Applications of Partial Hiding in RSA

Eabhnat Ni Fhloinn and Michael Purser
School of Mathematics
Trinity College Dublin
Ireland.
evoflynn@maths.tcd.ie

Abstract: We explore the possibility of exposing sections of the private key in RSA
without jeopardising the security of the overall system. Making significant segments
of the key publicly available greatly reduces the amount of data which must be securely
hidden, allowing us to use biometric readings to protect the key. We suggest the use of
iris recognition for this purpose and propose possible implementations of this scheme.

C. Wolf, S. Lucks, P-W. Yau (Eds.): WEWoRC 2005, LNI P-74, pp. 86-97, 2005.
© Gesellschaft fiir Informatik e.V.

1 Introduction

A biometric measures an individual’s unique physical or behavioural characteristics for
recognition or authentication purposes. Iris recognition is emerging as an accurate and re-
liable form of personal identification and we wish to use this to securely protect the private
key in RSA, for example by using the exclusive-OR (XOR) operation to combine an iris
scan with the key. To ensure exact repeatability of the iris scan, we use error-correcting
codes to correct each reading [FP05]. However, we rely on Daugman’s iris recognition al-
gorithm [Dau93] to segment and process the iris scan, producing 2048 bits of data of which
at most 1600 are uncorrupted. Given that an RSA modulus size of n = 2048 is recom-
mended for the most secure applications, there is insufficient data in an iris scan to directly
XOR with a private key of this size. Therefore, either the information content of the iris
reading needs to be supplemented in some way (for example by padding the biometric
with pseudo-random numbers) or else the amount of data securely hidden in a private key
must be reduced, without adversely affecting security. The former option, while initially
appearing to be more straightforward, introduces numerous complications; while the in-
formation content of the biometric will remain relatively static, key sizes will continue
to grow, meaning that the amount of pseudo-random data necessary rapidly eclipses the
biometric information available. Thus, we are hugely reliant on the pseudo-random gen-
erator used and its ability to produce distinct sequences for different inputs. Therefore,
we choose to focus on the latter option and consider making sections of the private key
publicly available, while using the iris scan to securely protect the secret portions. This
led us to formulate the notion of “partial hiding”.

86

2 Partial Hiding of Private Key

In mathematical notation, the idea of partial hiding could be expressed by letting P be
the private key of length p, .S be the bits not hidden and X be the bits hidden. Using the
exclusive-OR operation (represented by @) to combine these, we have

P=SaoX , (1)

where S” and X' represent bit-strings of length p, consisting partly of S or X respectively
and padded with zeros in positions where bits were extracted. For example, if P were 10
bits long, and X consisted of the four “middle” bits, then we would have

P = 5,000052 @ 000X 000 . 2)

It is vital that X is sufficiently large to render a brute force attack impractical; if an attacker
has access to the public key, the algorithm and S, he should not be able to determine the
private key P by trying all the possible values of X.

There are several ways in which the bits of X could be extracted from P: we could remove
the least significant bits (LSBs); the most significant bits (MSBs); or a random scattering
of bits from throughout the key. Randomly selected bits would seem initially to give a
greater level of security. However, if the bits are randomly selected according to some
secret rule, then we need to also store their original position in the key, in order to recover
them later on. Storing these positions, as well as the values of the bits, within the n bits
allowance we choose for X reduces the overall number of bits of the private key that can
be hidden thus, which is a clear disadvantage. Therefore, we chose to focus instead on
exposing either LSBs or MSBs or both.

Although there has been substantial work done to date in the area of partial key exposure,
it would appear that the aim of this work has been to investigate the implications of in-
advertant exposure of some part of the private key. We term our scheme “partial hiding”,
as we focus instead on the potential advantages of deliberately revealing portions of the
private key.

3 Related Work

In 1998, Boneh, Durfee and Frankel [BDF98] explored several different attacks on RSA
following partial exposure of the private key. Interestingly, for low-exponent RSA, they
showed that the most significant half of the bits of the private key d are automatically
“leaked” and that this has no adverse effect on security. Their results for low-exponent
RSA also show that only a quarter of the LSBs of d are sufficient for an attacker to obtain
all of d.

