Formally Specifying Operational Semantics and Language
Constructs of Forensic Lucid

Serguei A. Mokhov Joey Paquet Mourad Debbabi
Faculty of Engineering and Computer Science
Concordia University, Montréal, Québec, Canada,
{mokhov, paquet, debbabi}@encs.concordia.ca

Abstract: The Forensic Lucid programming language is being developed for inten-
sional cyberforensic case specification and analysis, including the syntax and oper-
ational semantics. In significant part, the language is based on its predecessor and
codecessor Lucid dialects, such as GIPL, Indexical Lucid, Lucx, Objective Lucid,
and JOOIP bound by the intensional higher-order logic that is behind them. This work
continues to formally specify the operational semantics of the Forensic Lucid language
extending the previous related work.

1 Introduction

We further define a functional-intensional programming language, called Forensic Lucid.
This forensic case specification language is under extensive design and development in-
cluding its syntax, semantics, their formalization and correctness proofs, the correspond-
ing compiler, run-time environment, and interactive development environment. This work
further extends our previous developments in the related work [Mok04, Mok(07b, Mok07a,
MPO08a].

1.1 Problem Statement

A lot of Lucid dialects have been spawned from the 30+-year-old functional intensional
programming language called Lucid [WAS8S5, Edw95, Zha97, AW76, AW77a, AW77b,
FBI1, Du%4, GP99, Paq99, WAPO05a, Agi95]. Lucid itself was invented with a goal
for program correctness verification at the time. While there were a number of opera-
tional semantics rules for compilers and run-time environments developed for all those
dialects throughout the years. In this work we discuss a new dialect of Lucid that has
been created to foster the research in intensional cyberforensics (i.e. multidimensional
context-oriented cyberforensic specification and analysis), called Forensic Lucid, which,
in large part, is a union of the syntax and operational semantics inference rules from the
comprising languages with the forensic extensions based on the finite-state automate ap-
proach [Gla05, GP04]. In order to be a credible tool to use in court to implement relevant
tools for the argumentation, the language must have a solid scientific base, a part of which
is a complete formalizing the syntax and semantics the language.

197

1.2 Proposed Solution

Based on the previous work to begin mechanized specification and proofs of Forensic
Lucid constructs, their equivalence to the comprising dialects for the correctness aspect
verification, in Isabelle [PNO7], a prover assistant program [MPO8a], we further expand
and refine the syntax and operational semantics’ inference rules extended with the ones
of the comprising Lucid dialects. We proceed with the “core” Lucid dialects such as
GIPL [Paq99, PMTO08], a conservative subset of Lucx [PMT08] to Objective Lucid [MP05,
Mok05], JOOIP [WPMOS8], MARFL [MokO8] and finally Forensic Lucid, to arrive to a
comprehensive set of syntactic and semantic rules covering the dialects.

1.3 Organization

We first rehash the notion of intensional logic and programming for the unaware reader.
We present the refined syntax and the semantics of the language properly attributing the
inherited language constructs and rules, and the extensions of the language.

1.4 Intensional Programming

1.4.1 Definitions.

Intensional programming (IP) is based on intensional (or multidimensional) logics, which,
in turn, are based on Natural Language Understanding (aspects, such as, time, belief,
situation, and direction are considered). IP brings in dimensions and context to programs
(eg. space and time in physics or chemistry). Intensional logic adds dimensions to logical
expressions; thus, a non-intensional logic can be seen as a constant or a snapshot in all
possible dimensions. Intensions are dimensions at which a certain statement is true or false
(or has some other than a Boolean value). Intensional operators are operators that allow
us to navigate within these dimensions. Higher-order Intensional Logic (HOIL) [MP08b,
MPO08a, Ron94] is the one that couples functional programming as that of Lucid with
multidimensional dataflows that the intensional programs can query an alter through an
explicitly notion of contexts as first-class values [Wan06, PMTO8].

1.4.2 An Example of Using Temporal Intensional Logic.

Temporal intensional logic is an extension of temporal logic that allows to specify the time
in the future or in the past.

(N Ej :=itis raining here today

Context: {place:here, t ime :today}

2) E5 := it was raining here before(today) = yesterday

198

3) Ej := it is going to rain at (altitude here + 500 m) after(today) = romorrow

Let’s take E1 from (1) above. Then let us fix here to Sydney and assume it is a constant.
In the month of February, 2008, with granularity of day, for every day, we can evaluate E;
to either true or false:

Tags: 1234567289
Values: F F T TTFFFT

If one starts varying the here dimension (which could even be broken down to X, Y, Z),
one gets a two-dimensional evaluation of E:

City: / 1234567829
Sydney FFTTTFFFT
Moscow FFFFTTTTFEFF
Ottawa FTTTTTTFTFETF

1.4.3 Lucid Summary

Lucid [WAS85, Edw95, AW77b, AW76, AW77a] is a dataflow intensional and functional
programming language. In fact, it is a family of languages that are built upon intensional
logic (which in turn can be understood as a multidimensional generalization of tempo-
ral logic) involving context and demand-driven parallel computation model. A program
written in some Lucid dialect is an expression that may have subexpressions that need to
be evaluated at certain context. Given the set of dimension D = {dim;} in which an ex-
pression varies, and a corresponding set of indexes or fags defined as placeholders over
each dimension, the context is represented as a set of <dim; : tag;> mappings and each
variable in Lucid, called often a stream, is evaluated in that defined context that may also
evolve using context operators [TPMO07, WAPO5b, Wan06]. The generic version of Lucid,
GIPL [Paq99], defines two basic operators @ and # to navigate in the contexts (switch
and query). The GIPL is the first! generic programming language of all intensional lan-
guages, defined by the means of only two intensional operators @ and #. It has been
proven that other intensional programming languages of the Lucid family can be trans-
lated into the GIPL [Paq99]. Since the Lucid family of language thrived around inten-
sional logic that makes the notion of context explicit and central, and recently, a first class
value [WAPO5b, Wan06, PMTO8] that can be passed around as function parameters or as
return values and have a set of operators defined upon. We greatly draw on this notion by
formalizing our evidence and the stories as a contextual specification of the incident to be
tested for consistency against the incident model specification. In our specification model
we require more than just atomic context values — we need a higher-order context hierar-
chy to specify different level of detail of the incident and being able to navigate into the
“depth” of such a context. Luckily, such a proposition by has already been made [Mok08]
and needs some modifications to the expressions of the cyberforensic context.

