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Abstract: In this paper EEG signals are employed for the purpose of automatic user
recognition. Specifically the resting state with closed eyes acquisition protocol has
been here used and deeply investigated by varying the employed electrodes configu-
ration both in number and location for optimizing the recognition performance still
guaranteeing sufficient user convenience. A database of 45 healthy subjects has been
employed in the analysis. Autoregressive stochastic modeling and polynomial regres-
sion based classification has been applied to extracted brain rhythms in order to iden-
tify the most distinctive contributions of the different subbands in the recognition pro-
cess. Our analysis has shown that significantly high recognition rates, up to 98.73%,
can be achieved when using proper triplets of electrodes, which cannot be achieved by
employing couple of electrodes, whereas sets of five electrodes in the central posterior
region of the scalp can guarantee very high recognition performance while limiting
user convenience.

1 Introduction

EEG recordings can be investigated in terms of rhythmic activity, and it has been shown

that considering specific frequency bands can lead to analyze brain functions related to

some assigned tasks [Baş99]. In this context, the so called “brain oscillations” have been

analyzed from the beginning of EEG research, when the German neurophysiologistBerger

([Ber29]) first observed the dominant oscillations of approximately 10 Hz. In general, five

main widely studied rhythms can be revealed from an EEG recording: Delta (δ[0.5÷4]Hz),

Theta (θ[4 ÷ 8]Hz), Alpha (α[8÷ 14]Hz), Beta (β[13 ÷ 30]Hz) and Gamma (over 30Hz).

EEG measures, acquired through scalp electrodes placed according to the International

10-20 system (Figure 1), have been widely investigated in the previous century in medical

field, mainly to facilitate visual inspection and to extract clinically valuable information.

EEG signals present a very high time resolution, which allows dynamic studies to un-

derstand the underlying mechanisms by means of complex computational methods. Such

a kind of studies has led in recent decades to the use of the brain signal in EEG-based
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communication systems, like brain machine interface (BMI) and brain computer interface

(BCI), aiming at controlling remote devices by means of brain electrical activity [MW11].

Although early research studies have shown evidence that the EEG carries genetic infor-

mation, [Vog70], only in the recent years EEG signals have been employed to recognize

people within a biometric framework [CRS12]. The interest in using EEG biometrics for

automatic person recognition is due to some advantageous peculiarities with respect to

other commonly used biometrics, such as privacy compliance, robustness to spoofing at-

tacks and universality. Within this context, EEG recordings have been registered using

different acquisition protocols, obtaining promising results in recent works. Some of them

rely on the resting state acquisition protocol, which will be the focus of this paper. There

is evidence that the electrical activity in resting state condition serves to organize and co-

ordinate neuronal functions [SS01], and it carries genetic information [Vog70]. This has

led researchers to further investigate this protocol to extract discriminative information for

person recognition purpose, as it is discussed in the following. Specifically, in [PRCE99]

1 channel EEG was collected from 4 subjects performing resting with closed eyes (CE).

Ten order AR coefficients in the α band were employed as features. A neural network al-

gorithm yielded a correct classification rate of 95%. A set of 40 users has been employed

in [PMBK01], where AR coefficients have been computed to characterize single channel

recordings during resting. Discriminant function analysis was used to evaluate data, ob-

taining a correct classification rate of 82%. Furthermore, in [MSMAS06] Yule-Walker AR

parameters of different orders were extracted from the EEG signals of 10 subjects in a rest-

ing state. Then a competitive neural network classifier was tested, training on a partition

of the dataset and testing on the whole dataset. A correct classification rate of 100% was

achieved using sets of 3 channels. Also in [ASLA10] 4 channels EEG recordings were

acquired through 4 bipolar measures during resting from 10 subjects. 21 Yule-Walker AR

coefficients were extracted using different sets of channels. A neural network algorithm

was applied and a correct recognition rate of 97% was achieved for the CE condition, using

all channels. Moreover, in [CSB+11] a database of 48 subjects in a CE resting state was

acquired from triplets of electrodes. A six order AR model has been estimated for each

channel and a polynomial regression based classification has been employed, obtaining a

