirect grants specified for the user.

4. The Profile Description is received by the Local Profile Manager, which generates a
Profile object. This newly generated object is actually able to handle authorizations over

102

Client Side Server Side

Repository Repository

| [I |
1 1 | 1
| Client j | |
l Application : l :
!	
[
[
1 1 1 1	
I ! I I	
! 1 6 7 : !	
j _	
! Profile 4 Description : Server Profile :	
/	Manager
I 5 ! I I	
I ! I I	
Local Profile 5 ! — -	
I I

| Manager ; [user Profile | !
I ! I I
I ! I I
I ! I I

Figure 2: Architecture of the Profile Service.

specific resource instances.
5. The Profile object is passed to the Client Application.

6. When the Client Application has to perform a specific action on a specific resource
instance, it asks the Profile object to know if the action is allowed for the user.

7. The Profile object gives or denies the required authorization, by exploiting the XACML
engine to formulate the answer.

The Profile Object. The Profile Description object is simply a seriaizable object that
describes the portion of model concerning the logged on user. In practice, the Server
Profile Manager explores all grants, and extracts all of them that concern the user; these
are described by the Profile Description object.

From this, the Local Profile Manager builds a Profile object. By exploiting the descrip-
tion provided by the Profile Description object, the corresponding XACML formulationis
derived and an XACML PDP s built.

At this point, when the Client Application requires the authorization to perform an ac-
tion on a given resource instance, it passes the required action and the full description
of the resource instance (i.e. the values of parameters, as in the resource schema) to the
CheclPermission method of the Profile object. The Method generates an XACML request,
that is submitted to the XACML engine provided the PDP. The XACML engine resolves
the request and its answer is sent back to the Client Application.

We exploited Sun’'s XACML engine, freely available on the Internet [XACb]. Thisengine
is fully implemented in Java, and provides a rather complete implementation of XACML
standard. In practice, this engine providestwo features: at first, it loadsaPDP, which spec-
ifies access policies to resources; then, it evaluates requests to access specific resources,
allowing or denying the access, based on the previously loaded PDP.

103

Advantages Provided by XACML. Although the access control model we defined is not
based on XACML (in fact, it does not exploit any specific concept provided by XACML),
however the exploitation of XACML provided several advantages in the implementation.
Thefirst we can notice is that the Profile class was built by working at a declarative level:
in fact, the XACML engineis driven by deriving a declarative specification (the XACML
specification for PDP) from a data structure. A second advantage is the modularity of
an XACML specification: in fact, for each component in the access control model, i.e.
resource schemas, resource groups, roles, responsibilities and user profiles, an XACML
fragment is generated in isolation, ignoring the other components. All these XACML
fragmentsare composed together in aunique XACML PDP specification in avery modular
way. Them, it isthe XACML engine that exploits all dependenciesto answer the request.
Conseguently, athird advantage was provided by the exploitation of XACML.: the time of
development was rather short, since the programmerswere ableto build the Profile classin
afew days, because they exploited the powerful features provided by the XACML engine
(we can figure out that the development, without using XACML, of a Java class able to
evaluate the proposed access control model would have required at least three months, due
to the semantic richness of the proposed model).

5 Reated Work

The problem of access control has been recognized as a crucia problem in information
systems sincethirty yearsago. The problem can be easily stated asfollows. aninformation
system has to protect data and resources against unauthorized disclosure (secrecy) and
unauthorized or improper modifications (integrity), while at the same time ensuring their
availability to legitimate users (no denials-of-service); enforcing protection thus requires
that every accessto asystem and itsresources be controlled and that al and only authorized
accesses can take place [SDO1].

The problem can be considered at different levels, i.e. at the level of security policy, at the
level of security model and at the level of security mechanism. This paper is concerned
with the security model level.

There hasbeen along series of articles and works on the topic of access control modelsand
mechanisms. It would be impossible to discuss this history in the limited space available
for the paper. Anyway, we want to relate our work with some key situations.