I'The second being Lucx.

199

JLucid, Objective Lucid, and JOOIP. JLucid [Mok05, GMPOS5] was a first attempt on
intensional arrays and “free Java functions” in the GIPSY. The approach used the Lucid
language as the driving main computation, where Java methods were peripheral and could
be invoked from the Lucid part, but not the other way around. This was the first instance
of hybrid programming within the GIPSY. The semantics of this approach was not com-
pletely defined, plus, it was only one-sided view (Lucid-to-Java) of the problem. JLucid
did not support objects of any kind, but introduced the wrapper class idea for the free Java
methods and served as a precursor to Objective Lucid.

Objective Lucid [Mok05, MP05] is an extension of the JLucid language that inherits all
of the JLucid’s features and introduced Java objects to be available for use by Lucid. Ob-
jective Lucid expanded the notion of the Java object (a collection of members of different
types) to the array (a collection of members of the same type) and first introduced the
dot-notation in the syntax and operational semantics in GIPSY. Like in JLucid, Objective
Lucid’s focus was on the Lucid part being the “main” program and did not allow Java to
call intensional functions or use intensional constructs from within a Java class. Objective
Lucid was the first in GIPSY to introduce the more complete operational semantics of the
hybrid OO intensional language.

JOOIP [WPMO8] greatly complements Objective Lucid by allowing Java to call the in-
tensional language constructs closing the gap and making JOOIP a complete hybrid OO
intensional programming language within the GIPSY environment. JOOIP’s semantics
further refines in a greater detail the operational semantics rules of Lucid and Objective
Lucid in the attempt to make them complete.

MARFL. While not of strictly Lucid family or GIPSY, MARFL [MokO08] was nearly
entirely influenced by Lucid, and is based on overloaded @ and # operators as well as
allows to navigate into the depth of the higher-order contextual space using the dot op-
erator. The latter was indirectly (re-invented in part) influenced by iHTML and libin-
tense [Swo04, SWO00].

1.5 General Intensional Programming System (GIPSY)

The GIPSY [VPO05, PK0O, The08, Lu04, PGW04, Mok05, WP05, PW05] is a platform
implemented primarily in Java to investigate properties of the Lucid family of languages
and beyond. It executes Lucid programs following a demand-driven distributed generator-
worker architecture, and is designed as a modular collection of frameworks where compo-
nents related to the development (RIPE?), compilation (GIPC?), and execution (GEE?) of
Lucid programs are separated allowing easy extension, addition, and replacement of the
components. This is a proposed testing and investigation platform for our Forensic Lucid
language.

2Run-time Integrated Programming Environment, implemented in gipsy .RIPE
3General Intensional Programming Compiler, implemented in gipsy.GIPC
4General Eduction Engine, implemented in gipsy.GEE

200

2 Forensic Lucid Requirements and Design

This section lists concepts and considerations in the design of the Forensic Lucid language.
The language has been studied through a case study [MPDO07, MP08a] and another one is
under development [MP0O8b]. The end goal is to define our Forensic Lucid language where
its constructs concisely express cyberforensic evidence, which can be initial state of the
case (e.g. initial printer state when purchased from the manufacturer as in [GP04]), to-
wards what we have actually observed as a final state (e.g. when an investigator finds the
printer with two queue entries (Byelered; Bdelered))- The implementing system also back-
traces intermediate results to provide the corresponding event reconstruction path if it ex-
ists. The result of the expression in its basic form is either true or false, i.e. “guilty” or
“not guilty” given the context per explanation with the backtrace. There can be multiple
backtraces, that correspond to the explanation of the evidence (or lack thereof).

2.1 Features

We define Forensic Lucid to model the evidential statements and other expressions repre-
senting the evidence and observations as a higher-order context. An execution trace of a
Forensic Lucid program would expose the possibility of the proposed claim with the events
in the middle between the final observed event to the beginning of the events. Forensic Lu-
cid aggregates the features of multiple Lucid dialects mentioned earlier needed for these
tasks along with its own extensions.

Addition of the context calculus from Lucx for operators on Lucx’s context sets (union,
intersection, etc.) are used to address to provide a collection of traces. Forensic Lucid
inherits the properties of Lucx, Objective Lucid, JOOIP (and their comprising dialects),
where the former is for the context calculus, and the latter for the arrays and structural
representation of data for modeling the case data structures such as events, observations,
and groupings of the related data.

One of the basic requirements is that the complete definition of the syntax, and the oper-
ational semantics of Forensic Lucid should be compatible with the basic Lucx and GIPL,
i.e. the translation rules or equivalent are to be provided when implementing the language
compiler within GIPSY, and such that the GEE can execute it with minimal changes. The
most difficult aspect here is, of course, the semantics of Forensic Lucid (luckily, the bulk
of it is an aggregation of the semantic rules of the languages we inherit from).

2.2 Forward Tracing vs. Back-tracing

Naturally, the GEE makes demands in the demand-driven evaluation in the order the tree
of an intentional program is traversed. Tracing of the demand requests in this case will
be “forward tracing”. Such tracing is less useful than the mentioned back-tracing when
demands are resolved, when dealing with the back-tracing in forensic investigation in an

201

attempt to reconstruct events from the final state observations. Back-tracing is also nat-
urally present when demands are computed and return results. The latter may not be
sufficient in the forensic evaluation, so a set of reverse operators to next, fby, asa,
etc. is needed. The development of such operators is discussed further in the syntax and
semantics sections.