GAR of 96.08%. Spectral features have instead been considered in other EEG biomet-

ric systems. In particular, in [MBN08] the fusion of two kind of features, based on the

distribution of EEG spectrum in the α band, has been used to verify identities. Signals

were acquired by means of one frontal channel, from 23 subjects still resting with closed

eyes, achieving a verification rate of 79%. Despite the promising results obtained using the

EEG as a biometrics, in all the aforementioned studies a careful analysis aimed at a deep

understanding of the underlying phenomena, and at optimizing the parameters involved in

the acquisition protocol and successive processing is missing. Therefore in this work we

try to fill this gap by focusing on the CE resting state acquisition protocol and speculating

on the number of electrodes to use, their spatial configuration, the subbands to analyze,

and the AR model order to adopt. The paper is organized as follows. In Section 2 the

proposed method is detailed along with the protocol definition, preprocessing, feature ex-

traction, and employed classifier. In Section 3, different sets of electrodes in combination

with different subbands are tested for recognition purposes and conclusions are eventually

drawn.
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2 Proposed method

2.1 Experimental setup

To the aim of the proposed analysis, the EEG recordings of NC = 45 healthy volunteers

have been acquired. Informed consent was obtained from each subject after the explana-

tion of the study, which was approved by the local institutional ethical committee. During

the experiment, the participants were comfortably seated in a reclining chair with both

arms resting on a pillow in a dimly lit room properly designed in order to minimize exter-

nal sounds and noise, not interfering with the attention and the relaxed state of subjects.

The subjects were asked to perform one minute of “resting state with closed eyes”. Brain

activity has been recorded using a BrainAmp recording system operating at a Sr = 200Hz
sampling rate, thus producing an NT = 200 × 60 samples long record for each channel.

The EEG was continuously recorded from CT = 56 sites on the scalp, positioned ac-

cording to the International 10 − 20 system as shown in Figure 1, and potentials were

referenced to the average signal from the ear lobes. Before starting the recording session,

the electrical impedance of each electrode was kept lower than 10kOhm through a dedi-

cated gel maximizing the skin contact and allowing for a low-resistance recording through

the skin. A set of NC = 45 EEG digital recordings from CT = 56 channels V ch
i [n], for

i = 1, · · · , NC, n = 1, · · · , NT , and ch = 1, · · · , CT has been obtained. The recorded

signals have been consequently preprocessed as described in the following Session.

2.2 Preprocessing

2.2.1 Downsampling and filtering

The predominant rhythm that can be detected through EEG recordings during wakeful

relaxation with closed eyes is composed of α waves (8 ÷ 14Hz), originating from the oc-

cipital lobe [BCJ+07]. Nevertheless, also other frequencies still exist, since there isn’t any

exact frequency the brain is operating on. While resting, resulting EEG patterns contain

frequency elements mainly below 30Hz, then the brain rhythms of interest are the δ, θ, α
and β waves. In fact the γ subband is known not to be relevant in a resting state. Moreover,

we empirically observed a very small signal amplitude over 30Hz, also contaminated by

noise such as the 50Hz AC component. In this regard, in a previous work ([CSB+11])

on the use of EEG as biometrics, ratios of the original sampling rate of 200Hz were used

to decimate the signal before extracting features. Results showed the most distinctive in-

formation to be held below 33 Hz. Given this evidence, in the herein proposed study a

more systematic analysis has been carried out in order to properly consider the main EEG

waves. In the preprocessing stage a decimation factor has been applied to the collected raw

signals. A sampling rate of Sr = 60Hz and its anti-aliasing filter were selected, accord-

ing to the Nyquist theorem, to retain spectral information present in the band [0.5, 30]Hz,

containing the four major EEG subbands referring to the resting state.
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Figure 1: Scalp electrodes positioning according to an extension of the standard 10-20 montage.
Electrodes positioning in the employed protocol is shown by the uncrossed circles.

