
FeatRacer: Locating Features Through Assisted Traceability
(Summary)

Mukelabai Mukelabai 1, Kevin Hermann 2, Thorsten Berger 3, and Jan-Philipp
Steghöfer 4

Abstract: This extended abstract summarizes our paper with the same title published at the IEEE
Transactions on Software Engineering Journal (TSE) 2023 [Mu23].

Keywords: feature location, traceability, recommender

1 Introduction

Feature Location is one of the most common tasks performed by developers when developing
software systems. Most commonly it is done during the maintenance and evolution of
software systems, as developers must identify the exact locations in a codebase where
specific features are implemented. Unfortunately, it is a laborious and error-prone task, since
the knowledge of features and their location fades, the developers working on a project
change, and features often scatter across the whole codebase.

To this end, many automated feature location techniques have been proposed, which aim
to retroactively recover features.Unfortunately, such approaches are not useful in practice
since they recover only coarse-grained locations, produce too many false positives, and
require large training datasets. Alternatively, recording features during development, when
their location is still in a developer’s mind, circumvents these issues. Still, developers easily
forget to annotate code and it is also a costly process, especially during software evolution
as these recordings require updates.

In this work, we take a different approach in addressing the feature location problem (a.k.a.,
concern location or concept assignment problem). We present FeatRacer, which addresses
the shortcomings of both feature recording and automated feature location by allowing
developers to record features proactively and continuously during development. FeatRacer
relies on embedded code annotations and a machine-learning-based recommender system.
FeatRacer learn the developer’s feature recording practices within the project and reminds

1 University of Zambia, Zambia, and Chalmers | University of Gothenburg, Sweden,
mukelabai.mukelabai@unza.zm, https://orcid.org/0000-0002-3868-4319

2 Ruhr University Bochum, Germany,
kevin.hermann@rub.de, https://orcid.org/0009-0004-6207-4045

3 Ruhr University Bochum, Germany, and Chalmers | University of Gothenburg, Sweden,
thorsten.berger@rub.de, https://orcid.org/0000-0002-3870-5167

4 XITASO Gmbh IT & Software Solutions, Germany, and Chalmers | University of Gothenburg, Sweden,
jan-philipp.steghoefer@xitaso.com, https://orcid.org/0000-0003-1694-0972

cba doi:10.18420/sw2024_22

R. Rabiser, M. Wimmer, I. Groher, A. Wortmann, B. Wiesmayr (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 79

https://orcid.org/0000-0002-3868-4319
https://orcid.org/0009-0004-6207-4045
https://orcid.org/0000-0002-3870-5167
https://orcid.org/0000-0003-1694-0972
mailto:mukelabai.mukelabai@unza.zm
https://orcid.org/0000-0002-3868-4319
mailto:kevin.hermann@rub.de
https://orcid.org/0009-0004-6207-4045
mailto:thorsten.berger@rub.de
https://orcid.org/0000-0002-3870-5167
https://orcid.org/0000-0002-3870-5167
mailto:jan-philipp.steghoefer@xitaso.com
https://orcid.org/0000-0003-1694-0972
https://orcid.org/0000-0003-1694-0972
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024_22


the developer about potentially missing features, when they forget to annotate code. This
makes it easier for developers to recover the fine-grained locations of features.

Assets can be annotated on three levels of granularity levels: folder, file and code fragment
We engineered metrics that measure characteristics of features, which are utilized to estimate
the relatedness of assets that implement a given feature. While engineering these metrics,
we found that data considering process-related metrics such as contributions made by
specific developers show a higher correlation with the prediction performance of FeatRacer
than commit-related metrics such as number of lines added. When FeatRacer finds a
non-annotated asset during a revision, its machine-learning classifiers can predict which
feature it implements based on the asset’s metrics.

We show, that FeatRacer outperforms traditional automated feature location based on Latent
Semantic Indexing (LSI) and Linear Discriminant Analysis (LDA)—which are two of the
most common techniques used for feature location recovery—when predicting features for
4,650 commit changesets from the histories of 16 open-source projects which have been
developed on average for three years between the years 1985 and 2015.

When comparing FeatRacer to traditional feature location techniques among all 16 projects,
FeatRacer showed a 3x higher precision and a 4.5x higher recall, with an average precision
and recall of 89.6 %. We show, that FeatRacer is already effective in predicting feature
locations small datasets, by running it on the first five commits of our subject projects. In
contrast to traditional feature location techniques, for which developers need to investigate
entire project histories, or need a lot of effort and time from the developer to write complex
search queries for features, FeatRacer only requires on average 1.9ms to effectively learn
from a project’s past code fragments, and only 0.002ms to recommend appropriate feature
annotations in non-annotated code.

2 Data Availability

An online appendix with our used datasets, implementation of LSI and LDA, and evaluation
data can be found online [Th23].

Bibliography
[Mu23] Mukelabai, Mukelabai; Hermann, Kevin; Berger, Thorsten; Steghöfer, Jan-Philipp: FeatRacer:

Locating Features Through Assisted Traceability. IEEE Transactions on Software Engineering,
pp. 1–23, 2023.

[Th23] The Authors: Online Appendix. https://bitbucket.org/easelab/featracer/, 2023.

80 Mukelabai Mukelabai et al.

https://bitbucket.org/easelab/featracer/

	Hauptvorträge
	Variability
	FeatRacer: Locating Features Through Assisted Traceability – Mukelabai Mukelabai, Kevin Hermann, Thorsten Berger, Jan-Philipp Steghöfer 