However, Steinfeld and Zheng [SZ01] went on to show that this result only holds if no
more than the least significant bit of p and ¢ is equal, where p and ¢ are primes such that

87

the modulus N = pq. In the case of low-exponent RSA in which the m LSBs of p and
q are identical, they show that the estimated running time for the BDF attack is too low
by a factor in the order of 2™, making it ineffective for such systems. However, this does
not affect the majority of parameter choices for low-exponent RSA, in which p and ¢ are
chosen randomly and independently; indeed, p and q are only likely to have m equal LSBs
if they are carefully chosen to do so. Steinfeld and Zheng go on to prove that, if a system
with m equal LSBs in p and q is secure with no bits exposed, it is secure if up to 2m LSBs
of d are exposed (in addition to the most significant half of the bits which are automatically
leaked).

Most recently, Blomer and May presented a paper entitled “New Partial Key Exposure
Attacks on RSA” [BMO3], in which they produce even stronger results for RSA than those
suggested by [BDF98]. In addition, they also produce attacks on partial key exposure in
the Chinese Remainder Theorem (CRT) version of RSA [QC82].

4 Partial Hiding in RSA

Focusing on low-exponent RSA, we let N = pg be an RSA modulus of size n = 2048
bits, with p and ¢ each 1024 bits long, and e = (216 + 1). From [BDF98, p 6], the most
significant 1024 bits of the private key, d, are automatically leaked in low-exponent RSA
such as this, without affecting the system’s security. We base our system on an adaptation
of that proposed by [SZ01], setting the m least significant bits (LSBs) of p and ¢ to be
equal. Thus, we know that secure low-exponent RSA in this form is still safe with up to
2m LSBs exposed. Therefore, if we let

n

m= (I—e) , 3)
with small € in a secure system, we can expose the n/2 (=1024) MSBs of d and the
(n/2)(1 — €) (= 1024 — 1024¢) LSBs of d and maintain a secure system.

We must now determine the optimum value for . We want € < 0.5, as there is a consid-
erable reduction in the cost of computation if this is true [SZ01]. However, we also need
to ensure that 2¥ is too large to exhaustively search for y unknown bits of p or ¢, where
y = (en/4).

Based on Silverman’s estimates [SilO1] on the costs of breaking cryptographic keys, with
a budget of $10 million dollars, 2°6 takes less than 5 minutes to crack; 2%° takes 600
months; 2%6 takes 3 million years; 2'2® takes 106 years. Therefore, we reject values as
low as € = 0.125, as 2%* is too low for security. The current standards for symmetric
cryptography suggest to use 128 bits for AES, so a value of ¢ = 0.25 would provide
comparable security. With this choice, we have m = 384 and a value of 228, which
would seem to suit our purposes well while still being sufficiently large to be considered
safe.

Thus, we set the 384 LSBs of p and ¢ to be equal. In order to generate these primes,
simply find p in the usual fashion, fix the 384 LSBs of ¢ to be identical to p, and produce a

88

prime q of this form [SZ01]. This should be as efficient as the standard prime-generating
algorithm for RSA moduli, where each candidate for ¢ is chosen independently of p as a
random odd integer.

If we let e = 0.25, then the 1024 MSBs and the 768 LSBs of d can be exposed for low-
exponent RSA, and if the original system was secure, then this new system should also
be. This means we need to keep 256 bits securely hidden at all times, in bit positions

XOR with
iris data
1025-2048 769—-1024 1-768
Public Private Public

Figure 1: Partial hiding for a 2048-bit RSA private key: bits 1-768 and 1025-2048 are
public; bits 769-1024 are private and XORed with the iris reading.

from 769 to 1024 inclusive, assuming an offset of 1 and working from right to left. This
is illustrated in Figure 1. This number of bits could now easily be protected by XORing it
with bits from the individual’s iris scan.

S Partial Hiding in CRT RSA

While considering improvements of the RSA system, it is natural to attempt to imple-
ment these using the Chinese Remainder Theorem (CRT) version of RSA [QCS82]. In this
approach, two separate quantities,

d, =dmod (p—1)anddy, =dmod (¢ — 1) , 4)

are used to encrypt and decrypt each message. If we have either p or ¢, we can recreate
all the remaining information needed from our public information. Thus, while we need
to retain the values of p and g, we cannot make these publicly known in their entirety,
meaning that both of these values must be at least partially hidden. There are two main
approaches to partial hiding to be considered:

1. Partially store p and ¢. Partially store d,, and d,. Restore these hidden portions to
the “known” public portions of d,, and d, each time.