Subsequently, the downsampled signals V ch
i [n] = V ch

i [n × 10/3] |Sr=60 has been band-

filtered through zero-phase frequency filters to perform the following analysis both for

the individual subbands δ, θ, α and β and for their combinations (frequency components

from 0.5Hz up to 30Hz, and from 0.5Hz up to 14Hz), obtaining five tested datasets

V ch
i [n] |Band, where Band ∈ {δ, θ, α, β, [δ ∪ θ ∪ α], [δ ∪ θ ∪ α ∪ β]}. In Figure 2

the spectral maps related to specific frequencies of the different rhythms during resting

with closed eyes are displayed in false colors. The strong parieto-occipital α activity at

10Hz can be observed in the related map, while also the spatial distributions on the scalp

of other weaker components (3, 6, 22Hz) are shown beside.

Figure 2: Spectral maps for the CE resting state protocol. The spatial distribution on the scalp of
spectral EEG amplitudes at given frequencies, specified above each map, is shown. Each circle
represents the top view of a head, where the highest point is the nasion while the lowest is the inion.

A spatial filter has been then applied to the acquired signals. Specifically, a common av-

erage referencing (CAR) filter has been employed by subtracting the mean of the entire

electrode montage (i.e.the common average) from channels of interest at any one instant.

CAR filtering can be applied to reduce artifacts related to inappropriate reference choices

in monopolar recordings [SA03] or not expected reference variations, as well as to pro-

vide measures as independent as possible from the recording session. This results in an

increased SNR, as showed in [MMDW97], where authors compared spatial filter meth-
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ods with a conventional ear reference in an EEG-based system. Therefore, in the herein

proposed study each channel has been re-referenced to a common average reference com-

posed of all CT = 56 electrodes placed over the entire scalp (see Figure 1) according to

the formula:
CARV ch

i [n] = V ch
i [n]−

1

CT

CT∑

j=1

V j
i [n], (1)

where V j
i [n] is the potential between the j-th electrode and the reference electrode. Blink

artifact removal, which is customary in EEG signal processing, was not considered in the

proposed analysis, since we investigated a CE condition. In this regard we empirically

verified that such events are quite absent in the acquired dataset.

2.2.2 Segmentation and detrend

The so obtained signals are then segmented into M frames. A three second frame length

was empirically selected, in order to achieve a trade-off between the sample size and the

stationarity of features to be extracted. An overlap interval between adjacent frames was

set to increase the sample size. Overlapping percentages of 25%, 50% and 75% of the

frame length have been tested. Subsequently the DC component jointly to the linear trend

was removed from each EEG segment. The so obtained datasets, {CARV ch
i,m}, with i =

1, · · · , NC , ch = 1, · · · , CT , and m = 1, · · · , M was further processed to extract the

distinctive features from each user brain signal, as described in the following.

2.3 Feature extraction

Given the user i and the channel ch, the generic frame m, CARV ch
i,m is modeled by means

of AR stochastic modeling. Specifically the AR reflection coefficients Kch
i,m(Q) of order

Q have been estimated using the Burg method [Kay88]. The value for the parameter Q
has been selected according to the Akaike Information Criterion (AIC), to minimize the

information loss in fitting the model according to the formula:

AIC(Q) = NT lnσ2
Q + 2Q (2)

being NT the sequence length, σ2
Q the prediction error power, and Q the model order.

It has been verified that the AIC(Q) function, averaged among subjects and channels,

reaches a plateau zone for values of Q from 8 to12, depending on the considered band.