2.3 Context

We need to provide an ability to encode the stories told by the evidence and witnesses.
This will constitute the context of evaluation. The return value of the evaluation would be
a collection of backtraces, which contain the “paths of truth”. If a given trace contains all
truths values, it’s an explanation of a story. If there is no such a path, i.e. the trace, there is
no enough supporting evidence of the entire claim to be true.

The context for this task for simplicity of the prototype language can be expressed as
integers or strings, to which we attribute some meaning or description. The contexts are
finite and can be navigated through in both directions of the index, potentially allowing
negative tags in our tag sets of dimensions. Alternatively, our contexts can be a finite
set of symbolic labels and their values that can internally be enumerated. This approach
will be naturally more appropriate for humans and we have a machinery to so in Lucx’s
implementation in GIPSY [Ton08, PMTO08].

We define streams of observations as our context, that can be a simple context or a context
set. In fact, in Forensic Lucid we are defining higher-level dimensions and lower-level
dimensions. The highest-level one is the evidential statement, which is a finite unordered
set of observation sequences. The observation sequence is a finite ordered set of ob-
servations. The observation is an “eyewitness” of a particular property along with the
duration of the observation. As in the FSA [Gla05, GP04], the observations are a tuples of
(P,min,opt) in their generic form. The observations in this form, specifically, the property
P can be exploded further into Lucx’s context set and further into an atomic simple con-
text [Wan06, TPMO7]. Context switching between different observations is done naturally
with the Lucid @ context switching operator. Consider some conceptual expression of a
storyboard in Listing 1 where anythingin [...] represents a story, i.e. the context of
evaluation. foo can be evaluated at multiple contexts (stories), producing a collection of
final results (e.g. true or false) for each story as well as a collection of traces.

foo @

{
[final observed event, possible initial observed event],
[1,
[]

}

Listing 1: Intensional Storyboard Expression

While the [. . .] notation here may be confusing with respectto [dimension:tag] in

202

Lucid and more specifically in Lucx [Wan06, TPMO7], it is in fact a simple syntactical ex-
tension to allow higher-level groups of contexts where this syntactical sugar is later trans-
lated to the baseline context constructs. The tentative notationof { [...]1, ..., [...]}
implies a notion similar to the notion of the “context set” in [Wan06, TPMO07] except with
the syntactical sugar mentioned earlier where we allow syntactical grouping of properties,
observations, observation sequences, and evidential statements as our context sets.

The generic observation sequence can be expanded [GP04] into the context stream us-
ing the min and opt values, where they will translate into index values. Thus, obs =
(A,3,0)(B,2,0) expands the property labels A and B into a finite stream of five indexed el-
ements: AAABB. Thus, a Forensic Lucid fragment in Listing 2 would return the third A of
the AAABB context stream in the observation portion of 0. Therefore, possible evaluations
to check for the properties can be as shown in Figure 1.

// Give me observed property at index 2 in the observation sequence obs
o @.obs 2
where
// Higher—level dimension in the form of (P,min,opt)
observation o;
// Equivalent to writing
observation sequence obs
where
// Properties A and B are arrays of computations
// or any Expressions

{ A A, A B, B};
(A,3,0)(B,2,0);

A = [cl,c2,c3,c4];
B =E;
end ;

end ;

Listing 2: Observation Sequence With Duration

The property values of A and B can be anything that context calculus allows. The dimen-
sion type observation sequence is a finite ordered context tag set [PMTO8] that
allows an integral “duration” of a given tag property. This may seem like we allow du-
plicate tag values that are unsound in the classical Lucid semantics; however, we find our
way around little further in the text with the implicit index tag. The semantics of the arrays
of computations is not a part of either GIPL or Lucx; however, the arrays are provided by
JLucid and Objective Lucid. We need the notion of the arrays to evaluate multiple compu-
tations at the same context. Having an array of computations is conceptually equivalent of
running an a Lucid program under the same context for each array element in a separate
instance of the evaluation engine and then the results of those expressions are gathered in
one ordered storage within the originating program. Arrays in Forensic Lucid are needed
to represent a set of results, or explanations of evidential statements, as well as denote
some properties of observations. We will explore the notion of arrays in Forensic Lucid
much greater detail in the near future work. In the FSA approach computations ¢; corre-
spond to the state g and event i that enable transition. For Forensic Lucid, we can have c;
as theoretically any Lucid expression E.

In Figure 1 we are illustrating a possibility to query for the sub-dimension indices by raw

203

Observed property (context): A A A B B
Sub-dimension index: 0 1 2 3 4

o @.obs 0 = A
o @.obs 1 = A
o @.obs 2 = A
o @.obs 3 =B
o @.obs 4 =B

To get the duration/index position:

o Q@.obs A =
o @.obs B

w o
N

Figure 1: Handling Duration of an Observed Property in the Context

property where it persists that produces a finite stream valid indices that can be used in sub-
sequent expressions, or, alternatively by supplying the index we can get the corresponding
raw property at that index. The latter feature is still under investigation of whether it is
safe to expose it to Forensic Lucid programmers or make it implicit at all times at the
implementation level. This is needed to remedy the problem of “duplicate tags”: as previ-
ously mentioned, observations form the context and allow durations. This means multiple
duplicate dimension tags with implied subdimension indexes should be allowed as the se-
mantics of a traditional Lucid approaches do not allow duplicate dimension tags. It should
be noted however, that the combination of the tag and its index in the stream is still unique
and can be folded into the traditional Lucid semantics.

2.4 Concrete Forensic Lucid Syntax

The concrete syntax of the Forensic Lucid language is presented in Figure 2. It is in-
fluenced by the productions from Lucx [WAPO05b, Wan06], JLucid and Objective Lu-
cid [Mok05, GMPO05, MPO05], and Indexical Lucid [Pagq99]. Some of the syntactical
definitions can be, perhaps, implemented as a collection of macros. The evidential
statement, observation sequence, and observation dimension types can
be translated into dimension by some translation rules flattening them into simple con-
texts and context sets. The GIPSY compiler framework (GIPC) allows for the introduction
of such semantic translation rules to define new language variants. We will use this feature
as much as possible, though some of our syntactic constructs may have some underlying
semantic details that cannot be translated into generic Lucid primitives, in which case we
need to expand the existing semantics.