2. Partially store p and ¢. Partially store d. Generate d, = d mod (p — 1) and d; =
d mod (q—1) each time using both partially stored and publicly known information.

If we consider option 1, certain restrictions must be imposed immediately; for example,
it is important that less than 50% of the LSBs (or MSBs) of d,, or d, are made public, as

89

Blomer-May [BMO03] detail an attack if more than this amount is exposed, for low public
exponent e, such as e = 216 4 1.

If we take an RSA modulus of size n = 2048, then p and q are of length 1024 bits and
dp, and d,, are also approximately this size. The 384 LSBs of p and ¢ are identical in our
system; the 640 MSBs are not. However, Coppersmith [Cop97] describes a method of
factoring N given the MS half of the bits of p; thus, we securely hide the 640 MSBs of
p and ¢ using the iris template. We must also store over half of the bits of d,, and d,
giving us a total of over 2304 bits of data to be stored in this approach. We cannot use iris
templates to encrypt this, as they consist of only 2048 bits of data, and so a direct XOR
with the RSA information is not possible. Thus, we can only continue if we reduce the
size of our modulus and deal with 1024-bit RSA in place of 2048-bit RSA, or consider
other biometrics.

If instead we turn our attention to the second approach suggested above, we again choose
to partially hide the 640 MSBs of both p and ¢q. As suggested for RSA in the previous
section, we store only the 256 “middle” bits of d, which gives us a total of 1536 bits to be
stored, which could easily be hidden by XORing with an iris template.

We must now consider whether we have introduced additional vulnerability to the system
by partially revealing p and q. As before, bits 1-768 and 1025-2048 of d are made public,
with only bits 769-1024 securely hidden. We are proposing to reveal bits 1-384 of p (and
q). If it is possible to determine either the least significant half or the most significant half
of the bits of d,, as a result, then our system is not secure.

p is prime, so the least significant bit of p will always equal 1. To obtain (p — 1), we must
simply change this least significant bit to 0. Let p’ be the 384 LSBs of p that are publicly
available. Then we have

p=t2")+p")
where p and ¢ are not publicly known. Clearly, this means that

p—1=t(2%)+p' -1 . (6)
Therefore, we can write

ed, =1+ k(2% +p 1) . @)
But since we now have

k<e<241 ®)
an attacker can guess the value of k by brute-force. This allows him to calculate

dy =e (1 +k(p — 1)) mod 2°%* |)

which will give him the 384 LSBs of d,,. However, an attacker needs to have accessed 512
LSBs of d,, in order for the Blomer-May [BMO03] attack to work; he still needs to determine

90

128 bits of the key before it is in danger. Given that there are 2'?® possible combinations
for this number of bits, this number should still be safe from attack. Therefore, partial
hiding can be effectively applied to CRT RSA in the above manner.

6 Attacks on Partial Hiding

The most basic attack on partial hiding in RSA consists of a brute force approach, where
an attacker tries all possible combinations for the hidden portion of the private key, d. We
are proposing to hide bits 769-1024 of a 2048-bit d, meaning that only 256 bits must be
uncovered to break the system. However, an attacker would need to calculate the values
of all of these bits before being in a position to judge if any were correct. The parameters
we have chosen for this system are secure under current and projected computing power.

Because our system is based on that in [SZ01], it is resistant to any of the attacks listed in
[BDF98], as these were taken into account when creating the scheme. The Blomer-May
paper [BMO3] contains several attacks which may, however, be applicable. We will now
look at each of the relevant attacks in detail and discuss whether they might pose a threat
to the system we have proposed.

6.1 Blomer-May Attack 1

We begin with their “strongest” attack - one which works for all e < N €. For this attack
to work, a certain portion of the LSBs of d must be exposed, as proved in the following
theorem from their paper:

Theorem 6.1 (Blomer-May) For every § > 0, there exists Ny such that for every N >
Ny, the following holds:

Let (N,) be an RSA public key with oo = log(e) < L. Let d be the private key. Given
do, M satisfying d = dy mod M with

M 2 N%+%\/1+6a+57 (10)

then N can be factored in polynomial time.