Thus the maximum value of Q = 12 has been selected to fit the AR model, so as to satisfy

the criterion of minimum information loss for all bands. Hence, for the generic user i, the

generic channel ch, the generic frame m, a vector ζ
ch
i,m of length Q, composed by the AR

model reflection coefficients Kch
i,m(Q), for q = 1, . . . , Q, was obtained from each EEG

frame CARV ch
i,m with m = 1, · · · , M :

ζch
i,m = [Kch

(i,m)(1), Kch
(i,m)(2), · · · , Kch

(i,m)(Q)]T . (3)

Finally, for the i-th user, M features vectors were obtained by concatenating the reflection

coefficients vectors related to different sets of channels under analysis. Spatial configura-
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tions of C = 2, 3 and 5 channels were tested, selecting them with a criteria of symmetry

as discussed in Section 3.

2.4 Polynomial Classification

Polynomial based classification [Sch96] was successfully employed for speaker recogni-

tion in [CAB02]. In order to classify EEG feature vectors we resort to polynomial based

classifiers, which allow to apply a simple linear classification in a properly expanded space,

as it is briefly summarized hereafter. Let us denote with x = [x1, · · · , xK]T an observed

vector, which is supposed to be drawn from a probability distribution belonging to a finite

set of cardinality NC . Lets indicate with pX|Hi
(x|Hi) , i = 1, · · · , NC the probability

density functions describing the NC not necessarily equiprobable classes or hypotheses

Hi, among which to discriminate. Given these assumptions, the classifier we propose es-

timates the class to which the observed feature vector x belongs to by means of a linear

transformation:
ŷT (G) = xT ·G, (4)

where the matrix G is obtained by minimizing the mean square error (MMSE), according

to the expression:

G = argminΓ

NC∑

i=1

Pi · Ex|Hi

{
[yi − ŷ(Γ)]T [yi − ŷ(Γ)]

}
. (5)

Here, assuming the hypothesis Hi holds, the vector yi = [0, . . . , 0, 1, 0, . . ., 0] with the

unique one in the i-th position, indicates the class i x belongs to, while ŷ(G) represents

its estimation. Pi denotes the (prior) probability that x belongs to the i-th class. It can

be easily shown that the employed optimization criterion given in (5) brings to the normal

equations:
Rx ·G = Rxy , (6)

where Rx = E
{
xxT

}
is the classical matrix collecting the (auto)-correlations established

intra the elements of the observation vector x, while Rxy =
∑NC

i=1 Pi ·Ex|Hi
{x} · yT

i . It

is worth noting that (4) states that decision regions are formed through plane intersections

in the space of the observations x. This is non optimal, since the boundary of the decision

regions are nonlinear curves whose forms depend on the actual probability density func-

tions at hand. The approximation through a polynomial regression of these boundaries still

allows to retain the linear classification form (4), but letting this latter rather operate on

a suitably nonlinearly expanded observations space z with increased cardinality. Specifi-

cally, given the observation vector x = [x1, · · · , xK]T , its polynomial expanded counter-

part consists of a constant unit term, followed by K linear terms xm, followed by all the

quadratic terms, followed by all the cubic terms and so forth. For instance, the complete

polynomial expansion up to the third order of x = [x1, x2] yields the following expanded

vector: z(x) = [1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2; x1x

2
2; x

3
2]

T . The D-degree polynomial

expansion of a K-vector yields a KD =
(
k+D

D

)
vector. When operating on a polynomial

expanded vector, the linear classifier (4) is written as follows: ŷT (G) = z(x)T G, with

Rz ·G = Rzy. (7)
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2.4.1 Dataset

As described in Section 2.3, features vectors ζ to be classified have been extracted consid-

ering the combination of different sets of C = 2, 3 and 5 symmetrically placed channels

which have been listed in Tables 1, 2 and 3. Given a chosen set of channels, each of the

acquired signals have been pre-processed as described in Section 2.2, segmented into M
frames, and modeled by means of the reflection coefficients of an AR model of order Q,

obtaining the set of vectors ζ
ch
i,m. More in detail, the acquired EEG signals of duration of

60s, have been segmented into frames of 3s, with an overlap factor of 75%, thus obtaining

a number of M = 77 frames, each of which is represented by the vector ζi,m of Q × C

elements, being the concatenation of the C vectors ζch
i,m. Such a set of vectors ζi,m for

i = 1, · · · , NC and m = 1, · · · , M , has been extracted for all the 6 bands of interest (see

Section 2.2). Therefore, an identification framework has been provided, as described in

the following.