204

(01) E 1= id
(02) | E(E,...,E) #LUCX
(03) | E[E,...,E] (E,...,E) $GIPL
(04) | if E then E else E fi
(05) | #E
(06) | E@E E #GIPL
07) | ECQE #LUCX
(08) | E where Q end;
(09) | [E:E, ..., E:E] $LUCK
(10) | E bin-op E #INDEXICAL
(11) | un-op E #INDEXICAL
(12) | E i-bin-op E #INDEXICAL
(13) | i-un-op E #INDEXICAL
(14) | bounds
(15) | embed (URT, METHOD, E, E, ...) #JLUCID
(16) | E[E,...,E] #JLUCID
(17) | (E,...,E] $JLUCID
(18) | E.id #OBJECTIVE
(19) | E.id(E,...,E) #OBJECTIVE
(20) Q ::= dimension id,...,id;
(21) | evidential statement id,...,id [= ES];
(22) | observation sequence id,...,id [= 0S];
(23) | observation id,...,id [= 0 1;
(24) | id = E;
(25) | id(id,....,id) = E; $LUCX
(26) | idf[id,...,id] (id,....,id) = E; #GIPL
(27) | E.id = E; #OBJECTIVE
(28) | id.id,...,id(id,...,id) = E; #OBJECTIVE
(29) | Q0
(30) { 0S,...,05 } # evidential statement
(31) {0,...,0} # observation sequence
(32) pi= (E, E, E) # (property, min, opt)
| $ # no-observation (Ct, 0, infinitum)
| \O(E) # zero-observation (P, 0, 0), where P = E
(33) bin-op ::= arith-op | logical-op | bitwise-op
(34) un-op ::= + | -
(35) arith-op =% I/ 1% 1"
(36) logical-op I > 1> | <=1 ==14din | && ["[I" | !
(37) bitwise-op & | 7 1t le
(38) i-bin-op ::= @ | i-bin-op-forw | i-bin-op-back | i-logic-bitwise-op | i-forensic-op
(39) i-bin-op-forw ::= fby | upon | asa | wvr
| nfby | nupon | nasa | nwvr
(40) i-bin-op-back ::= pby | rupon | ala | rwvr
| npby | nrupon | nala | nrwvr
(41) i-logic-bitwise-op ::= and | or | xor
| nand | nor | nxor
| band | bor | bxor
(42) i-un-op ::= i-bin-un-forw | i-bin-un-back | #
(43) i-bin-un-forw ::= first | next | iseod
| second | nnext | neg | not
(44) i-bin-un-back ::= last | prev | isbod
| prelast | nprev
(45) i-forensic-op ::= combine | product | psi | invpsi
(46) bounds = eod | bod | +inf | -inf

Figure 2: Concrete Forensic Lucid Syntax

205

2.5 Transition Function

A transition function determines how the context of evaluation changes during computa-
tion. A general issue exists that we have to address is that the transition function y is
problem-specific. In the FSA approach, the transition function is the labeled graph it-
self. In the first prototype, we follow the graph to model our Forensic Lucid equivalent.
In general, Lucid has already basic operators to navigate and switch from one context to
another, which represent the basic transition functions in themselves (the intensional op-
erators such as @, #, iseod, first, next, fby, wvr, upon, and asa as well as their
inverse operators). However, a specific problem being modeled requires more specific
transition function than just plain intensional operators. In this case the transition func-
tion is a Forensic Lucid function where the matching state transition modeled through a
sequence of intensional operators.

A question arises a of how to explicitly model the transition function y and its backtrace
¥~ in the new language. A possible approach is to use predefined macros in Lucid syn-
tax [MPDO7]. In fact, the forensic operators are just pre-defined functions that rely on
traditional and inverse Lucid operators as well as context switching operators that achieve
something similar to the transitions. Once modeled, it would be the GEE actually ex-
ecution y within GIPSY. In fact, the intensional operators of Lucid represent the basic
building blocks for y and ¥~!. We provide a first implementation of ¥~! in [MPDO7].

alice_claim @ es
where
evidential statement es = [printer , manuf, alice];

observation sequence printer = F;

observation sequence manuf = [Oempty, $];
observation sequence alice = [Oalice, F]J;
observation F = (‘‘B_deleted’’, 1, 0);

observation Oalice
observation Oempty

(P.alice, 0, +inf);
(“‘empty’’, 1, 0);

// No ‘‘add_A’’
P_alice = unordered {‘‘add-B’’, ‘‘take’’};

invpsiacme (F, es);
end ;

Listing 3: Developing the Pinter Case “main”

2.6 Primitive Operators

The basic set of the classic intensional operators is extended with the similar operators,
but inverted in one of their aspects: either negation of trueness or reverse of direction of
navigation. Here we provide an informal definition of these operators alongside with the

206

classical ones (to remind the reader what they do and enlighten the unaware reader). The
reverse operators have a restriction that they must work on the bounded streams at the
positive infinity. This is not a stringent limitation as the our contexts of observations and
evidence in this work are always finite, so they all have the beginning and the end. What
we need is an ability to go back in the stream and, perhaps, negate in it with classical-
like operators, but reversed. The operators have been defined so far in [MPO08a], we only
summarize their definitions through the @ and # operators in Figure 3.

2.7 Forensic Operators

The operators presented here are based on the discussion of the combination function and
others that form more-than-primitive operations to support the required implementation.

e combine corresponds to the comb function described earlier. It is defined in List-
ing 4. It is a preliminary context-enhanced version.

/% %

x Append given e to each element
x of a given stream e under the
*
*
*

context of d.

@return the resulting combined stream
*/
combine(s, e, d) =
if iseod s then eod;
else (first s fby.d e) fby.d combine(next s, e, d);

Listing 4: The combine Operator

e product tentatively corresponds to the cross-product of context, translated from
that of the LISP example and added with context. It is defined in Listing 5.

