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Abstract:
Understanding biological evolution prompts for a detailed understanding of the re-

alized phenotype. Biochemical and gene regulatory dynamics are a cornerstone for the
physiology of the cell and must therefore be regarded as one of the major aspects of
such a phenotype. Experimental insight into molecular parameters is, however, hard to
come by. Model development therefore requires computational parameter estimation.
At the same time, design of cellular dynamics is highly efficient when done in-silico.
We therefore developed a computational approach to allow for massively parallel sim-
ulation of biological molecular networks that leverage the massively-parallel comput-
ing power of modern graphics cards and other many-core programming paradigms.
Our system can automatically compile standard SBML files into CUDA code, using
analytic derivatives, and computing standard measures of complex dynamics like the
Lyapunov exponent.

1 Introduction

In the post genome area it became common wisdom that genomic information alone is
not sufficient for understanding cellular function, organismic evolution, or ecological dy-
namics. Instead, we need to also look at dynamical features, e.g., the cellular dynamics
[Iye09]. At the same time, biology is on its way to become a pure quantitative science
[BW06]. Together, these two developments created a need for new approaches.

Accordingly, the network paradigm [DM03] has in recent years dominated models and
concepts in theoretical biology [vR06]. These networks describe the topology of the un-
derlying biochemical dynamics, which in fact are ordinary differential equations (ODEs).
Such models are nowadays accessible in the SBML modeling language [HFS+03] from
databases such as the EMBL BioModels database [LNBB+06].

In particular, understanding the available parameter space of these ODEs [DCS+09] is of
greatest interest in order to understand the evolution of cellular physiology [Lyn07] and
to design biotechnological applications [IRN+04]. Such parameter spaces are generally
high-dimensional and pose therefore a difficult optimization problem [Ham05].
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Both questions prompt for efficient procedures to sample the parameter space—either
adaptively to understand evolutionary dynamics or by optimization to design cellular cir-
cuits. Currently, there are two types of tools available ot sample the parameter space. On
one hand, tools with graphical user interfaces such as Copasi [HSG+06] or BioNessie
[LG09] allow the unexperienced modeler to perform simulations for a couple of parame-
ter sets. They are, however, not suitable for efficient sweeping of large parameter ranges.
On the other hand, command line-based tools such as the SBML ODE Solver Library
[MFM+06] can perform such sweeps but require large compute clusters for a sufficient
sampling.

Since evaluating an ODE for a large number of parameters is an embarrassingly parallel
problem (i.e., all evaluations are completely independent) that can be solved in a single
instruction multiple data (SIMD) fashion [MSM04], it is ideally suited for a massively-
parallel implementation on recent general purpose graphics processors (GPUs). This has
been demonstrated by two systems for numerical integration of ODEs, which were recently
introduced [JK09, LP09].

Our goal is therefore to automatically create all the necessary code to run simulations
given a description of the ODE system in an XML language such as SBML, simulate a
large number of systems with varying parameters, and obtain measures that are of inter-
est to the evolutionary biologist and the bio-engineer. We demonstrate here a first step,
which specialializes on the automatic creation of CUDA [NVI08] code and simple, non-
adaptive parameter space scans. We describe our experiences and hint at possible future
developments.

In particular, our contributions are:

• Given the description of a system of ODEs in SBML, we automatically differentiate
the rate equations within the model. Based on these derivatives, we then automati-
cally construct massively-parallel CUDA code which is able to simulate the system.

• We analyze online the computed complex dynamics of the system via the leading
Lyapunov exponent. Simulations are performed in a combinatorial fashion over the
parameter hypercube.

• We demonstrate the efficiency of the resulting CUDA code empirically and analyze
the speedup compared to a CPU implementation of the system.

2 Related Work

2.1 SBML-based ODE Solvers

In recent years, developing ODE solvers for networks of biological and biochemical enti-
ties has been an active area of research in computational biology [LCPG08]. While there
are general numerical approaches to solve differential equations, typically based on hand-
written code [W.H95, JK09, LP09], we focus here on systems that have a direct interface



to SBML [HFS+03].

Copasi [HSG+06] can import SBML files and offers a sophisticated graphical user in-
terface (GUI). It enables even unexperienced users to simulate systems intuitively on a
desktop computer. Similarly, BioNessie [LG09] is a GUI-based, platform-independent
biochemical network simulator. Its compute core is provided by the SOSlib (SBML ODE
Solver Library) [MFM+06]. This library includes also command-line driven tools to ana-
lyze systems of ordinary differential equations derived from chemical reaction networks.
Simulations for large sets of parameters can thus be performed even on large clusters that
provide sufficient compute power. In contrast, we propose to use the compute power of
modern GPUs which offer high performance at moderate cost.