2.4.2 Training and identification

It is worth pointing out that datasets have been assorted in order not to have overlapping

between the ones used in the training stage and the ones used in the recognition stage.

Specifically, the first consecutive MT = 2M/3 frames have been used to assort the train-

ing dataset and the last MC = M/3 ones to assort the testing dataset. Moreover, the

overlapping frames containing samples common to the two datasets have removed to pro-

vide disjointed sets. The training stage consists in the estimation of the matrix G in (7)

computed as G = R̂−1
z · R̂zy, where the matrices Rz and Rzy are estimated through

MonteCarlo runs, considering equal prior probabilities Pi for all the considered classes.

The estimation was obtained performing the following two sample averages:

R̂z =
1

NCMT

NC∑

i=1

MT∑

m=1

zi,mzT
i,m; R̂zy =

1

NCMT

NC∑

i=1

MT∑

m=1

zi,myT
i , (8)

where zi,m is the expansion of the m-th observed feature vector ζi,m belonging to the

i-th class, where yi = [0, . . . , 0, 1, 0, . . . , 0]T , with the unique 1 in the i-th position. A

D = 2 degree polynomial regression has been employed to perform a linear classification

in the nonlinearly expanded observations space z. This value for the polynomial degree

was selected in order to contain the increased cardinality considering the actual length of

the features vector ζ. In fact, to properly estimate the matrix R̂z, whose dimensions are

[KD ×KD], a number of MonteCarlo runs NC ×MT ≥ KD are needed. To avoid failures

and to control accuracy in the estimation of R−1
z , the singular value decomposition based

pseudoinversion has been used for the matrix inversion.

In the classification stage, for each of the NC users, a common averaging is applied to

the MC observed features vectors from the test dataset. For the i-th user a score vector

ŷi is obtained for each mean vector ζi = 1/MT

∑MT

m=1 ζi,m, applying the discrimination

matrix G to ζi: ŷi = G · ζi. Finally the estimation of the user index is obtained locating

the maximum of the score vector ŷi = [ŷi(1), . . . , ŷi(NC)]T according to the criterion

î = argl maxyi(l).
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Figure 3: Recognition performance vs AR order model, with overlap factor of 75% for: a) best
couple; b) best triplet; c) best set of five 5 electrodes.

3 Experimental results and conclusions

A systematic analysis of all the involved parameters has been here performed on the EEG

signals acquired from 45 healthy subjects using a “resting state with closed eyes” proto-

col. Specifically, given the 56 employed channels shown in Figure 1, we have considered

different subsets of them in order to find the best performing spatial arrangements of elec-

trodes while minimizing their number. To achieve this goal we have considered sets of

two, three, and five electrodes, listed in Tables 1, 2 and 3. Symmetrical configurations

have been selected, spanning the entire scalp for sets of two and three channels (Tables 1

and 2), while considering only the central-posterior areas for sets of 5 electrodes (Table

3). AR modeling has been employed to extract the feature vectors from EEG recordings,

which have been first preprocessed as described in Section 2.2. In this stage signals have

been decimated with sampling rate of 60 Hz, in order to maintain the frequency com-

ponents in the range of interest [0 − 30Hz], and band pass filtered to further extract and

analyze the brain rhythmic activity in the bands δ, θ, α and β and in some of their combi-

nations. A spatial filter has been then employed to improve the SNR, controlling artifacts

that may occur on the single reference electrode. Furthermore, the so obtained signals

have been normalized, segmented into overlapping frames of Tf s with an overlapping fac-

tor OL between consecutive frames, and the linear trend has been removed. Values of

