
Effects of Explicit Feature Traceability on Program
Comprehension

Jacob Krüger1, Gül Çalıklı2, Thorsten Berger2, Thomas Leich3, Gunter Saake1

Abstract: This abstract is based on our paper with the homonymous title published at the Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE) 2019 [Kr19].

Keywords: program comprehension; feature traceability; software maintenance; separation of
concerns

Software developers spend a substantial amount of their effort in software development and
maintenance on program comprehension. While numerous artifacts can support program
comprehension, for instance, documentations or models, developers mainly focus on
understanding the actual source code. In this regard, a particular challenge for developers is
to locate the features of their system in the source code, which is needed to perform any
update, bug Ąx or extension on any feature. So, it is crucial to improve the comprehensibility
of the source code itself, with various studies showing that even small improvements can
have strong effects. One particular technique for improving program comprehension are
explicit feature traces in the source code to facilitate feature location. Mainly, feature traces
are instantiated using one or both of the following concrete techniques:

• Annotations represent a virtual separation of features, marking the begin and end of
code that belongs to a feature within a single code base.

• Decomposition refers to physically separating features, for example, by implementing
features in separate classes or feature modules that are separated from the base code.

While both techniques have been investigated in several studies, which highlight different pros
and cons of either technique, the actual effect of feature traces on program comprehension
remains unclear and requires more detailed evidence. In particular, most studies solely
compare between both techniques, but do not compare them to source code without
tracesŮoften assuming that either technique is beneĄcial to use anyway.

In our paper, we tackled this problem with an empirical study, comprising an experimental
and a survey part, in which we compared annotations, decomposition, and pure object-
oriented code of the same system. To improve the motivation and gain more reliable insights,
1 Otto-von-Guericke-University, Magdeburg
2 Chalmers | University of Gothenburg
3 Harz University of Applied Sciences & METOP GmbH, Wernigerode & Magdeburg

cba doi:10.18420/SE2020_22

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 79

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_22


we personally invited 144 professional developers from various organizations and countries
to participate in our online study. We obtained results for 49 of these software developers,
analyzing their (1) effectiveness in correctly solving three program-comprehension and
three bug-localization tasks, (2) efficiency in terms of time needed to perform these tasks,
and (3) subjective perception of explicit feature traces.

Overall, we observed the following effects and perceptions of explicit feature traces:

• Annotations did signiĄcantly improve the comprehension of feature interactions
compared to object-oriented source code for two tasks. Our participantsŠ responses
suggest that annotations allowed them to focus on the correct code parts and identify
interactions more easily, conĆicting some common believes that annotations hamper
program comprehension.

• Decomposition did signiĄcantly hamper bug localization compared to object-oriented
code for one task. While researchers often argue that physically separated features
are easier to comprehend, our participants could not identify the correct interaction
between a feature and the base code that caused the bug.

• Concerning the survey responses of our participants, we found that explicit feature
traces (i) extend program-comprehension strategies, (ii) do not impair program com-
prehension, and (iii) are perceived as positive. So, we argue that explicit feature traces,
and especially annotations, are a simple, yet effective, technique to improve program
comprehension. However, there are open challenges, concerning the granularity of
feature traces and their maintenance.

None of the three source-code versions resulted in signiĄcant changes on task completion
time. Our results conĄrm most works that compare between annotations and decomposition,
yielding no signiĄcant differences. However, we also showed that it is problematic to not
compare against the baseline of source code without any traces, for which we observed
conĆicting results compared to common believes in software-engineering research. In
summary, our results indicate that lightweight feature traces, such as annotations, provide
immediate beneĄts to developers while developing and maintaining software. Moreover,
lightweight annotations do not require extensive training or tooling, making it simpler to
introduce them compared to heavyweight traceability tools (e.g., DOORS). Our future
work will focus on further analyzing especially the effect of feature annotations, and on
developing tooling to support their introduction, maintenance, and analysis.

Bibliography
[Kr19] Krüger, Jacob; Çalıklı, Gül; Berger, Thorsten; Leich, Thomas; Saake, Gunter: Effects of

Explicit Feature Traceability on Program Comprehension. In: Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering.
ESEC/FSE. ACM, pp. 338Ű349, 2019.

80 Jacob Krüger, Gül Çalıklı, Thorsten Berger, Thomas Leich, Gunter Saake