2.2 Automatic Code Generation

Automatic code generation has a long tradition in computer science and is an active area
of research. Some of the tools mentioned above, in particular Copasi [HSG+06] and the
SOSlib [MFM+06], are capable of transforming SBML files into C code. Their approach
has, however, two shortcomings.

First, the generated code is not CUDA-ready and can therefore not directly execute on a
GPU. There exist, however, examples of automatic CUDA code generation [HB09] for
specific tasks outside of systems biology.

Second, these approaches do not generate efficient, analytical derivatives for analysis pro-
cedures such as the computation of Lyapunov exponents. E.g., Copasi uses a numerical
approach [WSSV85] to compute Lyapunov exponents. In contrast, we employ a computer
algebra system [RED] to automatically compute analytical derivates from the SBML in-
put. This yields the additional benefit that it can in principle leverage any optimization and
complexity reduction techniques of the computer algebra system to improve efficiency of
the resulting code.

3 Methods

We implemented a pipeline that automatically creates an executable from a model de-
scribed in the Systems Biology Markup Language (SBML) [HFS+03]. This executable
uses NVIDIA’s CUDA framework [NVI08] to simulate thousands of dynamic systems in
parallel.

A biological model contained in a SBML file is first transformed into CUDA code with
some additional keywords that control a computer algebra system. This augmented CUDA
code is processed by the computer algebra system which replaces the special keywords
with CUDA code for the Jacobian matrix of the system. Together with a CUDA based
ODE solver, this is compiled into the final program that executes the simulation for a
multitude of parameter configurations in parallel. The implemented pipeline is shown
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Figure 1: Overview over our pipeline. Gray boxes indicate automatically created files, while white
parts are fixed elements.

in Figure 1 and a snipplet of code and its transformation from SBML to CUDA code is
depicted in Figure 2.

3.1 Conversion to CUDA

To achieve a highly efficient simulation on the GPU, the equations describing the model
have to be directly integrated into the CUDA program. Furthermore, the computation of
leading Lyapunov exponents requires the Jacobi matrix of the system for each time step of
the simulation. Like the differential equations, this has to be evaluated on the GPU, but a
numerical differentiation based on finite differences is neither stable nor efficient enough.
We therefore propose a preprocessing step to compute analytic derivatives.

In more detail, the first stage of our implementation uses the SBML API [BKJH08] to pro-
cess a SBML file and extract the mathematical formulas. These are internally represented
as abstract syntax trees that we automatically convert into instructions for the REDUCE
[RED] computer algebra system. These instructions represent the converted mathematical
formulas and commands to compute the analytic derivatives.

The translation tool generates a skeleton model.cu_red of a CUDA file and inserts the
REDUCE statements framed by some special keywords. This skeleton includes function
definitions as well as initial values for the model that can be extracted from the SBML
file. Furthermore, it contains a description of the parameter space sampling that will be
performed. Since the SBML code does not include such sampling information, it must be
supplied by the user as a separate file.

A script then loads the augmented skeleton file into the REDUCE system and calls the
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... <rateRule variable="X">

      <math xmlns="http://www.w3.org/1998/Math/MathML">

        <apply>

          <minus/>

            <apply><times/>

              <ci>negativeOne</ci>

              <ci>Y</ci>

            </apply>

            <apply><times/>

              <ci>positiveOne</ci>

              <ci>Z</ci>

            </apply>

         </apply>

      </math>

    </rateRule>...

...;BEGIN; f(0) := p(3) * x(1) - p(4) * x(2)$ ;END;

__device__ void evaluate(TYPE *x, TYPE *f, TYPE *p) {

    ...

    ;BEGIN; GENTRAN f(0) := EVAL(f(0))$ ;END;

    ...

}

__device__ void evaluate(TYPE *x, TYPE *f, TYPE *p) {

...

f[0] = p[3]*x[1] – p[4]*x[2];

...

}

model.xml

model.cu_red

model.cu
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Figure 2: Flow of code through the various steps of our pipeline.

GENTRAN package, which is part of the REDUCE distribution. This package replaces
the keywords with the results from the REDUCE commands and translates them into C
code. As we pay attention to only insert REDUCE instructions at places, where CUDA is
equal to C code, this results in a pure CUDA file model.cu.

3.2 Building the Simulation Executable

The problem of simulating a multitude of dynamical systems that all correspond to shared
mathematical expressions (ODEs) just with a different set of parameters needs to be mapped
to the CUDA architecture (please refer to the CUDA manual [NVI08] for a detailed de-
scription). In our approach, we designate one thread for each parameter set, i.e., each
thread simulates the complete model for a fixed parameter vector.

We integrate the sytem with an Euler scheme and compute a deviation vector to determine
the Lyapunov exponent with the algorithm described in Benettin et al. [BGS76] and Alli-
good et al. [ASY97]. All computations are hereby performed on the GPU. In contrast to
the automatically created code from SBML, both the Euler method and the calculation of
the Lyapunov exponent are independent of the specific model. They are therefore supplied
as a fixed part of the pipeline along with some management code running on the CPU.