First of all, our model is substantially a role based model [OSMOQ]; this is a necessary
choice, since it has to deal with alarge number of resources and alarge number of users.
Second, our model cannot be an Access Control List-based (ACL-based) model, since the
number of resourcesis large, and resources are hierarchically structured and dynamically
change. Furthermore, solutions devel oped for databases (see, for instance, [Da95, PB95])
arenot suitableaswell, sincethe nature of data (i.e. resourcesin the database context) does
not correspond to the nature of resources (based on a hierarchical relationship denoting
containment) typical of our application context. Finally, not even aview of resources such
the one typical of directory systems is suitable [GM]: this is due to the fact that in our

104

context, a resource contains other resources, and contained resources inherit properties
from the container resource.

The reader can refer to [DPS03, BDS02, JSS™ 01, DSDP02] for recent works and surveys
on the topic.

6 Conclusions

In this paper, we present an innovative approach to solve access control problemsin com-
plex information systems. In particular, the approach was devised to deal with sets of
complex and hierarchical resources, in order to express access rightsin a very declarative
way, and independently of the specific set of resource instances. This latter requirement
was fundamental to deal with highly dynamical contexts. The practical application context
that generated the problem was the |-Service system, a Service Level Management (SLM)
system produced by | ngenium Technol ogy.

We afforded the problem in two steps. First of all, we devised the access control model;
the model is based on ahierarchical structure, in order to capture complex situations (con-
cerning roles and responsibilities for users) declaratively and with a very reduced num-
ber of rules, being at the same time independent of the specific resource instance. Then
(second step), we implemented the profile service in the I-Service system, by exploiting
XACML, the OASIS's proposalsfor access control problems, and the SUN’s implementa-
tion [XACb]. The exploitation of XACML was very effective, in that allowed us to work
in a declarative and modular way, thus simplifying the development and dramatically re-
ducing the time of development (a few days against the estimated three months without
using XACML).

References

[BDS02] Bonatti, P, De Capitani di Vimercati, S., and Samarati, P.: An algebra for composing
access control policies. ACM Transactions on Information and System Security. 5(1):1—
35. February 2002.

[Dags] Date, C. J.: An Introduction to Database Systems. Addison Wesley. sixth edition, 1995.

[DPS03] De Capitani di Vimercati, S., Paraboschi, S., and Samarati, P.: Accesscontrol: Principles
and solutions. Software - Practice and Experience. 33(5):397—421. April 2003.

[DSDPO2] Damiani, E., Samarati, P, De Capitani di Vimercati, S., and Paraboschi, S.: Xml access
control systems: a component-based approach. Informatica (Sovenia). 26(2). 2002.

[GM] Goodwin, M. and McDonell, K. J.: Access control for network directory systems. In:
Proceedings of the ACM SIGCOMM conference on Communications architectures and
protocols, 1986, Sowe, Vermont, United States August 5-7, 1986.

[Ing] Ingenium Technology Web Site. http://www.igenium-tech.it.

105

[JSST01]

[OSMO00]

[PBO5]

[SDO1]

[XACd]

[XACh]

Jgjodia, S., Samarati, P, Sapino, M., , and Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems. 26(2):214—
260. June 2001.

Osborn, S., Sandhu, R., and Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Transactions on IN-
formation and System Security. 3(2). 2000.

Polk, W. R. and Bassham, L. E.: Security issuesin the database language SQL . Technical
Report NIST Special Publication 800-8. Institute of Standards and Technology. 1995.

Samarati, P. and De Capitani di Vimercati, S.: Access control: Policies, models, and
mechanisms. Riccardo Focardi, Roberto Gorrieri (Eds.): Foundations of Security Anal-
ysisand Design. Lecture Notesin Computer Science 2171. 2001.

OASIS XACML Web Site. http: /iMmmw.0asi s-open.org/committees/tc_home.php
2wg-abbrev=xacml.

Sun’s XACML Implementation. http://sunxacml.sourceforge.net.

106