/% %
* Append elements of s2 to element of sl
% in all possible combinations.
*/
product(sl, s2, d) =
if iseod s2 then eod;
else combine(sl, first s2) fby.d product(sl, next s2)

Listing 5: The product Operator

The translated examples show recursion that we are not prepared to deal with in the current
Lucid semantics, and will address that in the future work. The two illustrated operators
are the first of the a few more to follow in the final language prototype.

207

first
last
next
prev

X fby

X pby

X wvr

X rwvr

X nwvr

X rnwvr

X asa
X nasa
X ala
X nala
X upon

X rupon

X nupon

X nrupon

neg
not

X and
X or

X xor

~oX X X X

~ N NN~

~oN=ORX

X@0
X@(#@(#iseod(#) —1))
X@#+1)
X@#-1)
if#=0then X else Y @(#— 1)
if isbod X then X else prev Y
ifiseod#then X else Y @ (#+1)
if iseodY then X else next Y
X@T where
T=UfbyU@(T +1)
U =if Y then # else next U

end
X@T where
T=UpbyU@(T—1)
U =ifY then#else prev U
end
X@T where
T=UftbyU@(T+1)
U =if Y == 0 then # else next U
end
X@T where
T=UpbyU@(T—1)
U =ifY ==0then#else prevU
end

first (X wvrY)
first (X nwvrY)
last (X rwvrY)
last (X nrwvrY)
X@W where
W =0 fby (if Y then (W + 1) else W)

end
X@W where
W =0pby (ifY then (W — 1) else W)
end
X@W where
W =0 fby (if ¥ ==0then (W + 1) else W)
end
X@W where
W =0pby (if Y ==0then (W — 1) else W)
end
X
if X then !X else X
X&&Y
X||Y

not((X andY) or not (X orY))

Figure 3: Operators Translated to GIPL-Compatible Definitions

208

@)
2
(3)
“)
(5)

(6)

()

®)

©)

10)

an
12)
(13)
(14)
15)

(16)

an

(18)

19)
(20)
eay)
(22)
(23)

2.8 Operational Semantics

As previously mentioned, the operational semantics of Forensic Lucid for the large part is
viewed as a composition of the semantic rules of Indexical Lucid, Objective Lucid, and
Lucx along with the new operators and definitions. Here we list the existing combined
semantic definitions to be used the new language, specifically extracts of operational se-
mantics from GIPL [Paq99], Objective Lucid [MokO05], and Lucx [Wan06] are in Figure 4,
Figure 5, and Figure 7 respectively. The explanation of the rules and the notation are given
in great detail in the cited works and are trimmed in this article. For convenience of the
reader they are recited here. The Objective Lucid semantic rules were affected and refined
by some of the semantic rules of JOOIP [WPMOS8]. The new rules of the operational se-
mantics of Forensic Lucid cover the operators primarily, including the reverse and logical
stream operators as well as forensic-specific operators. We use the same notation as the
referenced languages to maintain consistency in defining our rules.

In the implementing system, GIPSY, the GIPL is the generic counterpart of all the Lucid
programming languages. Like Indexical Lucid, which it is derived from, it has only the
two standard intensional operators: E @ C for evaluating an expression E in context C,
and #d for determining the position in dimension d of the current context of evaluation
in the context space [Paq99]. SIPLs are Lucid dialects (Specific Intensional Programming
Languages) with their own attributes and objectives. Theoretically, all SIPLs can be trans-
lated into the GIPL [Paq99]. All the SIPLs conservatively extend the GIPL syntactically
and semantically. The remainder of this section presents a relevant piece of Lucx as a
conservative extension to GIPL. The semantics of GIPL is presented in Figure 4. The ex-
cerpt of semantic rules of Lucx are then presented as a conservative extension to GIPL and
Lucx in Figure 7. Following is the description of the GIPL semantic rules as presented
in [Paq99]:

DFE:v
tells that under the definition environment 9, expression E would evaluate to value v.
DPEE v

specifies that in the definition environment &, and in the evaluation context & (sometimes
also referred to as a point in the context space), expression E evaluates to v. The defini-
tion environment & retains the definitions of all of the identifiers that appear in a Lucid
program, as created with the semantic rules 13-16 in Figure 4. It is therefore a partial
function

2 :1d — IdEntry
where Id is the set of all possible identifiers and IdEntry, has five possible kinds of value,
one for each of the kinds of identifier: 1. Dimensions define the coordinate pairs, in which

one can navigate with the # and @ operators. Their IdEntry is simply (dim). 2. Constants
are external entities that provide a single value, regardless of the context of evaluation.

209

Ecia

Eupid

Egia

Ew

Qdim

Qia

QQ

2(id) = (const,c¢)

9,2t id:c

2(id) = (op, f)

2. P¢id:id
P(id) = (dim)

9,2 vid:id

9(id) = (func,id;,E)

9. 7Fid:id
2(id) = (var,E) D, P+E:v

2,2 id:v
D PHE:id 2(id) = (op, f) DPE;: v

@,:@FE(E],...,EH)Zf(\/|,....,vn)

DPHE :id 9(id) = (func,id;,E’) D, P+ E'idi —Ej:v

2.2 EE,....Ey) v

D, PV E :true DP-E

9,2+ if E thenE' elseE" :V/

2,2+ E : false D,P-E"

9,2+ if E thenE' else E" : V"

9, PrE:id D(id) = (din)

7. P F#E: 2(id)
P9,2+E:id 9(id) = (dim) D, PE" 2, P7id—V'FE:v

9, P+E @E'E":v

92,P2+Q:9, 9 9" P VE:v

2,P+ Ewhere Q:v

9,2+ dimensionid : Ztlid — (dim)], Zt[id — 0]

P,Prid=E : Ptlid— (var,E)]|,Z?