If we apply this theorem to our proposed system, we can determine whether there is a
threat posed to our scheme by this attack. Our modulus N is of size n = 2048 bits. We
have set e = 216 + 1 = 65537. We expose the 768 LSBs of d - we must now calculate
what is the minimum number of LSBs required in order for the attack to proceed.

If N is of length 2048 bits, the smallest such number is 22°47. From the theorem, if M is
sufficiently large (where M denotes the number of LSBs known), then our system can be
broken. In order to obtain the minimum number of LSBs needed, set § =~ 0 and neglect

91

this term completely. We need to calculate the value of o = log (e).

a = 10g22047(65537)
= 0.0078163273 . (11)

We can now determine M using (10):
Moo= (2207) 5+5VI+6a

21039.3167) (12)

Thus, a minimum of 1040 LSBs would be needed for this attack to work, and as we only
expose 768 LSBs, our system is secure against this approach.

6.2 Blomer-May Attack 2

The next attack to which our scheme may be vulnerable involves a provable attack for
1 P .. .
almost all e < N z. Here, a vulnerability is introduced if

Noc+%+5 < M < 2N06+%+5 ’ (13)
where 0 < «,d < 1/2 and M represents the known LSBs again. If this is not the case,

then the attack will not work. Calculating as before for our system, taking o, § =~ 0 for the
smallest number of bits acceptable, we get

Nz < M <2N? . (14)
This in turn gives us
910235 — y < 910245 (15)

so M = 21924 Thus, the 1025 LSBs of d would need to be exposed to make our system
vulnerable to this attack, whereas we only expose the 768 LSBs of d.

6.3 Blomer-May Attack 3

The final Blomer-May attack which may introduce a vulnerability to our scheme is based
on the CRT version of RSA [QCS82]. The attack enables an adversary to recreate d given
the least significant half of the bits of d,, and works for low-exponent RSA such as e =
216 + 1. In our system, the least significant half of the bits of d,, is only of length 512 bits.
We expose the 768 LSBs of d, but in order to determine the value of d,, it is necessary
to know p. Although an attacker knows that the 384 LSBs of p and ¢ are equal, and has

92

access to the value of N = pg, these values are too large for him to successfully decipher p
from this knowledge. The correctness of each bit guessed would depend on the correctness
of the bit before it. Clearly, the LSB will always be revealed - but the value of any further
bits is still protected. Thus, our system is secure against this form of attack.

6.4 Wiener’s Continued Fractions Attack

Wiener’s original attack [Wie90] relies on continued fractions to find the value of d. It is
successful for short secret exponents, which are up to one-quarter the size of the modulus,
N. Our secret exponent is of length 2048 bits, but only 256 of these are securely hidden.
We must investigate whether a continued fractions approach could expose a vulnerability
in this scheme.

Let our secret exponent, d, consist of three sections: let dy represent the known 1024
MSBs, d; the unknown “middle” 256 bits and d the known 768 LSBs. Then we have

d=do2'"?* + d,27% + d, . (16)
This means we can adapt Wiener’s notation and write:
e (do2'** + d127® +dy) = Klem(p — 1, — 1) + 1 , (17)

for some K. This gives us
1024 768 k
e (do2'** + d;2 —|—d2)=§(p—1)(q—1)—|—1 , (18)

where G = ged(p — 1,q — 1), k = K/ ged(K,G) and g = G/ ged(K, G). At this point,
Wiener manipulates the formula to read:

k +qg—-1-4
£ (1—6)where(5:b .

= (19)
pq dg q

If d is small, it can now be found using continued fractions. However, in our case, an
attacker would need to be able to separate d; in (18) from the rest of the expression in a
similar form in order to be able to launch an attack in this fashion. It would be necessary
to express d as a product in which the unknown d; was less than a quarter of the bits of
N, in place of the sum that is currently used, but as this cannot be done, the system is safe
from this form of continued fractions attack.

A more recent, generalised form of the Wiener attack developed by Blomer and May
[BMO04] points to certain types of “weak” keys which are especially vulnerable to attack;
however, this has no greater application in our system than in an implementation which
does not involve partial hiding, and so, no new vulnerability is introduced.

