The Challenge of Indirection: Treating Flags
During Sound Analysis of Machine Code

Sven Mattsen, Sibylle Schupp
Hamburg University of Technology, Hamburg, Germany
{sven.mattsen, schupp}@tuhh.de

1 Introduction

A key problem in reverse engineering executables is to
reconstruct the programs’s control flow, i.e., to con-
struct a graph representation of the byte sequences or
paths a computer may execute as instructions. Un-
fortunately, exactly computing all feasible paths of a
program is not possible. Therefore, the task of precise
control flow reconstruction and disassembly is also not
solvable in general, and one must be content with an
approximative answer.

Contemporary disassemblers, such as objdump,
radare2, and IDAPro either use linear sweep|[5] or re-
cursive descent[5] techniques, enhanced by heuristics,
to compute an approximated disassembly. As a result,
they may produce assembly that not only omits paths
that were feasible in the analyzed binary, but also con-
tain paths that were infeasible in the analyzed binary.
While this form of approximation is acceptable for
certain tasks, e.g., program understanding, it is un-
acceptable for tasks such as verification, where one
reasons about statements that must hold on all paths
(e.g., there exists no path containing an exploitable
sequence).

One approach to enable tasks such as verification
is to allow only overapproximation, i.e., the recon-
structed control flow must contain at least all paths
that are feasible in the analyzed executable, but may
contain additional paths. Tools that overapproximate
in this way are called sound. When a verification task
requires proving that an illegal program state cannot
be reached, a sound disassembly can be used. If no
illegal program state can be reached in the sound dis-
assembly, no illegal program state is reachable in the
original program. If it cannot be shown that no illegal
program state can be reached in the sound disassem-
bly, then it is unclear if a fault exists or not.

In the following sections, we will first explain
sound control flow reconstruction via value set anal-
ysis[1] (Section 2) and introduce a challenge that
is unique to the analysis of machine code (Section
3). In sections 3.2 and 3.3, we will present two ap-
proaches to this problem that we implemented in our
BDDStab[4] plug-in for the software analysis frame-
work Jakstab[3].

2 Sound Analysis of Machine Code

The most challenging aspect of sound control flow re-
construction is to compute a precise set of possible ad-
dresses for dynamic jumps, i.e., jumps that use a non-
constant target (jmp %eax). In BDDStab, we use ab-
stract interpretation techniques, which are commonly
used on structured programs, to statically compute
an overapproximated set of possible integer values for
each register and memory location. The technique
requires a memory-efficient set data structure for in-
tegers as well as precise algorithms that model the
semantics of machine instructions on our overapprox-
imated sets. We use binary decision diagrams (BDD)
to enable size efficent storage of nearly full sets of 64-
bit integers and define our algorithms on the structure
of the BDDs rather than the set they represent, which
allows efficient operations for large sets.

3 Flags in Executables

Besides precise models for bitwise and arithmetic in-
structions, computing precise sets of possible values
also requires models for conditional branches, where
the abstract states must be restricted according to the
condition. These models have to account for the dif-
ferent ways in which conditional branches operate in
machine code, namely the indirection via flags. Con-
sider the following example C code and its correspond-
ing assembly:

1 if ((unsigned int) arge < 10)
2 return 1; else return O0;

1 cmpl $0x9,—0x4(%rbp)
2 ja SRET1

3 mov $0x1,%eax

4 jmp $RET2

5 RET1: mov $0x0,%eax

6 RET2: retq

The assembly code first uses cmpl to set various
flags that are subsequently used in the jg operation,
which jumps depending on the flag values. This be-
haviour is different from the C program in that the
C program directly refers to the variable argc in the

condition. In the assembly version, however, when
looking at the jg alone allows only the restriction of
flag values, not the value at -0x4 (%rbp) which is argc.
Because some compilers may interleave other instruc-
tions between cmpl and jg, especially on architectures
where pipelining is heavily influencing the optimal or-
der of instructions (MIPS), these two instructions can-
not easily be treated as a unitary instruction. An
analyzer must therefore find a way to restrict the ob-
jects of conditions even though they are not explicitly
mentioned in the condition of the jump itself.