Tf = 3s, and OL = 75% have been selected in order to capture locally stationary and

repeatable features, while providing a proper number of frames to train the classification

algorithm. In fact we have experimentally verified that increasing the dataset size through

the overlapping factors of 25% 50% and 75%, leads to improved performance due to a

better estimation of the matrices involved in the classification algorithm. A number of

M = 77 frames has been obtained, and AR reflection coefficients have been estimated

from each of them to generate features vectors. The order Q = 12 of the AR model has

been properly estimated using the AIC [Kay88], but different orders Q ∈ {6, 8, 10, 12}
have been tested providing an experimental validation of the adopted model in terms of

performance. In Figure 3 it can be observed that increasing the model order up to Q = 12
leads to improved performance for all the considered sets of channels. For each frame

a template is obtained by concatenating the reflection coefficients referring to the signals

from the electrodes set under analysis, thus generating feature vectors of length 24, 48, 60
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electrodes δ ∪ θ ∪ α∪ β δ ∪ θ ∪ α δ θ α β

Fp1 Fp2 77.66 73.54 54.34 40.75 56.05 22.80

AF3 AF4 83.67 78.44 57.00 43.38 57.86 24.10

F7 F8 81.18 79.48 56.28 35.99 59.02 23.84

FC5 FC6 90.33 79.88 61.79 44.33 63.64 26.84

FC3 FC4 90.91 82.94 56.16 44.99 61.21 32.03

FC1 FC2 90.39 78.35 59.71 40.89 61.15 28.51

T7 T8 91.52 84.04 68.28 54.17 65.37 35.56

C5 C6 89.73 76.25 58.90 44.33 62.40 32.53

C3 C4 90.71 83.64 59.37 48.31 60.52 36.19

C1 C2 93.16 76.45 57.17 44.33 62.28 37.60

TP7 TP8 89.18 82.16 64.59 55.12 67.99 29.99

CP5 CP6 86.41 79.28 60.06 47.36 56.97 28.17

CP3 CP4 90.48 74.14 63.92 49.06 58.21 33.04

CP1 CP2 86.12 70.76 56.05 41.33 54.89 29.81

P7 P8 91.98 84.44 70.79 58.07 69.61 39.08

P5 P6 94.26 80.58 68.34 53.02 66.64 28.48

P3 P4 92.09 82.71 62.74 51.40 67.76 27.13

P1 P2 90.65 81.15 59.71 46.52 66.12 30.68

PO3 PO4 96.57 87.65 77.58 62.83 72.70 38.61

O1 O2 95.41 87.59 72.73 56.57 74.60 41.10

F5 F6 84.10 83.15 55.18 42.22 60.52 26.55

F3 F4 86.58 80.23 61.15 43.81 59.68 32.67

F1 F2 87.50 73.22 52.01 45.11 57.03 30.04

Fpz AFz 86.15 73.28 58.99 44.18 59.51 29.47

AFz Fz 88.83 79.08 61.15 42.94 56.59 26.23

Fpz Cz 93.19 85.08 69.21 53.25 67.13 33.25

Fpz FCz 91.86 88.23 70.74 55.21 66.61 33.07

Fpz Fz 89.55 82.57 62.74 54.92 62.37 31.08

Fpz CPz 88.92 83.55 65.66 51.72 64.50 33.02

Fpz Pz 88.98 83.41 64.88 51.98 68.57 30.68

Fpz POz 89.73 84.82 72.90 57.84 68.92 34.92

AFz FCz 93.51 85.22 67.91 48.95 65.48 32.18