All fixed and automatically created components are compiled into a single executable.
Several parameters such as the stepsize of the integration and number of time steps can



be set on the command line. Recompilation only becomes necessary, when a different
parameter space sampling is needed.

3.3 CUDA Execution Configuration

In the CUDA programming model, threads are organised as blocks that are themselves
grouped into grids [NVI08]. As the threads have to share resources like registers and
shared memory on the multiprocessor, the number of threads per block is determined by
the resource usage of the individual threads and the capabilities of the graphics device.

The amount of registers and memory needed per thread depends heavily on the number
of ODEs describing the biological model. Therefore, the general simulation code has to
provide some means to automatically detect the prefered block size for the actual model
that it is used upon. The host code currently accomplishes this by decreasing the block
size at runtime until the kernel is successfully started.

To make use of modern graphics card configurations featuring multiple GPUs on the same
board, the host part of our implementation divides the entire set of samples S into smaller
sets SGPU1, . . . , SGPUK that are distributed among all GPUs. Given the blocksize and the
set SGPUi of samples for a single GPU, the number of threads needed may still exceed the
maximum grid size. To cope with this, we further divide SGPUi = SGPUi,1∪ . . .∪SGPUi,l

and sequentially start grids for all the SGPUi,j . Supporting multiple GPUs also has the
advantage of simple adaption to a possible cluster of CUDA enabled computers.

3.4 Implementation Details

We currently use REDUCE 3.8 as of 27.02.2009 and the GENTRAN package shipped with
that release. The conversion tool supports SBML Level 2 Version 3 via the API version
3.2.0.

Evaluations are performed on two distinct computers. Both are equipped with Intel Xeon
Quad-Core processors (E5430, 64 bit, 2.66 GHz) and run OpenSuSE 11.1. One machine
has a GeForce GTX 280 as graphics card and gcc 4.1.2 (20061115, prerelease) as com-
piler. The other features a GeForce 9800 GX2 and uses gcc 4.3.2 (revision 141291) for
compiling. The GeForce 9800 GX2 contains internally two separate devices and appears
to the host PC as double GPU system. We use nvcc release 2.1 (V0.2.1221) for CUDA
compilation on both machines and driver version 180.22.

4 Results

For the purpose of this paper, we simulated an abstract system proposed by Rössler [Rös77],
which ultimatively leads to the ordinary differential equation system of the well-known



Figure 3: Time series plots with 106 steps for the Rössler attractor shown in Equation 1 computed
on the GPU. Only a subset of the computed points is shown. Left: Plot for the original parameter
set (a, b, c) = (0.15, 0.2, 10.0) as proposed by Rössler [Rös77]. Right: Plot for an arbitrary chosen
parameter set (a, b, c) = (0.2, 0.0, 0.0).

Rössler attractor
dx

dt
= −y − z

dy

dt
= x + ay

dz

dt
= b + z(x− c). (1)

The parameters a, b, and c can be interpreted as effective reaction rates for biochemical
reaction networks. Figure 3 shows some time series obtained on the GPU for two different
parameter sets examplifying the rich dynamics of this chaotic system.

In the following, we will integrate this system using massively-parallel computations over
a hypercube in parameter-space. This enables the efficient investigation of parameter influ-
ences on the underlying system dynamics. In particular, we compute the largest Lyapunov
exponent of the N -step simulated trajectories to quantify the degree of chaotic behavior
observed in this system. The Lyapunov exponent is computed using the direct method of
Alligood et al. [ASY97].

We note that the solution of the equation system (1) is non-bounded for sections of the
parameter space. Consequently, we observed numerical problems such as NaNs for pa-
rameter sets (a, b, c) in these ranges. We also found deviations at the beginning of the
simulated trajectory between the CPU and the GPU version. This is in accordance with
the different implementations of float-pointing numbers on GPUs and CPUs [NVI08].

Figure 4 shows iso-surfaces of Lyapunov-exponentsL in the parameter space of the Rössler
attractor of Equation 1. Of particular interest is the iso-surface L = 0, which divides pa-
rameter sets resulting in chaotic behavior from those that lead to non-chaotic, predictable
dynamics. The iso-surfaces for other values of the Lyapunov exponent (L = −0.1 and
L = 0.2) are consistent with the boundary between chaos and non-chaos since they are
“below” and “above” the iso-surface for L = 0.