3.1 Forward Substitution

Our treatment of flags during analysis uses forward
substitution as implemented in the binary analysis
framework Jakstab[3]. Instead of analyzing on the
level of assembly, with Jakstab, analyses are defined
on an intermediate language that makes all effects of
instructions explicit. Line 1 (cmpl) and 2 (ja) will be
translated to the following, where PC is the program
counter:

1 CF := ($0x9 <u —0x4(%rbp))
2 ZF := (%30x9 = —0x4(%rbp))
3 PC := $RET1 if “(%CF | %ZF)

Forward substitution would replace %CF and %ZF
with the right hand side expression of lines 1 and
2 in the example. The analyzer’s task is to restrict
incoming sets of possible values for the heap value
-0x4 (%rbp) according to the resulting formula.

3.2 Pattern-based Back Translation

The key observation behind pattern-based backtrans-
lation is that the complex formulas that result from
forward substitution are often the result of a compila-
tion of much simpler, semantically equivalent formu-
las. In our last example, the conditional jump was
caused by a simple unsigned less than, and it should
be possible to translate the result of forward substi-
tution back to that. To that end, we refined the sim-
plification rules in Jakstab, so that they mirror the
patterns for intermediate code generation.

3.3 Constraint Solver

The pattern-based back translation approach does not
always work, e.g., when more complex conditions are
used in the source language or when assembly is writ-
ten by hand. For these cases, we have developed a
simple, overappxomating constraint solver that, given
a boolean formula over base constraints such as less
than, greater than and equality predicates, produces
overapproximated sets of possible values for the reg-
isters and memory locations refered to in the base
constraints. This constraint solver uses the fast algo-
rithms for and, or, and negation, available for BDDs.
The constraint solver recurses on the AST of the con-
straint until it reaches a base constraint, generates a
set of possible values for all syntactically mentioned

registers and memory locations, and propagates these
sets upwards. Subsequently, these upwards prop-
agated sets are intersected for boolean and nodes,
unioned for boolean or nodes and complemented for
boolean negation. Because the complementation of
an overapproximated set yields an underapproxima-
tion, the constraint solver additionally tracks whether
an overapproximation or an underapproximation is
needed for each base constraint, whereby it ensures
to only generate overapproximations at the top AST
node.

4 Related Work

At its core, the indirection problem of flags in binary
analysis is a problem of relations between flags and
registers and memory locations. However, the shape
of the relations is not supported by traditional rela-
tional analyses such as affine relations[2]. Sepp et al.
[6] therefore introduce virtual flags and correspond-
ing virtual instructions that produce relations that a
subsequent affine relations analysis supports.

5 Conclusion

We have implemented the pattern-based and con-
straint solver approaches in our BDDStab plug-in and
found that the pattern-based back translation ap-
proach improves precision in the most frequent cases
and additionally simplifies the work for the constraint
solver if simplification does not yield an expression
without boolean connectives.

References

[1] G. Balakrishnan and T. Reps. “Analyzing Mem-
ory Accesses in x86 Executables”. In: Compiler
Construction. LNCS. 2004, pp. 5-23.

[2] M. Karr. “Affine relationships among variables
of a program”. In: Acta Informatica (1976),
pp. 133-151.

[3] J.Kinder and H. Veith. “Jakstab: A Static Anal-
ysis Platform for Binaries”. In: Computer Aided
Verification. LNCS. 2008, pp. 423-427.

[4] S. Mattsen, A. Wichmann, and S. Schupp. “A
non-convex abstract domain for the value analy-
sis of binaries”. In: International Conference on
Software Analysis, Evolution and Reengineering.

SANER. 2015, pp. 271-280.

[5] B. Schwarz, S. Debray, and G. Andrews. “Disas-
sembly of Executable Code Revisited”. In: Work-
ing Conference on Reverse Engineering. WCRE.
2002, pp. 45-.

[6] A. Sepp, B. Mihaila, and A. Simon. “Precise
Static Analysis of Binaries by Extracting Rela-
tional Information”. In: Working Conference on
Reverse Engineering. WCRE. 2011, pp. 357-366.