AFz Cz 94.52 82.37 66.87 52.18 69.47 34.83

AFz CPz 89.90 81.04 64.56 50.71 68.11 35.61

AFz Pz 91.28 84.13 64.39 44.99 70.07 34.57

AFz POz 91.89 84.56 72.73 51.86 71.20 42.97

Fz FCz 91.60 80.72 59.16 45.83 56.39 26.00

Fz Cz 95.32 85.89 66.03 53.30 62.91 36.22

Fz CPz 92.78 85.22 62.68 56.02 66.06 38.27

Fz Pz 93.77 86.81 64.73 48.66 68.63 35.21

Fz POz 95.24 89.03 74.34 55.84 69.75 43.64

FCz Cz 96.59 88.23 65.02 51.23 57.63 37.60

FCz CPz 94.49 90.25 71.72 58.99 66.23 36.71

FCz Pz 95.12 88.77 73.28 55.30 75.47 37.20

FCz POz 97.09 90.07 76.68 59.51 75.18 41.10

Cz CPz 91.11 80.32 64.99 47.07 62.16 37.17

Cz Pz 93.65 86.32 68.66 55.79 71.40 39.62

Cz POz 94.89 85.89 77.66 56.05 73.02 35.93

CPz Pz 91.66 81.99 62.25 53.82 63.12 35.44

CPz POz 92.87 88.95 73.56 58.44 71.14 40.32

Pz POz 90.22 83.75 69.87 47.79 66.61 32.53

Table 1: Classification results in % obtained for the subbands δ, θ, α, β, and the fusions δ∪θ∪α∪β
and δ ∪ θ ∪ α for sets of two electrodes. OL = 75%, Q = 12.
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electrodes δ ∪ θ ∪ α ∪ β δ ∪ θ ∪ α δ θ α β

Fp1 Fpz Fp2 79.65 78.47 58.96 45.69 58.61 26.26

AF3 AFz AF4 88.25 80.55 63.35 45.25 63.64 26.64

F7 Fz F8 92.76 89.61 70.97 55.44 71.28 31.75

FC5 FCz FC6 95.56 89.93 74.57 62.86 78.93 39.97

T7 Cz T8 97.75 92.70 81.62 72.67 83.61 47.42

C5 Cz C6 96.57 89.81 80.58 62.05 77.14 41.24

C3 Cz C4 97.52 92.70 75.90 67.01 73.42 47.01

C1 Cz C2 95.50 82.57 65.66 52.09 66.67 45.54

TP7 CPz TP8 95.70 90.22 79.54 68.72 78.15 46.18

P7 Pz P8 96.51 90.10 79.45 67.33 81.76 49.96

PO1 POz PO2 95.04 88.54 78.33 57.32 76.57 45.95

PO3 POz PO4 98.10 93.04 84.68 71.14 84.91 51.66

O1 POz O2 98.73 90.59 77.37 61.41 84.79 53.88

Table 2: Classification results in % obtained for the subbands δ, θ, α, β, and the fusions δ∪θ∪α∪β
and δ ∪ θ ∪ α for sets of three electrodes. OL = 75%, Q = 12.

for the sets of two, three, and five electrodes respectively. A polynomial classifier has been

then employed using an expansion factor D = 2. It is worth pointing out that the expan-

sion factor has been kept low, since, given the dimension of the feature vector considered

in this paper, a higher expansion factor would lead to a dimensionality curse resulting

in heavy computational load and matrices estimation problems. In Figure 3 it is shown

the comparison between recognition performances obtained employing a simple linear

classifier based on the MMSE and a 2-degree polynomial classifier. Results showed that

best performance of 97.09% and 98.73% has been obtained setting Q = 12 and D = 2
for sets of two and three channels respectively, while remaining below 90% for D = 1.