93

7 Implementing Partial Hiding in RSA

When implementing partial hiding, we could, of course, choose to store the private key
on a main server of some description, with only the secret portion securely hidden and
the remainder of the key publicly available. Given that the amount of data which must be
securely stored is considerably reduced in partial hiding, however, it would be logical to
attempt to further exploit this fact by implementing it on a medium with a limited storage
capacity. For this reason, we chose to look at the possibility of introducing partial hiding
on smart cards.

7.1 Smart Cards

A smart card, while similar in size and appearance to a plastic credit card, is considerably
more complex. There are three main types of smart cards [Sun05]:

1. Integrated Circuit (IC) Microprocessor Cards;
2. Integrated Circuit (IC) Memory Cards;

3. Optical Memory Cards.

IC microprocessor cards are more commonly called “chip cards”. Because they contain
microprocessors, the data is processed on the card itself, and so they can be used for
cryptographic applications. In contrast, IC memory cards have no processor on the card
and so are reliant on a card reader. These are the most common format and are considered
to be a more secure form of memory storage than magnetic stripe cards. Optical memory
cards use a laser reader for data retrieval, in a similar manner to compact discs. They have
a small data storage capacity, but data cannot be overwritten on such cards, making them
ideal for record keeping. However, they are currently expensive and have a small user
group, and so, we shall not consider them further.

7.2 Partial Hiding on IC Memory Cards

One possible implementation of partial hiding on smart cards is shown in Figure 2. We
propose to store the secure data entity (consisting of the secret portion of the user’s private
key XORed with the iris data) on the smart card itself and allow the remainder of the key to
be stored on a trusted server. The user is then required to present the card and submit to an
iris scan in order to recreate the missing section of the key needed for decryption purposes.
Given that the amount of the private key which must be stored on the smart card has been
greatly reduced, it should also be possible to store any other secret data (necessary for the
correction of the iris reading [FP05]) on the smart card, even on those with low storage
capacities. This data is retrieved from the card and combined on the main server with the

94

Server

Smart Card

XOR(Secret portion)

Other secret data

Partial

Private
Key

Iris Scan

Figure 2: Partial hiding on IC memory cards. The smart card contains the ‘Secret”
portion of the private key, XORed with the iris reading, along with some other secret
data from the error-correcting stage of the process. The smart card is presented to the
trusted server together with an iris scan in order to restore the entire private key.

iris reading to restore the private key, making IC memory cards the most suitable type of
smart cards for this purpose.

A potential drawback of this approach is that the calculations are not done on the card
itself, but instead on the server, meaning that there is the possibility of an attack being
staged to intercept the data en route from the smart card to the server. However, notwith-
standing the difficulty of such an attack, unless the attacker simulataneously manages to
steal the individual’s iris reading, the information on the card alone will not permit him to
uncover the user’s private key.

7.3 Partial Hiding on IC Microprocessor Cards

Scanning Device
] Smart Card

Iris
XOR(Secret portion)

Other secret data

Partial private key

Figure 3: Partial hiding on IC microprocessor cards. The user submits to an iris
reading, while inserting the smart card into a scanning device. This scanner transmits
the reading to the smart card and all calculations are carried out on the card.

95

If we consider the use of IC microprocessor cards instead, however, with processors which
are sufficiently advanced to allow all the necessary calculations to be done internally rather
than on a server, the entire private key could be stored on the card, as shown in Figure 3.
Again, the majority of this key need not be securely hidden, with just 256 bits protected
by the individual’s iris reading, as usual. In order to decrypt the protected portion, the
user would insert the card into an iris-scanning device of some sort and submit to an iris
reading as usual. The scanning device would then transmit the iris reading to the card, at
which stage it would be corrected in the usual fashion and used to restore the private key.
In this way, none of the stored data would ever leave the smart card, further enhancing the
security of the system.

It is important in this approach that, once the card has been removed from the transmitter,
the session ceases and the decoded portion of the private key is instantly destroyed, to
maintain security in the aftermath of the transaction.