2,2 ¢id(id,,...,id,) =E : 9t[id— (func,id;,E)], &

@,WFQ . @/“@/ -@/’y/kgl:@//”@//

.@,WFQQ/:.@H,OH

Figure 4: GIPL Semantics

@4

(25)

(26)

@7n

(2%

29

(30)

(31

(32

(33)

(34

(35)

(36)

(37

(3%

(39

Examples are integers and Boolean values. Their IdEntry is (const,c), where c is the
value of the constant. 3. Data operators are external entities that provide memoryless
functions. Examples are the arithmetic and Boolean functions. The constants and data
operators are said to define the basic algebra of the language. Their IdEntry is (op, f),

210

DPE:id 9,PFE:id
2(id) = (class, cid, cdef) %2(id')=(classv, cid.cvid, vdef)
9,P t<cid.cvid>:v

Ee-via 2, P+EE v “0
DPE+E:id D, PE :id DPEE....E :viy...,v,
9(id) = (class, cid, cdef) P(id") = (classf, cid.cfid, fdef)
9, P t<cid.cfid(vy,..., Vp)>1v
E.- - — 41
e fet 9. PFEE(E,.. En):v @n
DPE:id DPEE,.. Ey vV,
9(id) = (freefun, ffid, ffdef)
E D, P E<E£id(vi,...,vy)>1v)
fiid 9,2 EE,... Ey) v
cdef =Class cid {...}
#JAVA gbji —— 43
JAVA bjia 9, P+ cdef : P¥[cid — (class, cid, cdef)], & “3)
cdef =Class cid {...vdef...} vdef = public fype vid;
#JAVA objvi 44
TAVA ojvia 9,P + cdef : Z7[cid.vid — (classv, cid.vid, vdef)|, 2 “4)
#JAVA cdef =Class cid {...fdef...} fdef = public frttype fid(fargtype; fargia,,....fargtype, fargia,)
obifid 9, P cdetf : Dtlcid.fid (classf, cid.fid, fdef)],?
(45)
#JAVA ffdef = fritype £Eid(fargtype; fargiay,fargtype, fargia,) 16
fid 9, P ffdef : P7[ffid— (freefun, ffid, ffdef)],? “6)
Figure 5: Extract of Operational Semantics of Objective Lucid
P(E.id) = (dim
Eg.aia (Eid) = (dim) 47

9.2V Eid:idid

Figure 6: Higher-Order Context Dot Operator of MARFL

where f is the function itself. 4. Variables carry the multidimensional streams. Their
IdEntry is (var,E), where E is the Lucid expression defining the variable. It should be
noted that this semantics makes the assumption that all variable names are unique. This
constraint is easy to overcome by performing compile-time renaming or using a nesting
level environment scope when needed. 5. Functions are non-recursive GIPL user-defined
functions. Their IdEntry is (func, id;, E), where the id; are the formal parameters to the
function and E is the body of the function. In this paper we do not discuss the semantics
of recursive functions.

The evaluation context &2, which is changed when the @ operator is evaluated, or a di-
mension is declared in a where clause, associates a fag (i.e. an index) to each relevant
dimension. It is, therefore, a partial function

Z:1d—N

Each type of identifiers can only be used in the appropriate situations. Identifiers of
type op, func, and dim evaluate to themselves (Figure 4, rules 25,26,27). Constant

211

Bioo FoTE D “8
2, P+ Ey; :id, 2(id;) = (dim)
2,7 FE v P = Pytlidy — vi]T.. . Tlidy — va)
Econstruction(ext) ° —— (49)
construction(ex 9,2t [Eq, : Ei| Eay : Eiy, ..., Ea, - Ei] 1 P
D,P+E P DPTP'FE v
Faiery 2, 7FEQE v 50
E D PEE,:idy @(idz) = (dim) 1)
: 2,P v E\.E; :tag(E; | {idy})
E D,PE:id PDilid — (dim)] Pilid — 0] D, PrE; v 52)
tople 9,2+ (E\,Es,...,E,)E vy fby.id vy fby.id ... v, fby.id eod
E E=[d:v’] E' = (Ey,...,E,)d? = Pt[d— V] D,P'E v 53)
select 9,2t select(E,E') : v
DPEC:A{P,...,! P} D, P\ .mFE v
E, . 2 4
at(s) D, P+E@C:{v,...,v} 34
2, P+ Ey; : id; P(id;) = (dim)
{Ei,....,E,} =dim(P) = ... =dim(Py,)
c E' =f,(tag(2),...,tag(Pm)) 2, P ¢ E":true 55
box 9,2 F BoxlEr,. . EnE) : {P1es P} 53)
D P EEpim: P
. _ 2 — 56
Cot G P {Er, o En} A Pnr o D) (56)
c P2, PFEid 9(d) =(cop,f) D, PFC v, -
P D, PFE(C,....,C): f(Vi,...)
D, PrE:id P(id) = (sop, D PEC iy
- d__ ()= (sop.) Do) 5

2,2+EC,..., Go) t f(viyseeovig b s Voo s Vi)

Figure 7: Extract of Operational Semantics of Lucx

identifiers (const) evaluate to the corresponding constant (Figure 4, rule 24). Func-
tion calls, resolved by the Eg¢ rule (Figure 4, rule 30), require the renaming of the for-
mal parameters into the actual parameters (as represented by E’[id; < E;]). The function
P = Plid — V'] specifies that 2’ (x) is V' if x = id, and Z?(x) otherwise. The rule for
the where clause, Ey (Figure 4, rule 35), which corresponds to the syntactic expression
E where Q, evaluates E using the definitions Q therein. The additions to the definition en-
vironment & and context of evaluation &7 made by the Q rules (Figure 4, rules 36,37,38)
are local to the current where clause. This is represented by the fact that the E, rule
returns neither 2 nor &?. The Qgim rule adds a dimension to the definition environment
and, as a convention, adds this dimension to the context of evaluation with tag O (Figure 4,
rule 36). The Qjq and Qgq simply add variable and function identifiers along with their
definition to the definition environment (Figure 4, rules 37,38).