Referring to sets of five channels it should be noticed that the space expansion doesn’t

provide significant improvements in the recognition performance. In this case a correct

recognition rate of about 99% is obtained for Q = 10, 12 and D = 2, which differs not

significantly from the best performance achieved by using three channels, while requiring

an inconvenient greater number of electrodes. Finally, a cross-validation framework has

been provided for all the considered sets of channels and frequency bands, obtaining re-

sults shown in Tables 1, 2, and 3. The set of frames used for training and test have been

kept disjoint. It should be noticed that the channel spatial configurations giving the best

performance have been proven to be located mainly in the parieto-occipital area PO of

the scalp (O1-POz-O2, PO3-POz-PO4, Cz-TP7-CPz-TP8-Pz, Cz-P7-CPz-TP8-Pz), while

the worst performing sets of electrodes are placed in the fronto-polar region FP (FP1-FP2,

FP1-FPz-FP2). This is in agreement with the experimental finding that α and β rhythms

carry individual-specific traits, claimed to be genetically induced [VPR91], and with the

observation that the oscillatory α activity is the most dominant rhythm which emerges

from the PO region in a condition of relaxation with closed eyes [BCJ +07], corresponding

with the herein employed experimental protocol. According to this evidence, the most

considerable contribution to the correct recognition performance, for the given dataset,

comes from the α band followed by the β band, as it can be observed comparing the col-

umn 3 of each table to the columns 4, 5 and 6. Moreover, as it can be observed in Figure

2, the worst performing FP region doesn’t show α activity, while it is strongly detected
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electrodes δ ∪ θ ∪ α∪ β δ ∪ θ ∪ α δ θ α β

FCz T7 Cz T8 CPz 97.84 94.34 86.20 76.10 84.99 57.32

FCz C5 Cz C6 CPz 97.23 94.55 83.55 65.28 77.17 48.83

FCz C3 Cz C4 CPz 98.07 90.68 80.14 72.09 74.43 51.40

FCz C1 Cz C2 CPz 96.91 83.90 72.06 55.93 65.25 46.38

Cz TP7 CPz TP8 Pz 98.56 94.75 84.16 74.86 84.91 53.65

Cz CP5 CPz CP6 Pz 97.20 92.50 79.54 67.53 79.62 45.37

Cz CP3 CPz CP4 Pz 96.83 91.86 79.45 66.90 78.70 51.08

Cz CP1 CPz CP2 Pz 96.16 86.98 67.73 51.20 73.19 43.20

CPz P7 Pz P8 POz 97.20 92.44 84.33 71.83 83.98 51.20

CPz P5 Pz P6 POz 97.92 93.13 82.16 65.28 84.73 48.60

CPz P3 Pz P4 POz 97.52 90.39 76.80 62.37 83.26 43.32

CPz P1 Pz P2 POz 97.29 89.64 72.15 53.45 75.38 36.19

Pz PO3 PO4 O1 O2 98.21 92.06 79.57 70.10 83.15 52.50

Table 3: Classification results in % obtained for the subbands δ, θ, α, β, and the fusions δ∪θ∪α∪β
and δ ∪ θ ∪ α for sets of five electrodes. OL = 75%,Q = 12.

in the PO area. Besides, eyes movement artifacts mostly affect the FP region, due to the

proximity of the involved muscles.

In conclusion, our analysis achieves more accuracy compared with the works investigat-

ing the CE condition cited in Section 1, especially considering the size of the employed

datasets and the separation of the training and the test datasets. A better result is obtained

also respect to other acquisition protocols, such as open eyes condition in [ASLA10]. Our

contribution concerns the investigation of the most characteristic combination of subbands

to analyze, the proper segmentation and spatial configuration of electrodes to employ,

while using an efficient polynomial regression classifier. It proves that a preliminary data

screening is needed for the optimal setting of the involved parameters. Our extensive anal-

ysis has shown that, within the employed classification framework, the α rhythm can be

successfully employed for recognition purposes, since the used acquisition protocol and

the proper choice of the electrodes number and their positioning allowed reaching recog-

nition rates equal almost to 99% through a second order polynomial regression.
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