5 Performance Evaluation

Table 1 summarizes the compute time required by several versions of our code. In all
cases, we simulated 106 different Rössler systems on the GPU with 5 · 106 iterations



Figure 4: Iso-surfaces in parameter space of the Rössler attractor for different thresholds. Left:
Threshold L = −0.1. Middle: Threshold L = 0 marking the boundary between chaotic and non-
chaotic behavior. Right: Threshold L = 0.2. In all images, the sphere marks the origin of the
coordinate system. The c axis has been scaled down by a factor of 10 relative to the other axes.

code GPU/CPU number of threads time
multiprocessors per block ×103 s

a 9800 GX2 single 16 256 12.22
b 9800 GX2 full 2×16 256 6.13
c 9800 GX2 full 2×16 312 5.69
d 9800 GX2 full 2×16 320 5.55
e 9800 GX2 full 2×16 128 6.14
f 9800 GX2 full, shared memory 2×16 32 6.26
g GTX 280 30 512 5.81

CPU Xeon 2.66 GHz — — 351.42

Table 1: Timings for various execution configurations on different GPUs and for CPU reference
code. The GeForce 9800 GX2 contains two physical GPUs with 16 multiprocessors per GPU. Both
GPUs are used except for Scenario a. The GeForce GTX 280 contains 30 multiprocessors on a single
GPU but belongs to a newer hardware generation.

per parameter set and computed the Lyapunov exponent of the trajectory. The parameter
ranges are 100 samples for both, a and b, evenly spaced between 0 and 0.99; and 100
samples for c evenly spaced between 0 and 49.5.

The CPU version was implemented also in single precision and we did not leverage
SIMD/SMT techniques, but instead compared to and compute speedups for single-core
results. We used the code on the CPU as we compiled for the GPU, but omitted CUDA
statements, thus comparing the same extent of code optimization. The codes differed only
in initialization and I/O parts.

Table 1a shows our standard code running on the GeForce 9800 GX2 using only one
of its devices. Using both devices (Table 1b) doubles the speed. All parameters were
selected fully automatically. In addition, we manually ran the code with different execution
configurations (Table 1c–e) but observed no significant difference in performance. This
holds also for Table 1f where we additionally used the shared memory available on the
multiprocessor. Overall, the execution configuration seems to have an almost negligible
influence on the performance of the system (with a slight preference for larger block sizes)



and can therefore be chosen as necessary.

The remaining entries in Table 1 show the timing for the GTX 280, a newer generation
GPU, and a CPU implementaion. The speedup between the CPU version and the GPU
version is ∼ 59.3 (calculated with the average speed of the GPU implementations). This
confirms our assumption that the GPU provides an efficient and cost-effective simulation
environment compared to a standard PC.

Note that - using SIMD extensions and all four cores of a recent CPU - one would obtain
a theoretical, maximal speedup of 16.

6 Conclusion

We developed an automatic SBML-to-CUDA pipeline that allows for massively-parallel
simulation of sufficiently large portions of the parameter spaces of differential equations
relevant to systems biology and biochemical reaction networks. Using Lyapunov expo-
nents as a standard way to analyze time series we are able to scan the parameter space
of the Rössler attractor and find the boundary surface between chaotic and non-chaotic
dynamics. The computation of the Lyapunov exponents uses analytical derivatives of the
underlying ODEs and is thus highly stable and efficient.

The parallelization on the GPU showed a speedup of about factor 59 compared to a CPU
implementation executed on a standard PC. The performance did only depend to a small
extend on the execution configuration which is most likely caused by the nature of the
problem which is well suited for computation on the GPU.

We note that the main computational costs arise from evaluating non-linear terms in the
ODE systems. Therefore no additional omptimization is to be expected from employing
more efficient parallelization schemes based on parallelizing the Euler method itself.

6.1 Limitations

This paper presents a proof-of-concept implementation of our proposed pipeline which
has two main limitations.

First, the conversion tool currently only supports a small subset of SBML. In addition,
many SBML files (e.g., files created by other tools) violate the SBML standard and omit
information such as units for all mathematical entities. We plan to address these issues in
the future by extending the supported subset of SBML and by increasing the robustness of
the converter (e.g., by guessing reasonable default values for undefined units).

Second, our system is currently limited to models with eight or less ODEs and about five to
twenty parameters. Larger dimensions can be simulated as well but result in higher register
usage per thread. Variables are then stored in local memory which can yield a significant
performance loss (depending on how well CUDA can hide memory latency). While this



is a principle problem of our approach, we expect that future hardware generations will
provide more local resources per multiprocessor enabling efficient simulation of larger
systems.

7 Future Work

The proposed system is now capable of automatically transforming SBML files to CUDA
and naivly scanning the parameter space. In the future, we plan to perform further opti-
mizations including optimization of the generated C and CUDA code and simplification
of the mathematical expressions. We also plan to apply the converter to larger systems
and to investigate the achievable speedup for such cases. Lastly, we will incorporate im-
proved schemes to sample the parameter space more efficiently. This includes, e.g., global
optimization schemes [HW99, Ham06, Ham07] or adaptive mesh generation in parameter
space.
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