As a conservative extension to GIPL, Lucx’s semantics introduces the notion of context as
a building block into the semantic rules, i.e. context as a first-class value, as described by
the rules in Figure 7. In Lucx, semantic rule 49 (Figure 7) creates a context as a semantic

212

item and returns it as a context & that can then be used by rule 50 to navigate to this
context by making it override the current context. GIPL’s semantic rule 29 is still valid
for the definition of the context operators, where the actual parameters evaluate to values
v; that are contexts &7;. The semantic rule 48 expresses that the # symbol evaluates to the
current context. When used as a parameter to the context calculus operators, this allows
for the generation of contexts relative to the current context of evaluation.

3 Conclusion

Through the series of discussions, definitions of the syntax, semantics, and some exam-
ples of the Forensic Lucid we believe we are on the right track to show the benefits of
the intensional approach to the cyberforensic, which is promising to be more usable and
can be improved even further by providing a graphical DFG editor for the investigators.
As far as implementing system concerned it has advantages of parallelizing the compu-
tation and introduce the notion of context that is absent in the FSA approach of Glady-
shev et al. [Gla05, GP04]. We took a lot of advantages of the existing concepts, syntax
and semantic rules and constructs from the intensional programming and the Lucid fam-
ily of languages that are in place, whose theory for the most part are said to be correct.
We are gearing towards completion of the design of the Forensic Lucid language and its
compiler and run-time environment based on the GIPSY system and its multi-tier archi-
tecture [Paq08].

The proposed practical approach in the cyberforensics field can also be used in a normal
investigation process involving crimes not necessarily associated with information tech-
nology.

3.1 Future Work

The near-future work will consist primarily of the following items:

e Complete semantics of all the mentioned Lucid dialects and their formalization with
Isabelle.

e Implementation of the Forensic Lucid compiler, run-time and interactive develop-
ment environments.

4 Acknowledgments

This work was funded in part by NSERC and the Faculty of Engineering and Computer
Science, Concordia University. Thanks to many of the GIPSY project team members for
their valuable contributions, suggestions, and reviews, including Dr. Peter Grogono, Xin
Tong, Aihua Wu, Emil Vassev, and Amir Pourteymour.

213

References

[Agi95]

[AW76]

[AW77a]

[AW77b]

[Du94]

[Edw95]

[FB91]

[Gla05]

[GMPO5]

[GP99]

[GP04]

[Lu04]

[Mok04]

[Mok05]

[Mok07a]

I. Agi. GLU for multidimensional signal processing. In ISLIP’95: The Eighth Interna-
tional Symposium on Languages for Intensional Programming, Sydney, Australia, 1995.

Edward A. Ashcroft and William W. Wadge. Lucid - A Formal System for Writing and
Proving Programs. volume 5. SIAM J. Comput. no. 3, 1976.

Edward A. Ashcroft and William W. Wadge. Erratum: Lucid - A Formal System for
Writing and Proving Programs. volume 6(1):200. SIAM J. Comput., 1977.

Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language with
iteration. Communication of the ACM, 20(7):519-526, July 1977.

Weichang Du. Object-oriented Implementation of Intensional Language. In Proceedings
of the 7th International Symposium on Lucid and Intensional Programming, pages 37—
45. SRI International, Menlo Park, California, USA, September 1994.

Edward Ashcroft and Anthony Faustini and Raganswamy Jagannathan and William
Wadge. Multidimensional, Declarative Programming. Oxford University Press, Lon-
don, 1995.

B. Freeman-Benson. Lobjcid: Objects in Lucid. In Proceedings of the 1991 Symposium
on Lucid and Intensional Programming, pages 80-87. SRI International, Menlo Park,
California, USA, April 1991.

Pavel Gladyshev. Finite State Machine Analysis of a Blackmail Investigation. In In-
ternational Journal of Digital Evidence. Technical and Security Risk Services, Sprint
2005, Volume 4, Issue 1, 2005.

Peter Grogono, Serguei Mokhov, and Joey Paquet. Towards JLucid, Lucid with Embed-
ded Java Functions in the GIPSY. In Proceedings of the 2005 International Conference
on Programming Languages and Compilers (PLC 2005), Las Vegas, USA, pages 15-21.
CSREA Press, June 2005.

Jean-Raymond Gagné and John Plaice. Demand-Driven Real-Time Computing. World
Scientific, September 1999.

Pavel Gladyshev and Ahmed Patel. Finite State Machine Approach to Digital Event
Reconstruction. In Digital Investigation Journal, volume 2, 2004.

Bo Lu. Developing the Distributed Component of a Framework for Processing Inten-
sional Programming Languages. PhD thesis, Department of Computer Science and
Software Engineering, Concordia University, Montreal, Canada, March 2004.

Serguei A. Mokhov. Lucid, the Intensional Programming Language and its Semantics
in PVS. Semantics of Programming Languages Course Project Report, April 2004.

Serguei A. Mokhov. Towards Hybrid Intensional Programming with JLucid, Objec-
tive Lucid, and General Imperative Compiler Framework in the GIPSY. Master’s the-
sis, Department of Computer Science and Software Engineering, Concordia University,
Montreal, Canada, October 2005. ISBN 0494102934.

Serguei Mokhov. [ntensional Cyberforensics —a PhD Proposal. Department of Com-

puter Science and Software Engineering, Concordia University, Montreal, Canada, De-
cember 2007.

214

[Mok07b]

[Mok08]

[MPO5]

[MP08a]

[MPO8b]

[MPDO07]

[Paq99]

[Paq08]

[PGWO04]

[PKOO]

[PMTO8]

[PNO7]

[PWO05]

[Ron94]

Serguei Mokhov. Intensional Forensics — the Use of Intensional Logic in Cyberforensics.
Technical report, Concordia Institute for Information Systems Engineering, Concordia
University, Montreal, Canada, January 2007. ENGR6991 Technical Report.

Serguei A. Mokhov. Towards Syntax and Semantics of Hierarchical Contexts in Multi-
media Processing Applications using MARFL. In Proceedings of the 32nd Annual IEEE
International Computer Software and Applications Conference (COMPSAC), pages
1288-1294, Turku, Finland, July 2008. IEEE Computer Society.