7.4 Attacks on Partial Hiding on Smart Cards

For either implementation, if an attacker succeeds in stealing a smart card, there are several
side-channel attacks which can be attempted, such as timing attacks [Koc96], power anal-
ysis [KJJ99] or electromagnetic attacks [AARRO2]. In general, preventative measures can
be implemented on the card to counteract such attacks. However, numerous attacks also
exist [AK96], [KK99] which directly attack the smart card packaging and reverse-engineer
the internal processor. For partial hiding, this does not cause a problem: although such an
attack may yield the protected portion of the private key, along with the other secret data,
this information alone is insufficient to uncover the private key. Again, unless the attacker
also has access to the individual’s iris reading, he will not be able to decrypt the protected
portion of the key and as such, the private key will remain secure. It would seem that the
most efficient attack on the system would be a brute force attack on the 256 missing bits
of the private key, a search which should prove to be impossibly large.

8 Conclusion

In this paper, we have considered the possibility of implementing partial hiding in low-
exponent RSA with a view to using iris readings to protect the private key. We have shown
that parameters exist for which there are no known attacks and that partial hiding could be
effectively implemented on various types of smart cards.

96

References

[AARRO2] D. Agrawal, B. Archambeault, J. Rao and P. Rohtagi. The EM-side channel(s). In B.S.

[AK96]

[BMO3]

[BMO04]

[BDF98]

[Cop97]

[Dau93]

[FPO5]
[KJJ99]

[KK99]

[Koc96]

[QC82]

[Sil01]

[Sun05]

[SZ01]

[Wie90]

Kaliski Jr., C.K. Ko¢ and C. Paar, editors, Workshop on Cryptographic Hardware and
Embedded Systems (CHES), vol. 2523, pp. 29-45. Springer-Verlag, 2002.

R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In Proc. of 2nd Usenix
Workshop on Electronic Commerce, pp. 1-11, Nov. 1996.

J. Blomer and A. May. New partial key exposure attacks on RSA. In Advances in Cryp-
tology - Proc. of Crypto 03, vol. 2729 of Lecture Notes in Computer Science. Springer-
Verlag, 2003.

J. Blomer and A. May. A Generalized Wiener Attack on RSA. In Practice and Theory in
Public Key Cryptography (PKC 2004), vol. 2947, pp. 1-13 of Lecture Notes in Computer
Science. Springer-Verlag, 2004.

D. Boneh, G. Durfee and Y. Frankel. Exposing an RSA private key given a small frac-
tion of its bits, 1998. Full version of work presented at Asiacrypt '98, available at
http://crypto.stanford.edu/~dabo/abstracts/ bits_of d.html

D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vul-
nerabilities. J. Cryptology, 10(4):233-260, 1997.

J. Daugman. High confidence visual recognition of persons by a test of statistical inde-
pendence. [EEE Trans. Pattern Anal. Machine Intell., 15(11):1148-1161, Nov. 1993.

E. Ni Fhloinn and M. Purser. Iris Recognition and Error-correcting Codes, 2005. In prep.

P. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. In M. Wiener, editor, Advances
in Cryptology - Proc. of Crypto ’99, vol. 1666, pp. 388-397. Springer-Verlag, 1999.

0. Kommerling and M.G. Kuhn. Design principles for tamper-resistant smartcard pro-
cessors. In Proc. of the Usenix Workshop on Smartcard Technology, pp. 9-20, 1999.

P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In N. Koblitz, editor, Advances in Cryptology - Proc. of Crypto 96, vol. 1109,
pp. 104-113. Springer-Verlag, 1996.

J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key cryp-
tosystem. Electronics Letters, 18(21):905-907, 1982.

R.D. Silverman. A cost-based security analysis of symmetric and asymmetric key lengths.
RSA Laboratories’ Bull. 13, Nov. 2001. Revised edition.

Sun Microsystems. JavaCard homepage, Smart Card Overview.
http://java.sun.com/products/javacard/smartcards.html.

R. Steinfeld and Y. Zheng. An advantage of low-exponent RSA with modulus primes
sharing least significant bits. In Proc. of RSA Conf. 2001, Cryptographer’s Track, vol.
2020 of Lecture Notes in Computer Science, pp. 52-62. Springer-Verlag, 2001.

M.J. Wiener. Cryptanalysis of short RSA secret exponents. I[EEE Trans. Information The-
ory, 36(3):553-558, May 1990.

97