Serguei Mokhov and Joey Paquet. Objective Lucid — First Step in Object-Oriented Inten-
sional Programming in the GIPSY. In Proceedings of the 2005 International Conference
on Programming Languages and Compilers (PLC 2005), Las Vegas, USA, pages 22-28.
CSREA Press, June 2005.

Serguei A. Mokhov and Joey Paquet. Formally Specifying and Proving Operational As-
pects of Forensic Lucid in Isabelle. Technical Report 2008-1-Ait Mohamed, Department
of Electrical and Computer Engineering, Concordia University, August 2008. In Theo-
rem Proving in Higher Order Logics (TPHOLs2008): Emerging Trends Proceedings.

Serguei A. Mokhov and Joey Paquet. Using the General Intensional Programming Sys-
tem (GIPSY) for Evaluation of Higher-Order Intensional Logic (HOIL) Expressions.
Submitted for publication at SAC’09, 2008.

Serguei A. Mokhov, Joey Paquet, and Mourad Debbabi. Designing a Language for
Intensional Cyberforensic Analysis. Unpublished, 2007.

Joey Paquet. Scientific Intensional Programming. PhD thesis, Department of Computer
Science, Laval University, Sainte-Foy, Canada, 1999.

Joey Paquet. A Multi-Tier Architecture for the Distributed Eductive Execution of Hybrid
Intensional Programs. Submitted for publication at SAC’09, 2008.

Joey Paquet, Peter Grogono, and Ai Hua Wu. Towards a Framework for the General
Intensional Programming Compiler in the GIPSY. In Proceedings of the 19th Annual
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2004). Vancouver, Canada. ACM, October 2004.

Joey Paquet and Peter Kropf. The GIPSY Architecture. In Proceedings of Distributed
Computing on the Web, Quebec City, Canada, 2000.

Joey Paquet, Serguei A. Mokhov, and Xin Tong. Design and Implementation of Context
Calculus in the GIPSY Environment. In Proceedings of the 32nd Annual IEEE Inter-
national Computer Software and Applications Conference (COMPSAC), pages 1278—
1283, Turku, Finland, July 2008. IEEE Computer Society.

Lawrence C. Paulson and Tobias Nipkow. Isabelle: A Generic Proof Assistant. Univer-
sity of Cambridge and Technical University of Munich, 2007. http://isabelle.
in.tum.de/, last viewed: December 2007.

Joey Paquet and Ai Hua Wu. GIPSY — A Platform for the Investigation on Intensional
Programming Languages. In Proceedings of the 2005 International Conference on Pro-
gramming Languages and Compilers (PLC 2005), Las Vegas, USA, pages 8—14. CSREA
Press, June 2005.

Panagiotis Rondogiannis. Higher-Order Functional Languages and Intensional Logic.

PhD thesis, Department of Computer Science, University of Victoria, Victoria, Canada,
1994.

215

[SW00]

[Swo04]

[The08]

[Ton08]

[TPMO7]

[VPO5]

[WAS5]

[Wan06]

[WAPO5a]

[WAPO5b]

[WPO5]

[WPMO8]

[Zha97]

Paul Swoboda and William W. Wadge. Vmake, ISE, and IRCS: General Tools for the In-
tensionalization of Software Systems. In M. Gergatsoulis and P. Rondogiannis, editors,
Intensional Programming I1. World-Scientific, 2000.

Paul Swoboda. A Formalisation and Implementation of Distributed Intensional Pro-
gramming. PhD thesis, The University of New South Wales, Sydney, Australia, 2004.

The GIPSY Research and Development Group. The General Intensional Programming
System (GIPSY) Project. Department of Computer Science and Software Engineer-
ing, Concordia University, Montreal, Canada, 2002-2008. http://newton.cs.
concordia.ca/ gipsy/, last viewed April 2008.

Xin Tong. Design and Implementation of Context Calculus in the GIPSY. Master’s the-
sis, Department of Computer Science and Software Engineering, Concordia University,
Montreal, Canada, April 2008.

Xin Tong, Joey Paquet, and Serguei A. Mokhov. Context Calculus in the GIPSY. Un-
published, 2007.

Emil Vassev and Joey Paquet. A Generic Framework for Migrating Demands in the
GIPSY’s Demand-Driven Execution Engine. In Proceedings of the 2005 International
Conference on Programming Languages and Compilers (PLC 2005), Las Vegas, USA,
pages 29-35. CSREA Press, June 2005.

William Wadge and Edward Ashcroft. Lucid, the Dataflow Programming Language.
Academic Press, London, 1985.

Kaiyu Wan. Lucx: Lucid Enriched with Context. PhD thesis, Department of Computer
Science and Software Engineering, Concordia University, Montreal, Canada, 2006.

Kaiyu Wan, Vasu Alagar, and Joey Paquet. A Context theory for Intensional Program-
ming. In Workshop on Context Representation and Reasoning (CRROS), Paris, France,
July 2005.

Kaiyu Wan, Vasu Alagar, and Joey Paquet. Lucx: Lucid Enriched with Context. In Pro-
ceedings of the 2005 International Conference on Programming Languages and Com-
pilers (PLC 2005), Las Vegas, USA, pages 48—14. CSREA Press, June 2005.

Ai Hua Wu and Joey Paquet. Object-Oriented Intensional Programming in the GIPSY:
Preliminary Investigations. In Proceedings of the 2005 International Conference on
Programming Languages and Compilers (PLC 2005), Las Vegas, USA, pages 43-47.
CSREA Press, June 2005.

Aihua Wu, Joey Paquet, and Serguei A. Mokhov. Object-Oriented Intensional Program-
ming: Intensional Classes Using Java and Lucid. Submitted for publication to SAC’09,
2008.

Q. Zhao. Implementation of an object-oriented intensional programming system. Mas-

ter’s thesis, Department of Computer Science, University of New Brunswick, Canada,
1997.

216

